

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2005 by David Solomon, Mark Russinovich

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by
any means without the written permission of the publisher.

Library of Congress Control Number 2005921847

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 QWT 9 8 7 6 5 4

Distributed in Canada by H.B. Fenn and Company Ltd.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further information
about international editions, contact your local Microsoft Corporation office or contact Microsoft Press Inter-
national directly at fax (425) 936-7329. Visit our Web site at www.microsoft.com/learning/. Send comments
to rkpinput@microsoft.com.

Microsoft, Active Desktop, Active Directory, ActiveX, DirectX, Microsoft Press, MSDN, MS-DOS, Outlook,
PowerPoint, Visual Basic, Visual C++, Visual Studio, Win32, Windows, Windows NT, Windows Server, and
WinFX are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or
other countries. Other product and company names mentioned herein may be the trademarks of their respec-
tive owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and
events depicted herein are fictitious. No association with any real company, organization, product, domain
name, e-mail address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided with-
out any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers,
or distributors will be held liable for any damages caused or alleged to be caused either directly or indirectly
by this book.

Acquisitions Editors: Robin Van Steenburgh, Ben Ryan
Project Editor: Valerie Woolley
Development Editor: Sally Stickney
Copy Editor: Roger LeBlanc
Indexer: Lynn Armstrong

SubAssy Part No. X11-16607
Body Part No. X11-16608
Section Part No. X11-20530

To Dave Cutler, father of the Windows kernel

Contents at a Glance

1 Concepts and Tools . 1
2 System Architecture. 35
3 System Mechanisms. 85
4 Management Mechanisms . 183
5 Startup and Shutdown . 251
6 Processes, Threads, and Jobs . 289
7 Memory Management . 375
8 Security . 485
9 I/O System. 537

10 Storage Management . 615
11 Cache Manager. 655
12 File Systems. 689
13 Networking . 787
14 Crash Dump Analysis . 845

Table of Contents

Historical Perspective . xix

Foreword. xxiii

Acknowledgments. .xxv

Introduction .xxvii

1 Concepts and Tools .1

Windows Operating System Versions . 1

Foundation Concepts and Terms . 3

Windows API . 3

Services, Functions, and Routines . 5

Processes, Threads, and Jobs . 6

Virtual Memory . 14

Kernel Mode vs. User Mode . 16

Terminal Services and Multiple Sessions. 21

Objects and Handles . 22

Security . 23

Registry . 24

Unicode . 25

Digging into Windows Internals. 25

Performance Tool . 27

Windows Support Tools. 27

Windows Resource Kits . 27

Kernel Debugging . 28

Platform Software Development Kit (SDK). 33

Device Driver Kit (DDK) . 34

Sysinternals Tools . 34

Conclusion . 34

2 System Architecture. 35

Requirements and Design Goals . 35

Operating System Model . 36
What do you think of this book?
We want to hear from you!

Microsoft is interested in hearing your feedback about this publication so we can
continually improve our books and learning resources for you. To participate in a brief
online survey, please visit: www.microsoft.com/learning/booksurvey/

viii Table of Contents
Architecture Overview. 37

Portability . 40

Symmetric Multiprocessing . 41

Scalability . 46

Differences Between Client and Server Versions . 47

Checked Build . 49

Key System Components . 51

Environment Subsystems and Subsystem DLLs . 53

Ntdll.dll . 63

Executive . 63

Kernel. 65

Hardware Abstraction Layer. 67

Device Drivers. 69

System Processes . 75

Conclusion . 84

3 System Mechanisms. 85

Trap Dispatching . 85

Interrupt Dispatching . 87

Exception Dispatching . 109

System Service Dispatching . 119

Object Manager . 124

Executive Objects. 126

Object Structure. 128

Synchronization . 149

High-IRQL Synchronization . 151

Low-IRQL Synchronization . 155

System Worker Threads. 166

Windows Global Flags . 168

Local Procedure Calls (LPCs) . 171

Kernel Event Tracing . 175

Wow64. 178

Wow64 Process Address Space Layout . 179

System Calls . 179

Exception Dispatching . 179

User Callbacks . 179

File System Redirection . 180

Table of Contents ix
Registry Redirection and Reflection. 180

I/O Control Requests . 181

16-Bit Installer Applications . 182

Printing . 182

Restrictions . 182

Conclusion . 182

4 Management Mechanisms . 183

The Registry. 183

Viewing and Changing the Registry . 183

Registry Usage . 184

Registry Data Types . 185

Registry Logical Structure . 186

Troubleshooting Registry Problems. 192

Registry Internals . 197

Services. 211

Service Applications. 212

Service Accounts . 217

The Service Control Manager. 223

Service Startup . 225

Startup Errors . 229

Accepting the Boot and Last Known Good . 230

Service Failures . 231

Service Shutdown. 232

Shared Service Processes. 233

Service Control Programs . 236

Windows Management Instrumentation . 237

WMI Architecture . 237

Providers . 239

The Common Information Model and
the Managed Object Format Language . 240

The WMI Namespace. 243

Class Association. 244

WMI Implementation . 247

WMI Security. 248

Conclusion . 249

x Table of Contents
5 Startup and Shutdown . 251

Boot Process . 251

x86 and x64 Preboot . 251

The x86/x64 Boot Sector and Ntldr . 255

The IA64 Boot Process . 264

Initializing the Kernel and Executive Subsystems . 266

Smss, Csrss, and Winlogon . 269

Images that Start Automatically . 273

Troubleshooting Boot and Startup Problems . 274

Last Known Good . 274

Safe Mode. 274

Recovery Console . 279

Solving Common Boot Problems . 281

Shutdown . 286

Conclusion . 288

6 Processes, Threads, and Jobs . 289

Process Internals. 289

Data Structures. 289

Kernel Variables . 297

Performance Counters . 297

Relevant Functions. 298

Flow of CreateProcess . 300

Stage 1: Opening the Image to Be Executed. 302

Stage 2: Creating the Windows Executive Process Object 304

Stage 3: Creating the Initial Thread and Its Stack and Context 308

Stage 4 : Notifying the Windows Subsystem about the New Process. 309

Stage 5: Starting Execution of the Initial Thread. 310

Stage 6: Performing Process Initialization in the Context
of the New Process . 310

Thread Internals . 313

Data Structures. 313

Kernel Variables . 320

Performance Counters . 321

Relevant Functions. 322

Birth of a Thread . 322

Examining Thread Activity . 323

Table of Contents xi
Thread Scheduling . 325

Overview of Windows Scheduling. 326

Priority Levels . 327

Windows Scheduling APIs. 330

Relevant Tools . 331

Real-Time Priorities . 333

Thread States. 334

Dispatcher Database . 338

Quantum . 340

Scheduling Scenarios . 345

Context Switching . 347

Idle Thread . 348

Priority Boosts . 348

Multiprocessor Systems . 357

Multiprocessor Thread-Scheduling Algorithms. 366

Job Objects . 368

Conclusion . 373

7 Memory Management . 375

Introduction to the Memory Manager . 375

Memory Manager Components . 376

Internal Synchronization . 377

Configuring the Memory Manager . 378

Examining Memory Usage . 378

Services the Memory Manager Provides . 382

Large and Small Pages. 382

Reserving and Committing Pages . 384

Locking Memory . 385

Allocation Granularity . 385

Shared Memory and Mapped Files . 386

Protecting Memory . 388

No Execute Page Protection . 390

Copy-on-Write . 392

Heap Manager . 394

Address Windowing Extensions . 399

System Memory Pools . 401

Configuring Pool Sizes. 401

Monitoring Pool Usage . 404

xii Table of Contents
Look-Aside Lists . 408

Driver Verifier . 409

Virtual Address Space Layouts . 413

x86 User Address Space Layouts . 415

x86 System Address Space Layout . 417

x86 Session Space . 418

System Page Table Entries . 421

64-Bit Address Space Layouts . 422

Address Translation . 425

x86 Virtual Address Translation . 425

Translation Look-Aside Buffer . 434

Physical Address Extension (PAE) . 435

IA-64 Virtual Address Translation . 437

x64 Virtual Address Translation . 438

Page Fault Handling . 439

Invalid PTEs . 440

Prototype PTEs . 441

In-Paging I/O . 443

Collided Page Faults . 444

Page Files . 444

Virtual Address Descriptors . 448

Section Objects. 450

Working Sets. 457

Demand Paging . 458

Logical Prefetcher . 458

Placement Policy . 462

Working Set Management . 463

Balance Set Manager and Swapper . 466

System Working Set . 467

Page Frame Number Database . 469

Page List Dynamics . 472

Modified Page Writer . 475

PFN Data Structures . 476

Low and High Memory Notification. 479

Conclusion . 483

Table of Contents xiii
8 Security . 485

Security System Components . 488

Protecting Objects . 492

Access Checks . 493

Security Descriptors and Access Control . 506

Account Rights and Privileges . 516

Account Rights . 517

Privileges . 518

Super Privileges . 523

Security Auditing . 524

Logon . 526

Winlogon Initialization . 528

User Logon Steps . 529

Software Restriction Policies . 533

Conclusion . 535

9 I/O System. 537

I/O System Components . 537

The I/O Manager . 539

Typical I/O Processing . 540

Device Drivers . 541

Types of Device Drivers . 541

Structure of a Driver. 548

Driver Objects and Device Objects . 550

Opening Devices . 555

I/O Processing . 561

Types of I/O . 561

I/O Request Packets . 564

I/O Request to a Single-Layered Driver . 569

I/O Requests to Layered Drivers. 577

I/O Completion Ports. 585

Driver Verifier . 589

The Plug and Play (PnP) Manager . 590

Level of Plug and Play Support . 591

Driver Support for Plug and Play. 592

Driver Loading, Initialization, and Installation . 594

Driver Installation . 603

xiv Table of Contents
The Power Manager . 607

Power Manager Operation . 609

Driver Power Operation . 610

Driver Control of Device Power . 613

Conclusion . 613

10 Storage Management . 615

Storage Terminology . 615

Disk Drivers . 616

Ntldr. 616

Disk Class, Port, and Miniport Drivers . 617

Disk Device Objects . 620

Partition Manager . 622

Volume Management . 622

Basic Disks. 624

Dynamic Disks . 626

Multipartition Volume Management . 632

The Volume Namespace. 638

Volume I/O Operations. 646

Virtual Disk Service . 648

Volume Shadow Copy Service . 649

Conclusion . 654

11 Cache Manager. 655

Key Features of the Cache Manager . 655

Single, Centralized System Cache . 656

The Memory Manager . 656

Cache Coherency . 656

Virtual Block Caching . 658

Stream-Based Caching . 658

Recoverable File System Support . 658

Cache Virtual Memory Management . 660

Cache Size . 662

LargeSystemCache. 662

Cache Virtual Size . 663

Cache Working Set Size . 665

Cache Physical Size . 667

Table of Contents xv
Cache Data Structures . 668

Systemwide Cache Data Structures . 669

Per-File Cache Data Structures . 670

File System Interfaces. 674

Copying to and from the Cache . 676

Caching with the Mapping and Pinning Interfaces . 677

Caching with the Direct Memory Access Interfaces . 678

Fast I/O . 679

Read Ahead and Write Behind . 682

Intelligent Read-Ahead . 682

Write-Back Caching and Lazy Writing . 683

Write Throttling . 686

System Threads . 687

Conclusion . 688

12 File Systems. 689

Windows File System Formats . 690

CDFS . 690

UDF. 691

FAT12, FAT16, and FAT32. 691

NTFS . 694

File System Driver Architecture. 694

Local FSDs . 695

Remote FSDs . 696

File System Operation . 700

File System Filter Drivers . 705

Troubleshooting File System Problems . 711

Filemon Basic vs. Advanced Modes. 711

Filemon Troubleshooting Techniques . 712

NTFS Design Goals and Features . 717

High-End File System Requirements . 717

Advanced Features of NTFS . 719

NTFS File System Driver . 729

NTFS On-Disk Structure. 732

Volumes . 732

Clusters. 732

Master File Table. 733

xvi Table of Contents
File Reference Numbers . 739

File Records. 740

Filenames . 742

Resident and Nonresident Attributes . 744

Data Compression and Sparse Files . 747

The Change Journal File . 752

Indexing . 753

Object IDs . 754

Quota Tracking. 755

Consolidated Security . 756

Reparse Points . 758

NTFS Recovery Support . 758

Evolution of File System Design . 759

Logging . 761

Recovery . 767

NTFS Bad-Cluster Recovery . 771

Encrypting File System Security . 775

Encrypting a File for the First Time. 778

The Decryption Process . 783

Backing Up Encrypted Files . 784

Conclusion . 785

13 Networking. 787

Windows Networking Architecture. 787

The OSI Reference Model. 787

Windows Networking Components . 789

Networking APIs . 791

Windows Sockets . 791

Remote Procedure Call . 798

Web Access APIs . 803

Named Pipes and Mailslots . 804

NetBIOS. 811

Other Networking APIs. 813

Multiple Redirector Support. 815

Multiple Provider Router . 816

Multiple UNC Provider . 818

Table of Contents xvii
Name Resolution . 820

Domain Name System . 820

Windows Internet Name Service . 820

Protocol Drivers . 821

TCP/IP Extensions . 824

NDIS Drivers . 828

Variations on the NDIS Miniport . 832

Connection-Oriented NDIS. 832

Remote NDIS. 835

QOS . 836

Binding . 838

Layered Network Services . 839

Remote Access . 839

Active Directory . 840

Network Load Balancing . 841

File Replication Service . 843

Distributed File System . 843

Conclusion . 844

14 Crash Dump Analysis . 845

Why Does Windows Crash? . 845

The Blue Screen . 846

Crash Dump Files . 849

Crash Dump Generation . 852

Windows Error Reporting . 853

Online Crash Analysis. 854

Basic Crash Dump Analysis . 855

Notmyfault . 855

Basic Crash Dump Analysis . 856

Verbose Analysis . 858

Using Crash Troubleshooting Tools . 860

Buffer Overrun and Special Pool . 861

Code Overwrite and System Code Write Protection . 863

Advanced Crash Dump Analysis. 864

Stack Trashes . 865

Hung or Unresponsive Systems . 866

When There Is No Crash Dump . 869

xviii Table of Contents
Glossary . 871

Index. 895

Microsoft is interested in hearing your feedback about this publication so we can
What do you think of this book?
We want to hear from you! continually improve our books and learning resources for you. To participate in a brief

online survey, please visit: www.microsoft.com/learning/booksurvey/

Historical Perspective

Again I find myself indebted to David Solomon and Mark Russinovich for providing the
opportunity to write a few words about their newest edition to a series of books on Windows
Internals. It has been over three years since the last publication in this series, and this passage
of time has seen two major releases: a very significant update to the client system, and another
very significant update to the server system, currently being readied for shipment.

Two of the growing problems faced by the authors of a book such as this are tracing the imple-
mentation evolution of the Microsoft Windows NT system and documenting the way in
which feature implementation has changed in each version. To this end, the authors have
done a remarkable job of providing examples and explanations throughout the book.

(Left to right) David Solomon, David Cutler, and Mark Russinovich

I first met David Solomon when I was working at Digital Equipment Corporation on the VMS
operating system for VAX, and he was only 16. Since that time, he has been involved with
operating system development and teaching operating system internals. I met Mark Russinov-
ich more recently but have been aware of his expertise in the area of operating systems for
some time. He has done some amazing work, such as his NTFS file system running on
Microsoft Windows 98 and his “live” Windows kernel debugger, which can be used to peer
into the Windows system while it is running.

The beginnings of Windows NT started in October 1988 with a set of goals to produce a por-
table system that addressed OS/2 compatibility, security, POSIX, multiprocessing, integrated
networking, and reliability. With the advent and huge success of Windows 3.0, the system
goals were soon changed to natively address Windows compatibility directly and move OS/2
compatibility to a subsystem.
xix

xx Historical Perspective
We originally thought we could produce the first Windows NT system in a little over two
years. It actually ended up taking us four and a half years for the first release in the summer of
1993, and that release supported the Intel i386, Intel i486, and the MIPS R4000 processors.
Six weeks later, we also introduced support for the Digital Alpha processors.

The first release of Windows NT was larger and slower than expected, so the next major push
was a project called Daytona, named after the speedway in Florida. The main goals for this
release were to reduce the size of the system, increase the speed of the system, and, of course,
to make it more reliable. Six months after the release of Windows NT 3.5 in the fall of 1994,
we released Windows NT 3.51, an updated version containing support for the IBM PowerPC
processor.

The goal for the next version of Windows NT was to update the user interface to be compati-
ble with Windows 95 and to incorporate the Cairo technologies that had been under develop-
ment at Microsoft for a couple of years. This system took two more years to develop and was
introduced in the summer of 1996 as Windows NT 4.0.

The following version of NT saw a name change to Windows 2000 and was the last system for
which the client and server systems were released at the same time. This version was built on
the same Windows NT technology as the previous versions and introduced significant new
features such as Active Directory. Windows 2000 took three and a half years to produce and
was the most tested and tuned version of Windows NT technology produced at the time. Win-
dows 2000 was the culmination of over eleven years of development spanning implementa-
tions on four architectures.

At the end of Windows 2000 development, we embarked on an ambitious plan to implement
new versions of the client and server systems, which would include new enhanced consumer
features and improved server capabilities. As plans developed, it became clear that implemen-
tation of the server features would cause a lag in the implementation of the client features, and
therefore, the releases were split. In August of 2001, Windows XP Professional and Windows
XP Home Edition were released, and a little over a year later, in March of 2003, Microsoft Win-
dows Server 2003 was released. In addition to the Intel x86 architecture, these systems con-
tained support for the Intel IA-64, marking Windows NT’s first move to 64-bit processing.

This book is the definitive work on the internal structures and workings of Windows XP and
Windows Server 2003. In addition, it offers a glimpse into the future of Windows’ move to
64-bit computing by covering AMD's introduction of the x64 architecture (AMD64) in 2003
and Intel's announced support (EM64T) in February 2004. A fully supported x64 client and
server release is planned in the first half of 2005, and this book contains many insights into
the implementation details of the x64 system.

The x64 architecture is the beginning of a new era for Windows NT at a time when the x86
architecture is beginning to show signs of old age. This architecture offers 32-bit x86 compat-
ibility at speed to protect legacy software investments, and provides 64-bit addressing capabil-
ity to address the most ambitious of new applications. This will protect 32-bit software

Historical Perspective xxi
investments while providing Windows NT with a breath of new life well into the next decade
and beyond.

Although the Windows NT system has undergone several name changes over the past several
years, it remains entirely based on the original Windows NT code base. As time has marched
on and invention has thrived, the implementation of many internal features has changed sig-
nificantly. The authors have done a laudable job of assimilating the details of the Windows NT
code base and its differing implementations from release to release and platform to platform,
and of producing examples and tools that help the reader understand how things work. Every
serious operating system developer should have a copy of this book on his or her desk.

David N. Cutler
Senior Distinguished Engineer
Microsoft Corporation

Foreword

Microsoft Windows has been a core
part of my life for 14 years. During
this time, over release after release,
the operating system has evolved in
breadth and depth. Producing
Windows is one of the most impor-
tant and complex projects in the
world today. Easily 5,000 engineers
work on Windows releases. Across
virtually all cultures, Windows
users comprise an entire spectrum
from the largest mission-critical
business to theyoungest child.
Customers using Windows
demand constant improvements in virtually every aspect—from being able to run the largest
servers to being easy enough for a pre-schooler to use. Windows comes in many shapes and
sizes, from embedded editions to media center editions to data center editions. All these prod-
ucts use the same core Windows internals, which evolve and improve with each release.

This is the definitive book on the core Windows internals. If you want to learn how Windows
works internally, in the fastest way possible, then this is the book for you. Understanding all
the pieces of such a large product is a daunting task. But if you start at the core concepts of the
system and work out, the puzzle fits together a lot more easily. Just as Windows itself has
evolved, so has the comprehensive nature of this book, now in its fourth edition. For years, we
have used earlier editions of this material to train brand-new employees at Microsoft, so this
material is tried and true.

If you’re like me, you like to figure out how things really work. Reading “how to use” books or
“tips and tricks” has never been sufficient for me. If you understand how something works
internally, you know how to better use it, maximize performance and security, diagnose fail-
ures, and frankly, have more fun. If you’re like me and want to see Windows from the “inside
out,” then you’re starting in the right place.

David and Mark have done an outstanding job detailing the “inside” Windows technical story.
The tools that they highlight are a great resource for direct hands-on training and diagnostics
work. After you read this book, you'll have a much greater understanding of how the operat-
ing system fits together, the latest improvements made throughout the system, and how to get
the most from these improvements.
xxiii

xxiv Foreword
It has been quite a journey—one that is still underway. So, start reading and dive deep into one
of the most impressive operating systems ever created.

Jim Allchin
Group Vice President, Platforms
Microsoft Corporation

Acknowledgments

First, special thanks to the following people:

■ Dave Cutler, Senior Distinguished Engineer and the original architect of Microsoft
Windows NT. Dave originally approved David Solomon's source code access and has
been supportive of his work to explain the internals of Windows NT through his train-
ing business as well as during the writing of Inside Windows NT, Second Edition, and
Inside Microsoft Windows 2000, Third Edition. Besides reviewing the chapter on pro-
cesses and threads, Dave answered many questions on the kernel architecture of the
system and wrote a historical perspective for this edition.

■ Jim Allchin, our executive sponsor, for writing the Foreword to this book and champion-
ing our cause within Microsoft.

■ Rob Short, vice president, who made sure we had the resources we needed, as well as
access to the relevant people.

We also thank two developers in the Windows division for writing new content that was
incorporated into this edition:

■ Adrian Marinescu, who wrote the greatly expanded heap manager section in the mem-
ory management chapter.

■ Samer Arafeh, who wrote the description of Wow64.

Thanks to our friend Jeffrey Richter, for writing the “What about .NET and WinFX” sidebar in
Chapter 1 and for continuing to remind us over many dinners together of his view on how few
people should care about what we talk about in this book.

This book wouldn’t contain the depth of technical detail or the level of accuracy it has without the
review, input, and support of key members of the Microsoft Windows development team. There-
fore, we want to thank the following people, who provided technical review and input to the book:

Murali Brahmadesam Pat Hoffer Daniel Pravat

Molly Brown Anthony Jones Dragos Sambotin

Duncan Bryce Tom Jones Jon Schwartz

Daniel Bucherer Joseph Joy Rob Short

Neal Christian Shreeniwas Kelkar Paul Sliwowicz

Neill Clift Connie La Chasse Chittur Subbaraman

Mike Danseglio Mike Lai Cristian Teodorescu

Joseph Davies Paul Leach Andre Vachon

Cenk Ergan Gerald Maffeo Landy Wang
xxv

xxvi Acknowledgments
Others might have contributed by answering questions in the hallway or cafeteria and provid-
ing technical material—if we missed you, please forgive us!

Thanks also to Jamie Hanrahan of Azius Developer Training (www.azius.com), who coau-
thored with David the original Windows Internal Architecture class on which the second edi-
tion was based. Jamie, who has a real knack for explaining complicated concepts in a simple
and practical fashion, developed several of the explanations, diagrams, and figures.

Thanks to Dave Probert for hosting the share where review drafts were distributed to internal
Microsoft reviewers.

And thanks to Jonathan Sloves of AMD for arranging AMD64 test systems to be sent to us to
help us develop the 64-bit content and port some of the Sysinternals tools to x64.

Finally, we want to thank the following people from Microsoft Press for their contribution to
this book:

■ Robin van Steenburgh, acquisitions editor, for patiently working with us to complete
this project.

■ Sally Stickney, who, for a time, continued as our project editor, but later got drawn into
the management vortex. We missed working with you this time!

■ Valerie Woolley, who took over as project editor from Sally. You were great (and not as
rough on us as Sally was for the last two editions)!

■ Roger LeBlanc, who laboriously went through all our chapters to tighten up text, find
inconsistencies, and in general bring the manuscript up to the high standards of
Microsoft Press.

David Solomon and Mark Russinovich
September, 2004

Tom Fout Aaron Margosis Richard Ward

Nar Ganapathy Iain McDonald Brad Waters

David Golds Kamen Moutafov Bruce Worthington

Robert Gu Adi Oltean Mark Zbikowsk

Jeff Hamblin Vince Orgovan Khawar Zuberi

Introduction

Microsoft Windows Internals, Fourth Edition is intended for advanced computer professionals
(both developers and system administrators) who want to understand how the core compo-
nents of the Microsoft Windows 2000, Windows XP, and Microsoft Windows Server 2003
operating systems work internally. With this knowledge, developers can better comprehend
the rationale behind design choices when building applications specific to the Windows
platform. Such knowledge can also help developers debug complex problems. System
administrators can benefit from this information as well, because understanding how the
operating system works “under the covers” facilitates understanding the performance behav-
ior of the system and makes it easier to troubleshoot system problems when things go
wrong. After reading this book, you should have a better understanding of how Windows
works and why it behaves as it does.

Structure of the Book
The first two chapters (“Concepts and Tools” and “System Architecture”) lay the foundation
with terms and concepts used throughout the rest of the book. The next three chapters—“Sys-
tem Mechanisms,” “Management Mechanisms,” and “Startup and Shutdown”—describe key
underlying mechanisms in the system. The next eight chapters explain the core components
of the operating system: processes, threads, and jobs; memory management; security; the I/O
system; storage management; the cache manager; file systems; and networking. The last chap-
ter covers crash dump analysis.

History of the Book
This is the fourth edition of a book that was originally called Inside Windows NT (Microsoft
Press, 1992), written by Helen Custer (prior to the initial release of Microsoft Windows NT 3.1).
Inside Windows NT was the first book ever published about Windows NT and provided key
insight into the architecture and design of the system. Inside Windows NT, Second Edition
(Microsoft Press, 1998) was written by David Solomon. It was updated to cover Windows NT 4.0
and had a greatly increased level of technical depth. Inside Microsoft Windows 2000, Third
Edition (Microsoft Press, 2000) was authored by David Solomon and Mark Russinovich. It
added many new topics such as startup and shutdown, service internals, registry internals,
file system drivers, and networking, as well as kernel changes in Windows 2000 such as the
Windows Driver Model (WDM), Plug and Play, power management, Windows Management
Instrumentation (WMI), encryption, the job object, and Terminal Services.
xxvii

xxviii Introduction
Fourth Edition Changes
This latest edition, now called Microsoft Windows Internals, Fourth Edition, has been updated
to cover the kernel changes made in Windows XP and Windows Server 2003, including
support for 64-bit systems. Hands-on experiments have been updated to reflect changes in
tools, and newly added experiments use new tools not available when the third edition was
written.

Since the level of kernel change from Windows 2000 to these versions was relatively small (as
compared to the changes between Windows NT 4.0 and Windows 2000), the vast majority of
this text applies to Windows 2000, Windows XP, and Windows Server 2003. Therefore,
unless explicitly stated, everything applies to all three versions.

Hands-On Experiments
Even without access to the source code, much can be gleaned about Windows internals from
available tools such as the kernel debugger. When a tool can be used to expose or demon-
strate some aspect of Windows internal behavior, the steps for trying the tool yourself are
listed in “Experiment” boxes. These appear throughout the book, and we encourage you to try
these as you’re reading—seeing visible proof of how Windows works internally will make
much more of an impression on you than just reading about it will.

Topics Not Covered
Windows is a large and complex operating system. This book doesn’t cover everything rele-
vant to Windows internals but instead focuses on the base system components. For example,
this book doesn’t describe COM+, the Windows distributed object-oriented programming
infrastructure, or the Microsoft .NET Framework, the foundation of the next generation of
managed code applications.

Because this is an internals book and not a user, programming, or system administration
book, it doesn’t describe how to use, program, or configure Windows.

A Warning and Caveat
Because this book describes undocumented behavior of the internal architecture and opera-
tion of the Windows operating system (such as internal kernel structures and functions), this
content is subject to change between releases. (External interfaces, such as the Windows API,
are not subject to incompatible changes.)

By “subject to change,” we don’t necessarily mean that details described in this book will
change between releases, but you can’t count on them not changing. Any software that uses
these undocumented interfaces might not work on future releases of Windows. Even worse,

Introduction xxix
software that runs in kernel mode (such as device drivers) and uses these undocumented
interfaces might experience a system crash when running on a newer release of Windows.

Support
Every effort has been made to ensure the accuracy of this book. Should you run into any prob-
lems or issues, please refer to the sources listed below.

From the Authors

This book isn’t perfect. No doubt it contains some inaccuracies, or possibly, we’ve omitted
some topics we should have covered. If you find anything you think is incorrect, or if you
believe we should have included material that isn’t here, please feel free to send e-mail to win-
dowsinternals@sysinternals.com. Updates and corrections will be posted on the page www.sys-
internals.com/windowsinternals.

From Microsoft Press

Microsoft also provides corrections for books through the World Wide Web at the following
address:

http://www.microsoft.com/learning/support

To connect directly with the Microsoft Learning Knowledge Base and enter a query regarding
an issue you might have encountered, go to http://www.microsoft.com/learning/support/
search.asp.

In addition to sending feedback directly to the authors, if you have comments, questions, or
ideas regarding the presentation or use of this book, you can send them to Microsoft using
either of the following methods:

Postal Mail:
Microsoft Press
Attn: Windows Internals Editor
One Microsoft Way
Redmond, WA 98052-6399

E-mail:
mspinput@microsoft.com

Please note that product support isn’t offered through the above mail addresses. For support
information regarding Microsoft Windows, go to www.microsoft.com/windows. You can also
call Standard Support at (425) 635-7011 weekdays between 6 a.m. and 6 p.m. Pacific time, or
you can search Microsoft’s Support Online at support.microsoft.com/support.

xxx Introduction
System Requirements
To use the Microsoft Windows Server 2003 Resource Kit tools, eBooks, and other materials, you
need to meet the following minimum system requirements:

■ Microsoft Windows Server 2003 or Windows XP operating system

■ PC with 233-megahertz (MHz) or higher processor; 550-MHz or higher processor is rec-
ommended

■ 128 MB of RAM; 256 MB or higher is recommended

■ 1.5 to 2 GB of available hard disk space

■ Super VGA (800 x 600) or higher resolution video adapter and monitor

■ CD or DVD drive

■ Keyboard and Microsoft mouse or compatible pointing device

■ Adobe Acrobat or Adobe Reader

■ Internet connectivity for tools that are downloaded

Note Resource Kit tools are written and tested in English only. Using these tools with a non-
English version of Windows might produce unpredictable results. Resource Kit tools are not
supported on 64-bit platforms.

An evaluation edition for Windows Server 2003 Enterprise Edition with Service Pack 1 will be
available on release of Service Pack 1. You can download the evaluation software from the
Microsoft Download Center at http://www.microsoft.com/downloads/. (Availability of software
on the Download Center is at the discretion of Microsoft Corporation and is subject to
change.) To use the evaluation, you need

■ 133-MHz or higher processor; 733-MHz or higher processor is recommended for x86-
based PCs and Itanium-based PCs.

■ 128 MB of RAM; 256 MB of RAM is recommended; 32 GB is recommended for x86-
based PCs (32-bit version) and 64 GB is recommended for Itanium-based PCs (64-bit
version).

■ 1.5 to 2 GB of available hard disk space.

■ Super VGA (500 x 600) or higher resolution video adapter and monitor.

■ Keyboard and Microsoft mouse or compatible pointing device.

Note Actual requirements, including Internet and network access and any related charges,
will vary based on your system configuration and the applications and features you choose to
install. Additional hard disk space may be required if you are installing over a network.

Chapter 1

Concepts and Tools

In this chapter, we’ll introduce the key Microsoft Windows operating system concepts and
terms we’ll be using throughout this book, such as the Windows API, processes, threads, vir-
tual memory, kernel mode and user mode, objects, handles, security, and the registry. We’ll
also introduce the tools that you can use to explore Windows internals, such as the kernel
debugger, the Performance tool, and key tools from www.sysinternals.com. In addition, we’ll
explain how you can use the Windows Device Driver Kit (DDK) and Platform Software Devel-
opment Kit (SDK) as resources for finding further information on Windows internals.

Be sure that you understand everything in this chapter—the remainder of the book is written
assuming that you do.

Windows Operating System Versions
This book covers the three most recent versions of the Microsoft Windows operating system
based on the Windows NT code base: Windows 2000, Windows XP (32-bit and 64-bit ver-
sions), and Windows Server 2003 (32-bit and 64-bit versions). Unless specifically stated, the
text applies to all three versions. As background information, Table 1-1 lists the releases of the
Windows NT code base, their internal version number, and the external product name.

Table 1-1 Windows Operating System Releases

Product Name
Internal Version
Number Release Date

Windows NT 3.1 3.1 July 1993

Windows NT 3.5 3.5 September 1994

Windows NT 3.51 3.51 May 1995

Windows NT 4.0 4.0 July 1996

Windows 2000 5.0 December 1999

Windows XP 5.1 August 2001

Windows Server 2003 5.2 March 2003
1

2 Microsoft Windows Internals, Fourth Edition
Windows NT vs. Windows 95
From the initial announcement of Windows NT, Microsoft made it clear that it was to be
the long-term replacement for Windows 95 (and its subsequent releases, Windows 98
and Windows Millennium Edition). The following list highlights some architectural dif-
ferences and advantages that Windows NT (and its subsequent releases) has over Win-
dows 95 (and its subsequent releases):

■ Windows NT supports multiprocessor systems—Windows 95 doesn’t.

■ The Windows NT file system supports security (such as discretionary access con-
trol). The Windows 95 file system doesn’t.

■ Windows NT is fully a 32-bit (and now 64-bit) operating system—it contains no
16-bit code, other than support code for running 16-bit Windows applications.
Windows 95 contains a large amount of old 16-bit code from its predecessors,
Windows 3.1 and MS-DOS.

■ Windows NT is fully reentrant—significant parts of Windows 95 are nonreentrant
(mainly the 16-bit code taken from Windows 3.1). This nonreentrant code
includes the majority of the graphics and window management functions (GDI
and USER). When a 32-bit application on Windows 95 attempts to call a system
service implemented in nonreentrant 16-bit code, the application must first obtain
a system-wide lock (or mutex) to block other threads from entering the nonreen-
trant code base. And even worse, a 16-bit application holds this lock while running.
As a result, although the core of Windows 95 contains a preemptive 32-bit multi-
threaded scheduler, applications often run single threaded because so much of the
system is still implemented in nonreentrant code.

■ Windows NT provides an option to run 16-bit Windows applications in their own
address space—Windows 95 always runs 16-bit Windows applications in a shared
address space, in which they can corrupt (and hang) each other.

■ Process shared memory on Windows NT is visible only to the processes that are
mapping the same shared memory section. On Windows 95, all shared memory is
visible and writable from all processes. Thus, any process can write to and corrupt
shared memory being used by other cooperating processes.

■ Windows 95 has some critical operating system pages that are writable from user
mode, thus allowing a user application to corrupt or crash the system.

The one thing Windows 95 can do that Windows NT–based systems will never do is
run all older MS-DOS and Windows 3.1 applications (notably applications that require
direct hardware access) as well as 16-bit MS-DOS device drivers. Whereas 100 percent
compatibility with MS-DOS and Windows 3.1 was a mandatory goal for Windows 95,
the original goal for Windows NT was to run most existing 16-bit applications while pre-
serving the integrity and reliability of the system.

Chapter 1: Concepts and Tools 3
Foundation Concepts and Terms
In the course of this book, we’ll be referring to some structures and concepts that might be
unfamiliar to some readers. In this section, we’ll define the terms we’ll be using throughout.
You should become familiar with them before proceeding to subsequent chapters.

Windows API

The Windows application programming interface (API) is the system programming interface
to the Microsoft Windows operating system family, including Windows 2000, Windows XP,
Windows Server 2003, Windows 95, Windows 98, Windows Millennium Edition (Me), and
Windows CE. Each operating system implements a different subset of the Windows API. Win-
dows 95, Windows 98, Windows Me, and Windows CE are not addressed in this book.

Note The Windows API is described in the Platform Software Development Kit (SDK) docu-
mentation. (See the section “Platform Software Development Kit (SDK)” later in this chapter.)
This documentation is available for free viewing online at msdn.microsoft.com. It is also
included with all subscription levels to the Microsoft Developer Network (MSDN), Microsoft’s
support program for developers. For more information, see msdn.microsoft.com. An excellent
description of how to program the Windows base API is Jeffrey Richter’s book Programming
Applications for Microsoft Windows (4th ed., Microsoft Press, 1999).

Prior to the introduction of 64-bit versions of Windows XP and Windows Server 2003, the
programming interface to the 32-bit version of the Windows operating systems was called the
Win32 API, to distinguish it from the original 16-bit Windows API, which was the program-
ming interface to the original 16-bit versions of Windows. In this book, the term Windows API
refers to the 32-bit interface to Windows 2000 and both the 32-bit and 64-bit programming
interfaces to Windows XP and Windows Server 2003.

The Windows API consists of thousands of callable functions, which are divided into the fol-
lowing major categories:

■ Base Services

■ Component Services

■ User Interface Services

■ Graphics and Multimedia Services

■ Messaging and Collaboration

■ Networking

■ Web Services

This book focuses on the internals of the key base services, such as processes and threads,
memory management, I/O, and security.

4 Microsoft Windows Internals, Fourth Edition
What About .NET and WinFX?
The .NET Framework consists of a library of classes called the Framework Class Library
(FCL) and a Common Language Runtime (CLR) that provides a managed code execu-
tion environment with features such as just-in-time compilation, type verification, gar-
bage collection, and code access security. By offering these features, the CLR provides a
development environment that improves programmer productivity and reduces com-
mon programming errors. (For an excellent description of the .NET Framework and its
core architecture, see Applied Microsoft .NET Framework Programming by Jeffrey Richter.)

The CLR is implemented as a classic COM server whose code resides in a standard user-
mode Windows DLL. In fact, all components of the .NET Framework are implemented
as standard user-mode Windows DLLs layered over unmanaged Windows API func-
tions. (None of the .NET Framework runs in kernel mode.) Figure 1-1 illustrates the
relationship of these components:

Figure 1-1 Relationship of .NET Framework components

WinFX is “the new Windows API.” It is the evolution of the .NET Framework that ships
with Windows “Longhorn,” the next major release of Windows. It will also be install-
able on Windows XP and Windows Server 2003. WinFX provides the foundation for the
next generation of applications built for the Windows operating system.

.NET/WinFX Application
(Standard User-Mode EXEs)

Framework Class Library Assemblies
(Standard User-Mode DLLs)

CLR DLLs
(COM server)

Windows API DLLs

Windows Kernel

User mode
(managed code)

User mode
(unmanaged code)

Kernel mode

Chapter 1: Concepts and Tools 5
History of the Win32 API
Interestingly, Win32 wasn’t slated to be the original programming interface to Microsoft
Windows NT. Because the Windows NT project started as a replacement for OS/2 ver-
sion 2, the primary programming interface was the 32-bit OS/2 Presentation Manager
API. A year into the project, however, Microsoft Windows 3.0 hit the market and took
off. As a result, Microsoft changed direction and made Windows NT the future replace-
ment for the Windows family of products as opposed to the replacement for OS/2. It
was at this juncture that the need to specify the Windows API arose—before this, the
Windows API existed only as a 16-bit interface.

Although the Windows API would introduce many new functions that hadn’t been avail-
able on Windows 3.1, Microsoft decided to make the new API compatible with the 16-bit
Windows API function names, semantics, and use of data types whenever possible to
ease the burden of porting existing 16-bit Windows applications to Windows NT. So
those of you who are looking at the Windows API for the first time and wondering why
many function names and interfaces seem inconsistent should keep in mind that one
reason for the inconsistency was to ensure that the Windows API is compatible with the
old 16-bit Windows API.

Services, Functions, and Routines

Several terms in the Windows user and programming documentation have different mean-
ings in different contexts. For example, the word service can refer to a callable routine in the
operating system, a device driver, or a server process. The following list describes what certain
terms mean in this book:

■ Windows API functions Documented, callable subroutines in the Windows API. Exam-
ples include CreateProcess, CreateFile, and GetMessage.

■ Native system services (or executive system services) The undocumented, underlying
services in the operating system that are callable from user mode. For example, NtCre-
ateProcess is the internal system service the Windows CreateProcess function calls to cre-
ate a new process. (For a definition of native functions, see the section “System Service
Dispatching” in Chapter 3.)

■ Kernel support functions (or routines) Subroutines inside the Windows operating sys-
tem that can be called only from kernel mode (defined later in this chapter). For exam-
ple, ExAllocatePool is the routine that device drivers call to allocate memory from the
Windows system heaps.

6 Microsoft Windows Internals, Fourth Edition
■ Windows services Processes started by the Windows service control manager.
(Although the registry defines Windows device drivers as “services,” we don’t refer to
them as such in this book.) For example, the Task Scheduler service runs in a user-
mode process that supports the at command (which is similar to the UNIX com-
mands at or cron).

■ DLL (dynamic-link library) A set of callable subroutines linked together as a binary file
that can be dynamically loaded by applications that use the subroutines. Examples
include Msvcrt.dll (the C run-time library) and Kernel32.dll (one of the Windows API
subsystem libraries). Windows user-mode components and applications use DLLs
extensively. The advantage DLLs provide over static libraries is that applications can
share DLLs, and Windows ensures that there is only one in-memory copy of a DLL’s
code among the applications that are referencing it.

Processes, Threads, and Jobs

Although programs and processes appear similar on the surface, they are fundamentally dif-
ferent. A program is a static sequence of instructions, whereas a process is a container for a set
of resources used when executing the instance of the program. At the highest level of abstrac-
tion, a Windows process comprises the following:

■ A private virtual address space, which is a set of virtual memory addresses that the process
can use

■ An executable program, which defines initial code and data and is mapped into the pro-
cess’s virtual address space

■ A list of open handles to various system resources, such as semaphores, communication
ports, and files, that are accessible to all threads in the process

■ A security context called an access token that identifies the user, security groups, and
privileges associated with the process

■ A unique identifier called a process ID (internally called a client ID)

■ At least one thread of execution

Each process also points to its parent or creator process. However, if the parent exits, this
information is not updated. Therefore, it is possible for a process to point to a nonexistent par-
ent. This is not a problem, as nothing relies on this information being present. The following
experiment illustrates this case.

Chapter 1: Concepts and Tools 7
EXPERIMENT: Viewing the Process Tree
One unique attribute about a process that most tools don’t display is the parent or cre-
ator process ID. You can retrieve this value with the Performance tool (or programmati-
cally) by querying the Creating Process ID. The Tlist.exe tool (in the Windows
Debugging Tools) can show the process tree by using /t switch. Here’s an example of
output from tlist /t:

C:\>tlist /t

System Process (0)

System (2)

smss.exe (21)

csrss.exe (24)

winlogon.exe (35)

services.exe (41)

spoolss.exe (69)

llssrv.exe (94)

LOCATOR.EXE (96)

RpcSs.exe (112)

inetinfo.exe (128)

lsass.exe (44)

nddeagnt.exe (119)

explorer.exe (123) Program Manager

OSA.EXE (121)

WINWORD.EXE (117) Microsoft Word - msch02(s).doc

cmd.exe (72) Command Prompt - tlist /t

tlist.EXE (100)

The list indents each process to show its parent/child relationship. Processes whose par-
ents aren’t alive are left-justified (as is Explorer.exe in the preceding example) because
even if a grandparent process exists, there’s no way to find that relationship. Windows
maintains only the creator process ID, not a link back to the creator of the creator, and
so forth.

To demonstrate the fact that Windows doesn’t keep track of more than just the parent
process ID, follow these steps:

1. Open a Command Prompt window.

2. Type start cmd (which starts a second Command Prompt).

3. Bring up Task Manager.

4. Switch to the second Command Prompt.

5. Type mspaint (which runs Microsoft Paint).

8 Microsoft Windows Internals, Fourth Edition
6. Click the intermediate (second) Command Prompt window.

7. Type exit. (Notice that Paint remains.)

8. Switch to Task Manager.

9. Click the Applications tab.

10. Right-click on the Command Prompt task, and select Go To Process.

11. Click on the Cmd.exe process highlighted in gray.

12. Right-click on this process, and select End Process Tree.

13. Click Yes in the Task Manager Warning message box.

The first Command Prompt window will disappear, but you should still see the Paint-
brush window because it was the grandchild of the Command Prompt process you ter-
minated; and because the intermediate process (the parent of Paintbrush) was
terminated, there was no link between the parent and the grandchild.

A number of tools for viewing (and modifying) processes and process information are avail-
able. The following experiments illustrate the various views of process information you can
obtain with some of these tools. These tools are included within Windows itself and within
the Windows Support Tools, Windows Debugging Tools, Windows resource kits, the Plat-
form SDK, and from www.sysinternals.com. Many of these tools show overlapping subsets of
the core process and thread information, sometimes identified by different names.

Probably the most widely used tool to examine process activity is Task Manager. (Interest-
ingly, there is no such thing as a “task” in the Windows kernel, so Task Manager is really a tool
to manage processes.) The following experiment shows the difference between what Task
Manager lists as applications and processes.

EXPERIMENT: Viewing Process Information with Task Manager
The built-in Windows Task Manager provides a quick list of the processes running on
the system. You can start Task Manager in one of three ways: (1) press Ctrl+Shift+Esc,
(2) right-click on the taskbar and select Task Manager, or (3) press Ctrl+Alt+Delete and
click the Task Manager button. Once Task Manager has started, click the Processes tab
to see the list of running processes. Notice that processes are identified by the name of
the image of which they are an instance. Unlike some objects in Windows, processes
can’t be given global names. To display additional details, choose Select Columns from
the View menu and select additional columns to be added, as shown here:

Chapter 1: Concepts and Tools 9
Although what you see in the Task Manager Processes tab is clearly a list of processes, what
the Applications tab displays isn’t as obvious. The Applications tab lists the top-level visible
windows on all the desktops in the interactive window station. (By default, there are two
desktop objects—you can create more by using the Windows CreateDesktop function.) The
Status column indicates whether or not the thread that owns the window is in a Windows
message wait state. “Running” means the thread is waiting for windowing input; “Not
Responding” means the thread isn’t waiting for windowing input (for example, the thread
might be running or waiting for I/O or some Windows synchronization object).

From the Applications tab, you can match a task to the process that owns the thread that
owns the task window by right-clicking on the task name and choosing Go To Process.

10 Microsoft Windows Internals, Fourth Edition
Process Explorer, from www.sysinternals.com, shows more details about processes and threads
than any other available tool, which is why you will see it used in a number of experiments
throughout the book. The following are some of the unique things that Process Explorer
shows or enables:

■ Full path name for the image being executed

■ Process security token (list of groups and privileges)

■ Highlighting to show changes in the process and thread list

■ List of services inside service-hosting processes, including display name and description

■ Processes that are part of a job and job details

■ Processes running .NET/WinFX applications and.NET-specific details (such as the list
of appdomains and CLR performance counters)

■ Start time for processes and threads

■ Complete list of memory mapped files (not just DLLs)

■ Ability to suspend a process

■ Ability to kill an individual thread

■ Easy identification of which processes were consuming the most CPU time over a period
of time (The Performance Tool can display process CPU utilization for a given set of pro-
cesses, but it won’t automatically show processes created after the performance moni-
toring session has started.)

Process Explorer also provides easy access to information available through other tools from
one central place, such as:

■ Process tree (with ability to collapse parts of the tree)

■ Open handles in a process without prior setup (The Microsoft tools to show open han-
dles require the setting of a systemwide flag and a reboot before they can be used.)

■ List of DLLs (and memory-mapped files) in a process

■ Thread activity within a process

■ User-mode thread stacks (including mapping of addresses to names using the debug-
ging tools’ symbol engine)

■ Kernel-mode thread stacks for system threads (including mapping of addresses to
names using the debugging tools’ symbol engine)

■ Context switch delta (a better representation of CPU activity, as explained in Chapter 6)

■ Kernel memory (paged and nonpaged pool) limits (other tools show only current size)

An introductory experiment using Process Explorer follows.

Chapter 1: Concepts and Tools 11
EXPERIMENT: Viewing Process Details with Process Explorer
Download the latest version of Process Explorer from www.sysinternals.com and run it. The
first time you run it, you will receive a message that symbols are not currently configured.
If properly configured, Process Explorer can access symbol information to display the
symbolic name of the thread start function and functions on its call stack (available by
double-clicking on a process and clicking on the Threads tab). This is useful for identify-
ing what threads are doing within a process. To access symbols, you must have the Debug-
ging Tools installed (described later in this chapter). Then click on Options, choose
Configure Symbols, and fill in the appropriate Symbols path. For example:

In the preceding example, the on-demand symbol server is being used to access symbols
and a copy of the symbol files are being stored on the local machine in the c:\symbols
folder. For more information on configuring use of the symbol server, see http://
www.microsoft.com/whdc/ddk/debugging/symbols.mspx.

When Process Explorer starts, it shows by default the process list on the top half and the
open handles for the currently selected process on the bottom half. It also shows the
image description, company name, and full path if you hover the mouse pointer over the
process name.

12 Microsoft Windows Internals, Fourth Edition
Here are a few steps to walk you through some basic capabilities of Process Explorer:

1. Turn off the lower pane by deselecting View, Show Lower Pane. (The lower pane
can show open handles or mapped DLLs and memory mapped files—these are
explored in Chapters 3 and 7.)

2. Notice that processes hosting services are highlighted by default in pink. Your own
processes are highlighted in blue. (These colors can be configured.)

3. Hover your mouse pointer over the image name for processes, and notice the full
path displayed by the ToolTip.

4. Click on View, Select Columns, and add the image path.

5. Sort on the process column, and notice the tree view disappears. (You can either
display tree view or sort by any of the columns shown.) Click again to sort from Z
to A. Then click again and the display returns to tree view.

6. Deselect View, Show Processes From All Users to show only your processes.

7. Go to Options, Difference Highlight Duration, and change the value to 5 seconds.
Then launch a new process (anything), and notice the new process highlighted in
green for 5 seconds. Exit this new process, and notice the process is highlighted in
red for 5 seconds before disappearing from the display. This can be useful to see
processes being created and exiting on your system.

8. Finally, double-click on a process and explore the various tabs available from the
process properties display. (These will be referenced in various experiments
throughout the book where the information being shown is being explained.)

A thread is the entity within a process that Windows schedules for execution. Without it, the
process’s program can’t run. A thread includes the following essential components:

■ The contents of a set of CPU registers representing the state of the processor.

■ Two stacks, one for the thread to use while executing in kernel mode and one for exe-
cuting in user mode.

■ A private storage area called thread-local storage (TLS) for use by subsystems, run-time
libraries, and DLLs.

■ A unique identifier called a thread ID (also internally called a client ID—process IDs and
thread IDs are generated out of the same namespace, so they never overlap).

■ Threads sometimes have their own security context that is often used by multithreaded
server applications that impersonate the security context of the clients that they serve.

The volatile registers, stacks, and private storage area are called the thread’s context. Because
this information is different for each machine architecture that Windows runs on, this struc-
ture, by necessity, is architecture-specific. The Windows GetThreadContext function provides
access to this architecture-specific information (called the CONTEXT block).

Chapter 1: Concepts and Tools 13
Fibers vs. Threads
Fibers allow an application to schedule its own “threads” of execution rather than rely
on the priority-based scheduling mechanism built into Windows. Fibers are often called
“lightweight” threads, and in terms of scheduling, they’re invisible to the kernel because
they’re implemented in user mode in Kernel32.dll. To use fibers, a call is first made to
the Windows ConvertThreadToFiber function. This function converts the thread to a run-
ning fiber. Afterward, the newly converted fiber can create additional fibers with the Cre-
ateFiber function. (Each fiber can have its own set of fibers.) Unlike a thread, however, a
fiber doesn’t begin execution until it’s manually selected through a call to the
SwitchToFiber function. The new fiber runs until it exits or until it calls SwitchToFiber,
again selecting another fiber to run. For more information, see the Platform SDK docu-
mentation on fiber functions.

Although threads have their own execution context, every thread within a process shares the
process’s virtual address space (in addition to the rest of the resources belonging to the pro-
cess), meaning that all the threads in a process can write to and read from each other’s mem-
ory. Threads cannot accidentally reference the address space of another process, however,
unless the other process makes available part of its private address space as a shared memory
section (called a file mapping object in the Windows API) or unless one process has the right to
open another process to use cross-process memory functions such as ReadProcessMemory and
WriteProcessMemory.

In addition to a private address space and one or more threads, each process has a security
identification and a list of open handles to objects such as files, shared memory sections, or
one of the synchronization objects such as mutexes, events, or semaphores, as illustrated in
Figure 1-2.

Figure 1-2 A process and its resources

Process
object

VAD VAD VAD

Virtual address descriptors (VADs)

Thread Thread Thread . . .

Access token

Access token

Object

Object

Handle table

14 Microsoft Windows Internals, Fourth Edition
Every process has a security context that is stored in an object called an access token. The pro-
cess access token contains the security identification and credentials for the process. By
default, threads don’t have their own access token, but they can obtain one, thus allowing
individual threads to impersonate the security context of another process—including pro-
cesses running on a remote Windows system—without affecting other threads in the process.
(See Chapter 8 for more details on process and thread security.)

The virtual address descriptors (VADs) are data structures that the memory manager uses to
keep track of the virtual addresses the process is using. These data structures are described in
more depth in Chapter 7.

Windows provides an extension to the process model called a job. A job object’s main func-
tion is to allow groups of processes to be managed and manipulated as a unit. A job object
allows control of certain attributes and provides limits for the process or processes associated
with the job. It also records basic accounting information for all processes associated with the
job and for all processes that were associated with the job but have since terminated. In some
ways, the job object compensates for the lack of a structured process tree in Windows—yet in
many ways it is more powerful than a UNIX-style process tree.

You’ll find out much more about the internal structure of jobs, processes and threads, the
mechanics of process and thread creation, and the thread-scheduling algorithms in Chapter 6.

Virtual Memory

Windows implements a virtual memory system based on a flat (linear) address space that pro-
vides each process with the illusion of having its own large, private address space. Virtual
memory provides a logical view of memory that might not correspond to its physical layout.
At run time, the memory manager, with assistance from hardware, translates, or maps, the vir-
tual addresses into physical addresses, where the data is actually stored. By controlling the
protection and mapping, the operating system can ensure that individual processes don’t
bump into one another or overwrite operating system data. Figure 1-3 illustrates three virtu-
ally contiguous pages mapped to three discontiguous pages in physical memory.

Figure 1-3 Mapping virtual memory to physical memory

Physical memory

Virtual memory

Chapter 1: Concepts and Tools 15
Because most systems have much less physical memory than the total virtual memory in use
by the running processes, the memory manager transfers, or pages, some of the memory con-
tents to disk. Paging data to disk frees physical memory so that it can be used for other pro-
cesses or for the operating system itself. When a thread accesses a virtual address that has
been paged to disk, the virtual memory manager loads the information back into memory
from disk. Applications don’t have to be altered in any way to take advantage of paging
because hardware support enables the memory manager to page without the knowledge or
assistance of processes or threads.

The size of the virtual address space varies for each hardware platform. On 32-bit x86 sys-
tems, the total virtual address space has a theoretical maximum of 4 GB. By default, Windows
allocates half this address space (the lower half of the 4 GB virtual address space, from
x00000000 through x7FFFFFFF) to processes for their unique private storage and uses the
other half (the upper half, addresses x80000000 through xFFFFFFFF) for its own protected
operating system memory utilization. The mappings of the lower half change to reflect the vir-
tual address space of the currently executing process, but the mappings of the upper half
always consist of the operating system’s virtual memory. Windows 2000 Advanced Server,
Windows 2000 Datacenter Server, Windows XP (SP2 and later), and Windows Server 2003
support boot-time options (the /3GB and /USERVA qualifiers in Boot.ini, described in Chap-
ter 5) that give processes running specially marked programs (the large address space aware
flag must be set in the header of the executable image) the ability to use up to 3 GB of private
address space (leaving 1 GB for the operating system). This option allows applications such as
database servers to keep larger portions of a database in the process address space, thus
reducing the need to map subset views of the database. Figure 1-4 shows the two virtual
address space layouts supported by 32-bit Windows.

Figure 1-4 Address space layouts for 32-bit Windows

Although 3 GB is better than 2 GB, it’s still not enough virtual address space to map very large
(multigigabyte) databases. To address this need on 32-bit systems, Windows provides a mech-
anism called Address Windowing Extension (AWE), which allows a 32-bit application to allocate
up to 64 GB of physical memory and then map views, or windows, into its 2-GB virtual
address space. Although using AWE puts the burden of managing mappings of virtual to

Default

2 GB User
process space

3 GB user space

2 GB System
space

3 GB User
process space

1 GB System
space

16 Microsoft Windows Internals, Fourth Edition
physical memory on the programmer, it does address the need of being able to directly access
more physical memory than can be mapped at any one time in a 32-bit process address space.

64-bit Windows provides a much larger address space for processes: 7152 GB on Itanium sys-
tems and 8192 GB on x64 systems. Figure 1-5 shows a simplified view of the 64-bit system
address space layouts. (For a detailed description, see Chapter 7.) Note that these sizes do not
represent the architectural limits for these platforms, but rather implementation limits in the
current versions of 64-bit Windows.

Figure 1-5 Address space layouts for 64-bit Windows

Details of the implementation of the memory manager, including how address translation
works and how Windows manages physical memory, are described in Chapter 7.

Kernel Mode vs. User Mode

To protect user applications from accessing and/or modifying critical operating system data,
Windows uses two processor access modes (even if the processor on which Windows is running
supports more than two): user mode and kernel mode. User application code runs in user
mode, whereas operating system code (such as system services and device drivers) runs in
kernel mode. Kernel mode refers to a mode of execution in a processor that grants access to
all system memory and all CPU instructions. By providing the operating system software with
a higher privilege level than the application software has, the processor provides a necessary
foundation for operating system designers to ensure that a misbehaving application can’t dis-
rupt the stability of the system as a whole.

Note The architecture of the Intel x86 processor defines four privilege levels, or rings, to
protect system code and data from being overwritten either inadvertently or maliciously by
code of lesser privilege. Windows uses privilege level 0 (or ring 0) for kernel mode and privilege
level 3 (or ring 3) for user mode. The reason Windows uses only two levels is that some hard-
ware architectures that were supported in the past (such as Compaq Alpha and Silicon Graph-
ics MIPS) implemented only two privilege levels.

x64

8192 GB
(8 TB) User

process space

Itanium

6657 GB
System space

7152 GB
(7 TB) User

process space

6144 GB
System space

Chapter 1: Concepts and Tools 17
Although each Windows process has its own private memory space, the kernel-mode operat-
ing system and device driver code share a single virtual address space. Each page in virtual
memory is tagged as to what access mode the processor must be in to read and/or write the
page. Pages in system space can be accessed only from kernel mode, whereas all pages in the
user address space are accessible from user mode. Read-only pages (such as those that con-
tain executable code) are not writable from any mode.

Windows doesn’t provide any protection to private read/write system memory being used by
components running in kernel mode. In other words, once in kernel mode, operating system
and device driver code has complete access to system space memory and can bypass Win-
dows security to access objects. Because the bulk of the Windows operating system code runs
in kernel mode, it is vital that components that run in kernel mode be carefully designed and
tested to ensure that they don’t violate system security.

This lack of protection also emphasizes the need to take care when loading a third-party
device driver, because once in kernel mode the software has complete access to all operating
system data. This vulnerability was one of the reasons behind the driver-signing mechanism
introduced in Windows, which warns the user if an attempt is made to add an unauthorized
(unsigned) driver. (See Chapter 9 for more information on driver signing.) Also, a mechanism
called Driver Verifier helps device driver writers to find bugs (such as buffer overruns or mem-
ory leaks). Driver Verifier is also explained in Chapter 7.

As you’ll see in Chapter 2, user applications switch from user mode to kernel mode when they
make a system service call. For example, a Windows ReadFile function eventually needs to call
the internal Windows routine that actually handles reading data from a file. That routine,
because it accesses internal system data structures, must run in kernel mode. The transition
from user mode to kernel mode is accomplished by the use of a special processor instruction
that causes the processor to switch to kernel mode. The operating system traps this instruc-
tion, notices that a system service is being requested, validates the arguments the thread
passed to the system function, and then executes the internal function. Before returning con-
trol to the user thread, the processor mode is switched back to user mode. In this way, the
operating system protects itself and its data from perusal and modification by user processes.

Note A transition from user mode to kernel mode (and back) does not affect thread sched-
uling per se—a mode transition is not a context switch. Further details on system service dis-
patching are included in Chapter 3.

18 Microsoft Windows Internals, Fourth Edition
Thus, it’s normal for a user thread to spend part of its time executing in user mode and part
in kernel mode. In fact, because the bulk of the graphics and windowing system also runs in
kernel mode, graphics-intensive applications spend more of their time in kernel mode than in
user mode. An easy way to test this is to run a graphics-intensive application such as Microsoft
Paint or Microsoft Pinball and watch the time split between user mode and kernel mode using
one of the performance counters listed in Table 1-2.

EXPERIMENT: Viewing Thread Activity with QuickSlice
QuickSlice gives a quick, dynamic view of the proportions of system and kernel time
that each process currently running on your system is using. On line, the red part of the
bar shows the amount of CPU time spent in kernel mode, and the blue part shows the
user-mode time. (Although reproduced in the window below in black and white, the
bars in the online display are always red and blue.) The total of all bars shown in the
QuickSlice window should add up to 100 percent of CPU time. To run QuickSlice, click
the Start button, choose Run, and enter Qslice.exe (assuming the Windows 2000
resource kit is in your path). For example, try running a graphics-intensive application
such as Paint (Mspaint.exe). Open QuickSlice and Paint side by side, and draw squig-
gles in the Paint window. When you do so, you’ll see Mspaint.exe running in the Quick-
Slice window, as shown here:

Table 1-2 Mode-Related Performance Counters

Object: Counter Function

Processor: % Privileged Time Percentage of time that an individual CPU (or all
CPUs) has run in kernel mode during a specified
interval

Processor: % User Time Percentage of time that an individual CPU (or all
CPUs) has run in user mode during a specified
interval

Process: % Privileged Time Percentage of time that the threads in a process
have run in kernel mode during a specified
interval

Process: % User Time Percentage of time that the threads in a process
have run in user mode during a specified inter-
val

Thread: % Privileged Time Percentage of time that a thread has run in ker-
nel mode during a specified interval

Thread: % User Time Percentage of time that a thread has run in user
mode during a specified interval

Chapter 1: Concepts and Tools 19
For additional information about the threads in a process, you can also double-click on
a process (on either the process name or the colored bar). Here you can see the threads
within the process and the relative CPU time each thread uses (not across the system):

EXPERIMENT: Kernel Mode vs. User Mode
You can use the Performance tool to see how much time your system spends executing
in kernel mode vs. in user mode. Follow these steps:

1. Run the Performance tool by opening the Start menu and selecting Programs/
Administrative Tools/Performance.

2. Click the Add button (+) on the toolbar.

3. With the Processor performance object selected, click the % Privileged Time
counter and, while holding down the Ctrl key, click the % User Time counter.

4. Click Add, and then click Close.

5. Move the mouse rapidly back and forth. You should notice the % Privileged Time
line going up when you move the mouse around, reflecting the time spent servic-
ing the mouse interrupts and the time spent in the graphics part of the windowing
system (which, as explained in Chapter 2, runs primarily as a device driver in ker-
nel mode). (See Figure 1-6.)

20 Microsoft Windows Internals, Fourth Edition
6. When you’re finished, click the New Counter Set button on the toolbar (or just
close the tool).

You can also quickly see this activity by using Task Manager. Just click the Performance
tab, and then select Show Kernel Times from the View menu. The CPU usage bar will
show user-mode time in green and kernel-mode time in red.

Figure 1-6 Performance tool showing time split between kernel mode and user mode

To see how the Performance tool itself uses kernel time and user time, run it again, but
add the individual Process counters % User Time and % Privileged Time for every pro-
cess in the system:

1. If it’s not already running, run the Performance tool again. (If it is already running,
start with a blank display by pressing the New Counter Set button on the toolbar.)

2. Click the Add button (+) on the toolbar.

3. Change the Performance Object to Process.

4. Select the % Privileged Time and % User Time counters.

5. Select all processes in the Instance box (except the _Total process).

6. Click Add, and then click Close.

7. Move the mouse rapidly back and forth.

8. Press Ctrl+H to turn on highlighting mode. This highlights the currently selected
counter in white on Windows 2000 and black on Windows XP and Windows
Server 2003.

9. Scroll through the counters at the bottom of the display to identify the processes
whose threads were running when you moved the mouse, and note whether they
were running in user mode or kernel mode.

Chapter 1: Concepts and Tools 21
You should see the Performance tool process (by looking in the Instance column for the
mmc process) kernel-mode and user-mode time go up when you move the mouse
because it is executing application code in user mode and calling Windows functions
that run in kernel mode. You’ll also notice kernel-mode thread activity in a process
named csrss when you move the mouse. This activity occurs because the Windows sub-
system’s kernel-mode raw input thread, which handles keyboard and mouse input, is
attached to this process. (See Chapter 2 for more information about system threads.)
Finally, the process named Idle that you see spending nearly 100 percent of its time in
kernel mode isn’t really a process—it’s a fake process used to account for idle CPU cycles.
As you can observe from the mode in which the threads in the Idle process run, when
Windows has nothing to do, it does it in kernel mode.

Terminal Services and Multiple Sessions

Terminal Services refers to the support in Windows for multiple interactive user sessions on a
single system. With Windows Terminal Services, a remote user can establish a session on
another machine, log in, and run applications on the server. The server transmits the graphi-
cal user interface to the client, and the client transmits the user’s input back to the server.
(This is different than X windows on UNIX systems, which permit running individual appli-
cations on a server system with the display remoted to the client, because the entire user ses-
sion is remoted, not just a single application.)

The first login session at the physical console of the machine is considered the console ses-
sion, or session zero. Additional sessions can be created through the use of the remote desk-
top connection program (Mstsc.exe) or on Windows XP systems through the use of fast user
switching (described later).

The capability to create a remote session is supported on Windows 2000 Server systems but
not Windows 2000 Professional. Windows XP Professional permits a single remote user to
connect to the machine, but if someone is logged in at the console, the workstation is locked
(that is, someone can be using the system either locally or remotely, but not at the same time).

Windows 2000 Server and Windows Server 2003 Standard Edition support two simulta-
neous remote connections. (This is to facilitate remote management—for example, use of man-
agement tools that require being logged in to the machine being managed.) Windows 2000
Advanced Server, Datacenter Server, Windows Server 2003 Enterprise Edition, and Data-
center Edition can support more than two sessions if appropriately licensed and configured as
a terminal server.

Although Windows XP Home and Professional editions do not support multiple remote desk-
top connections, they do support multiple sessions created locally through a feature called
fast user switching. (This feature is disabled on Windows XP Professional if the system joins
a domain.) When a user chooses to disconnect their session instead of log off (for example, by

22 Microsoft Windows Internals, Fourth Edition
clicking Start, clicking Log Off, and choosing Switch User or by holding down the Windows
key and pressing “L”), the current session (that is, the processes running in that session and
all the sessionwide data structures that describe the session) remains in the system and the
system returns to the main logon screen. If a new user logs in, a new session is created.

For applications that want to be aware of running in a terminal server session, there are a set
of Windows APIs for programmatically detecting that as well as for controlling various aspects
of terminal services. (See the Platform SDK for details.)

Chapter 2 describes briefly how sessions are created and has some experiments showing how
to view session information with various tools, including the kernel debugger. The “Object
Manager” section in Chapter 3 describes how the system namespace for objects is instantiated
on a per-session basis and how applications that need to be aware of other instances of them-
selves on the same system can accomplish that. Finally, Chapter 7 covers how the memory
manager sets up and manages sessionwide data.

Objects and Handles

In the Windows operating system, an object is a single, run-time instance of a statically defined
object type. An object type comprises a system-defined data type, functions that operate on
instances of the data type, and a set of object attributes. If you write Windows applications,
you might encounter process, thread, file, and event objects, to name just a few examples.
These objects are based on lower-level objects that Windows creates and manages. In Win-
dows, a process is an instance of the process object type, a file is an instance of the file object
type, and so on.

An object attribute is a field of data in an object that partially defines the object’s state. An
object of type process, for example, would have attributes that include the process ID, a base
scheduling priority, and a pointer to an access token object. Object methods, the means for
manipulating objects, usually read or change the object attributes. For example, the open
method for a process would accept a process identifier as input and return a pointer to the
object as output.

Note Although there is a parameter named ObjectAttributes that a caller supplies when cre-
ating an object using either the Windows API or native object services, that parameter
shouldn’t be confused with the more general meaning of the term as used in this book.

The most fundamental difference between an object and an ordinary data structure is that the
internal structure of an object is hidden. You must call an object service to get data out of an
object or to put data into it. You can’t directly read or change data inside an object. This differ-
ence separates the underlying implementation of the object from code that merely uses it, a
technique that allows object implementations to be changed easily over time.

Chapter 1: Concepts and Tools 23
Objects provide a convenient means for accomplishing the following four important operat-
ing system tasks:

■ Providing human-readable names for system resources

■ Sharing resources and data among processes

■ Protecting resources from unauthorized access

■ Reference tracking, which allows the system to know when an object is no longer in use
so that it can be automatically deallocated

Not all data structures in the Windows operating system are objects. Only data that needs to
be shared, protected, named, or made visible to user-mode programs (via system services) is
placed in objects. Structures used by only one component of the operating system to imple-
ment internal functions are not objects. Objects and handles (references to an instance of an
object) are discussed in more detail in Chapter 3.

Security

Windows was designed from the start to be secure and to meet the requirements of various
formal government and industry security ratings, such as the Common Criteria for Informa-
tion Technology Security Evaluation (CCITSE) specification. Achieving a government-
approved security rating allows an operating system to compete in that arena. Of course,
many of these required capabilities are advantageous features for any multiuser system.

The core security capabilities of Windows include: discretionary (need-to-know) protection
for all shareable system objects (such as files, directories, processes, threads, and so forth),
security auditing (for accountability of subjects, or users and the actions they initiate), pass-
word authentication at logon, and the prevention of one user from accessing uninitialized
resources (such as free memory or disk space) that another user has deallocated.

Windows has two forms of access control over objects. The first form—discretionary access
control—is the protection mechanism that most people think of when they think of operating
system security. It’s the method by which owners of objects (such as files or printers) grant or
deny access to others. When users log in, they are given a set of security credentials, or a secu-
rity context. When they attempt to access objects, their security context is compared to the
access control list on the object they are trying to access to determine whether they have per-
mission to perform the requested operation.

Privileged access control is necessary for those times when discretionary access control isn’t
enough. It’s a method of ensuring that someone can get to protected objects if the owner isn’t
available. For example, if an employee leaves a company, the administrator needs a way to gain
access to files that might have been accessible only to that employee. In that case, under Win-
dows, the administrator can take ownership of the file so that you can manage its rights as
necessary.

24 Microsoft Windows Internals, Fourth Edition
Security pervades the interface of the Windows API. The Windows subsystem implements
object-based security in the same way the operating system does; the Windows subsystem
protects shared Windows objects from unauthorized access by placing Windows security
descriptors on them. The first time an application tries to access a shared object, the Windows
subsystem verifies the application’s right to do so. If the security check succeeds, the Win-
dows subsystem allows the application to proceed.

The Windows subsystem implements object security on a number of shared objects, some of
which were built on top of native Windows objects. The Windows objects include desktop
objects, window objects, menu objects, files, processes, threads, and several synchronization
objects.

For a comprehensive description of Windows security, see Chapter 8.

Registry

If you’ve worked at all with Windows operating systems, you’ve probably heard about or
looked at the registry. You can’t talk much about Windows internals without referring to the
registry because it’s the system database that contains the information required to boot and
configure the system, systemwide software settings that control the operation of Windows ,
the security database, and per-user configuration settings (such as which screen saver to use).

In addition, the registry is a window into in-memory volatile data, such as the current hard-
ware state of the system (what device drivers are loaded, the resources they are using, and so
on) as well as the Windows performance counters. The performance counters, which aren’t
actually “in” the registry, are accessed through the registry functions. See Chapter 4 for more
on how performance counter information is accessed from the registry.

Although many Windows users and administrators will never need to look directly into the
registry (because you can view or change most configuration settings with standard adminis-
trative utilities), it is still a useful source of Windows internals information because it contains
many settings that affect system performance and behavior. (If you decide to directly change
registry settings, you must exercise extreme caution; any changes might adversely affect sys-
tem performance or, worse, cause the system to fail to boot successfully.) You’ll find references
to individual registry keys throughout this book as they pertain to the component being
described. Most registry keys referred to in this book are under HKEY_LOCAL_MACHINE,
which we’ll abbreviate throughout as HKLM.

For further information on the registry and its internal structure, see Chapter 4.

Chapter 1: Concepts and Tools 25
Unicode

Windows differs from most other operating systems in that most internal text strings are
stored and processed as 16-bit-wide Unicode characters. Unicode is an international character
set standard that defines unique 16-bit values for most of the world’s known character sets.
(For more information about Unicode, see www.unicode.org as well as the programming doc-
umentation in the MSDN Library.)

Because many applications deal with 8-bit (single-byte) ANSI character strings, Windows
functions that accept string parameters have two entry points: a Unicode (wide, 16-bit) and an
ANSI (narrow, 8-bit) version. The Windows 95, Windows 98, and Windows Millennium Edi-
tion implementations of Windows don’t implement all the Unicode interfaces to all the Win-
dows functions, so applications designed to run on one of these operating systems as well as
Windows typically use the narrow versions. If you call the narrow version of a Windows func-
tion, input string parameters are converted to Unicode before being processed by the system
and output parameters are converted from Unicode to ANSI before being returned to the
application. Thus, if you have an older service or piece of code that you need to run on Win-
dows but this code is written using ANSI character text strings, Windows will convert the
ANSI characters into Unicode for its own use. However, Windows never converts the data
inside files—it’s up to the application to decide whether to store data as Unicode or as ANSI.

In previous editions of Windows, Asian and Middle East editions were a superset of the core
U.S. and European editions and contained additional Windows functions to handle more
complex text input and layout requirements (such as right-to-left text input). As of Windows
2000, all language editions contain the same Windows functions. Instead of having separate
language versions, Windows has a single worldwide binary so that a single installation can
support multiple languages (by adding various language packs). Applications can also take
advantage of Windows functions that allow single worldwide application binaries that can
support multiple languages.

Digging into Windows Internals
Although much of the information in this book is based on reading the Windows source code
and talking to the developers, you don’t have to take everything on faith. Many details about
the internals of Windows can be exposed and demonstrated by using a variety of available
tools, such as those that come with Windows, the Windows Support Tools, the Windows
resource kit tools, and the Windows debugging tools. These tool packages are briefly
described later in this section.

To encourage your exploration of Windows internals, we’ve included “Experiment” sidebars
throughout the book that describe steps you can take to examine a particular aspect of Win-
dows internal behavior. (You already saw one of these sections earlier in this chapter.) We
encourage you to try these experiments so that you can see in action many of the internals
topics described in this book.

26 Microsoft Windows Internals, Fourth Edition
Table 1-3 shows a list of the tools used in this book and where they come from.

Table 1-3 Tools for Viewing Windows Internals

Tool Image Name Origin

Startup Programs Viewer AUTORUNS www.sysinternals.com

Dependency Walker DEPENDS Support Tools, Platform SDK

DLL List LISTDLLS www.sysinternals.com

EFS Information Dumper EFSDUMP www.sysinternals.com*

File Monitor FILEMON www.sysinternals.com

Global Flags GFLAGS Support Tools

Handle Viewer HANDLE www.sysinternals.com

Junction tool JUNCTION www.sysinternals.com

Kernel debuggers WINDBG, KD Debugging tools, Platform SDK,
Windows DDK

Live Kernel Debugging LIVEKD www.sysinternals.com

Logon Sessions LOGINSESSIONS www.sysinternals.com

Object Viewer WINOBJ www.sysinternals.com

Open Handles OH Resource kits

Page Fault Monitor PFMON Support Tools, Resource kits,
Platform SDK

Pending File Moves PENDMOVES www.sysinternals.com

Performance tool PERFMON.MSC Windows built-in tool

PipeList tool PIPELIST www.sysinternals.com

Pool Monitor POOLMON Support Tools, Windows DDK

Process Explorer PROCEXP www.sysinternals.com

Get SID tool PSGETSID www.sysinternals.com

Process Statistics PSTAT Support Tools, Windows 2000
Resource kits, Platform SDK,
www.reskit.com

Process Viewer PVIEWER (in the Support
Tools) or PVIEW (in the
Platform SDK)

Platform SDK

Quick Slice QSLICE Windows 2000 resource kits

Registry Monitor REGMON www.sysinternals.com

Service Control SC Windows XP, Platform SDK,
Windows 2000 resource kits

Task (Process) List TLIST Debugging tools

Task Manager TASKMGR Windows built-in tool

TDImon TDIMON www.sysinternals.com

Chapter 1: Concepts and Tools 27
Performance Tool

We’ll refer to the Performance tool found in the Administrative Tools folder on the Start menu
(or via Control Panel) throughout this book. The Performance tool has three functions: sys-
tem monitoring, viewing performance counter logs, and setting alerts. For simplicity, when we
refer to the Performance tool, we are referring to the System Monitor function within the tool.

The Performance tool can provide more information about how your system is operating than
any other single utility. It includes hundreds of counters for various objects. For each major
topic described in this book, a table of the relevant Windows performance counters is
included.

The Performance tool contains a brief description for each counter. To see the descriptions,
select a counter in the Add Counter window and click the Explain button. Or open the Perfor-
mance Counter Reference help file in the resource kit. For information on how to interpret
these counters to detect bottlenecks or plan capacity, see the section “Performance Monitor-
ing” in the Windows 2000 Server Operations Guide, which is part of the Windows 2000 Server
Resource Kit. These chapters provide an excellent description to anyone seriously interested
in understanding Windows performance. For Windows XP and Windows Server 2003 , see
the Windows Server 2003 Resource Kit Performance Counters Reference documentation
(available online at www.microsoft.com).

Note that all the Windows performance counters are accessible programmatically. The sec-
tion “HKEY_PERFORMANCE_DATA” in Chapter 4 has a brief description of the components
involved in retrieving performance counters through the Windows API.

Windows Support Tools

The Windows Support Tools consist of about 40 tools useful in administering and trouble-
shooting Windows systems. Many of these tools were formerly part of the Windows NT 4
resource kits.

You can install the Support Tools by running Setup.exe in the \Support\Tools folder on any
Windows product distribution media. For Windows 2000, the Support Tools are the same on
Windows 2000 Professional, Server, Advanced Server, and Datacenter Server. Windows XP
has its own version of the Support Tools, as does Windows Server 2003.

Windows Resource Kits

The Windows resource kits supplement the Support Tools, adding additional tools for system
administration and support. The Windows 2003 Resource Kit tools are freely downloadable
from www.microsoft.com (by searching for “resource kit tools”). They can be installed on Win-
dows XP or Windows Server 2003.

There are two editions of the Windows 2000 resource kits: the Windows 2000 Professional
Resource Kit and the Windows 2000 Server Resource Kit. (Supplement 1 is the most recent

28 Microsoft Windows Internals, Fourth Edition
version.) Although the latter kit is a superset of the former and can be installed on Windows
2000 Professional systems, none of the experiments in this book use the tools that are
included only with the Windows 2000 Server Resource Kit. Unlike the Windows Server 2003
Resource Kit, these tools are not freely downloadable. However, the Windows 2000 Server
Resource Kit is included with the MSDN and TechNet subscriptions.

Kernel Debugging

Kernel debugging means examining internal kernel data structures and/or stepping through
functions in the kernel. It is a useful way to investigate Windows internals because you can
display internal system information not available through any other tools and get a clearer
idea of code flows within the kernel.

Kernel debugging can be performed with a variety of tools: the Windows Debugging Tools
from Microsoft, LiveKD from www.sysinternals.com, or SoftIce from Compuware NuMega.
Before describing these tools, let’s examine a file that you’ll need to perform any type of kernel
debugging.

Symbols for Kernel Debugging

Symbol files contain the names of functions and variables. They are generated by the linker
and used debuggers to reference and display these names during a debug session. This infor-
mation is not usually stored in the binary image because it is not needed to execute the code.
This means that binaries are smaller and faster. However, this means that when debugging,
you must make sure that the debugger can access the symbol files that are associated with the
images you are referencing during a debugging session.

To use any of the kernel debugging tools to examine internal Windows kernel data structures
(such as the process list, thread blocks, loaded driver list, memory usage information, and so
on), you must have the correct symbol files for at least the kernel image, Ntoskrnl.exe. (The
section “Architecture Overview” in Chapter 2 explains more about this file.) Symbol table files
must match the version of the image they were taken from. For example, if you install a
Windows Service Pack or hot fix, you must obtain the matching, updated symbol files for at
least the kernel image; otherwise, you’ll get a checksum error when you try to load them with
the kernel debugger.

While it is possible to download and install symbols for various versions of Windows,
updated symbols for hot fixes are not always available. The easiest solution to obtain the cor-
rect version of symbols for debugging is to use the Microsoft on-demand symbol server by
using a special syntax for the symbol path that you specify in the debugger. For example, the
following symbol path causes the debugging tools to load required symbols from the Internet
symbol server and keep a local copy in the c:\symbols folder:

srv*c:\symbols*http://msdl.microsoft.com/download/symbols

Chapter 1: Concepts and Tools 29
For detailed instructions on how to use the symbol server, see the Debugging Tools help file
or the Web page www.microsoft.com/whdc/ddk/debugging/symbols.mspx.

Windows Debugging Tools

The Windows Debugging Tools package contains advanced debugging tools used in this
book to explore Windows internals. You can find the latest version at www.microsoft.com/
whdc/ddk/debugging. These tools can be used to debug user-mode processes as well as the
kernel. (See the following sidebar.)

Note The Windows Debugging Tools are updated frequently and released independently of
Windows operating system versions, so check often for new versions.

User-Mode Debugging
The debugging tools can also be used to attach to a user-mode process and examine
and/or change process memory. There are two options when attaching to a process:

■ Invasive Unless specified otherwise, when you attach to a running process, the
DebugActiveProcess Windows function is used to establish a connection between
the debugger and the debugee. This permits examining and/or changing process
memory, setting breakpoints, and performing other debugging functions. In Win-
dows 2000, when the debugger exits, the debugee process is killed. However, as of
Windows XP, you can detach a debugger without killing the target process.

■ Noninvasive With this option, the debugger simply opens the process with the
OpenProcess function. It does not attach to the process as a debugger. This allows
you to examine and/or change memory in the target process, but you cannot set
breakpoints. The advantage of this option is that you can exit the debugger on
Windows 2000 without killing the target process.

You can also open user-mode process dump files with the debugging tools. User mode
dump files are explained in Chapter 3 in the section on exception dispatching.

There are two primary variants of the Microsoft debuggers that can be used for kernel debug-
ging: a command-line version (Kd.exe) and a graphical user interface (GUI) version
(Windbg.exe). Both provide the same set of commands, so which you choose is a matter of
personal preference. You can perform three types of kernel debugging with these tools:

■ Open a crash dump file created as a result of a Windows system crash. (See Chapter 14
for more information on crash dumps.)

■ Connect to a live, running system and examine the system state (or set breakpoints if
you’re debugging device driver code). This operation requires two computers—a target

30 Microsoft Windows Internals, Fourth Edition
and a host. The target is the system being debugged, and the host is the system running
the debugger. The target system can be either local (connected to the host via a null
modem or IEEE 1394 cable) or remote (connected to the host via a modem). The target
system must be booted with the /DEBUG qualifier (either by pressing F8 during the
boot process and selecting Debug Mode or by adding a boot selection entry in Boot.ini).

■ For Windows XP and Windows Server 2003 systems, connect to the local system and
examine the system state. This is called local kernel debugging. To initiate local kernel
debugging, select the menu item File, select Kernel Debug, click on the Local tab, and
click OK. An example output screen is shown in Figure 1-7. Some kernel debugger com-
mands do not work when used in local kernel debugging mode (such as viewing kernel
stacks and creating a memory dump with the .dump command). However, you can use
the free LiveKd tool from www.sysinternals.com in cases where the native local debugging
support does not work. (See the next section.)

Figure 1-7 Local kernel debugging

Once connected in kernel debugging mode, you can use one of the many debugger extension
commands (commands that begin with “!”) to display the contents of internal data structures
such as threads, processes, I/O request packets, and memory management information.
Throughout this book, the relevant kernel debugger commands and output are included as
they apply to each topic being discussed. In addition, the dt (display type) command can for-
mat over 400 kernel structures because the kernel symbol files for Windows 2000 Service
Pack 3, Windows XP, and Windows Server 2003 contain type information that the debugger
can use to format structures.

Chapter 1: Concepts and Tools 31
EXPERIMENT: Displaying Type Information for Kernel Structures
To display the list of kernel structures whose type information is included in the kernel
symbols, type dt nt!_* in the kernel debugger. A sample partial output is shown below:

lkd> dt nt!_*

nt!_LIST_ENTRY

nt!_LIST_ENTRY

nt!_IMAGE_NT_HEADERS

nt!_IMAGE_FILE_HEADER

nt!_IMAGE_OPTIONAL_HEADER

nt!_IMAGE_NT_HEADERS

nt!_LARGE_INTEGER

You can also use the dt command to search for specific structures by using its wildcard
lookup capability. For example, if you were looking for the structure name for an inter-
rupt object, type dt nt!_*interrupt*:

lkd> dt nt!_*interrupt*

nt!_KINTERRUPT

nt!_KINTERRUPT_MODE

Then, you can use dt to format a specific structure as shown below:

lkd> dt nt!_kinterrupt

nt!_KINTERRUPT

+0x000 Type : Int2B

+0x002 Size : Int2B

+0x004 InterruptListEntry : _LIST_ENTRY

+0x00c ServiceRoutine : Ptr32

+0x010 ServiceContext : Ptr32 Void

+0x014 SpinLock : Uint4B

+0x018 TickCount : Uint4B

+0x01c ActualLock : Ptr32 Uint4B

+0x020 DispatchAddress : Ptr32

+0x024 Vector : Uint4B

+0x028 Irql : UChar

+0x029 SynchronizeIrql : UChar

+0x02a FloatingSave : UChar

+0x02b Connected : UChar

+0x02c Number : Char

+0x02d ShareVector : UChar

+0x030 Mode : _KINTERRUPT_MODE

+0x034 ServiceCount : Uint4B

+0x038 DispatchCount : Uint4B

+0x03c DispatchCode : [106] Uint4B

32 Microsoft Windows Internals, Fourth Edition
Note that dt does not show substructures (structures within structures) by default. To
recurse through substructures, use the “-r” switch. For example, using this switch to dis-
play the kernel interrupt object shows the format of the _LIST_ENTRY structure stored
at the InterruptListEntry field:

lkd> dt nt!_kinterrupt -r

nt!_KINTERRUPT

+0x000 Type : Int2B

+0x002 Size : Int2B

+0x004 InterruptListEntry :

+0x000 Flink : Ptr32

+0x000 Flink : Ptr32 _LIST_ENTRY

+0x004 Blink : Ptr32 _LIST_ENTRY

+0x004 Blink : Ptr32

+0x000 Flink : Ptr32 _LIST_ENTRY

+0x004 Blink : Ptr32 _LIST_ENTRY

+0x00c ServiceRoutine : Ptr32

The Windows Debugging Tools help file explains how to set up and use the kernel debuggers.
Additional details on using the kernel debuggers that are aimed primarily at device driver
writers can be found in the Windows DDK documentation. There are also several useful
Knowledge Base articles on the kernel debugger. Search for “debugref” in the Windows
Knowledge Base (an online database of technical articles) on support.microsoft.com.

LiveKd Tool

LiveKd is a free tool from www.sysinternals.com that allows you to use the standard Microsoft ker-
nel debuggers just described to examine the running system without requiring a second com-
puter to act as the host (via a null modem cable). While the built-in support for local kernel
debugging works only on Windows XP and Windows Server 2003, LiveKd permits local kernel
debugging on Windows NT 4.0, Windows 2000, Windows XP, and Windows Server 2003.

You run LiveKd just as you would Windbg or Kd. LiveKd passes any command-line options
you specify to the debugger you select. By default, LiveKd runs the new command-line kernel
debugger (Kd). To run the GUI debugger (Windbg), specify the –w switch. To see the help
files on the switches for LiveKd, specify the –? switch.

LiveKd presents a simulated crash dump file to the debugger, so you can perform any opera-
tions in LiveKd that are supported on a crash dump. Because LiveKd is relying on physical
memory to back the simulated dump, the kernel debugger might run into situations in which
data structures are in the middle of being changed by the system and are inconsistent. Each
time the debugger is launched, it gets a snapshot of the system state, so if you want to refresh
the snapshot, quit the debugger (with the “q” command) and LiveKd will ask you whether
you want to start it again. If the debugger gets in a loop in printing output, press Ctrl+C to
interrupt the output, quit, and rerun it. If it hangs, press Ctrl+Break, which will terminate the
debugger process and ask you whether you want to run the debugger again.

Chapter 1: Concepts and Tools 33
SoftICE

Another debugging tool that doesn’t require two machines for live kernel debugging is a third-
party kernel debugger called SoftICE, which you can buy from Compuware NuMega. (See
www.compuware.com for details.) SoftICE has essentially the same capabilities as the Windows
debugging tools, but it also supports stepping between user-mode and kernel-mode code. It
also supports the Microsoft kernel extension DLLs, so most of the commands we describe in
the book also work in SoftICE. Figure 1-8 shows the SoftICE user interface, which appears in
response to the SoftICE activation key (by default, Ctrl+D) as a window on the desktop of the
machine on which it’s running.

Figure 1-8 The SoftICE interface

Platform Software Development Kit (SDK)

The Platform SDK is part of the MSDN Professional and higher subscription levels, or it can be
downloaded for free from msdn.microsoft.com. It contains the documentation, C header files,
and libraries necessary to compile and link Windows applications. (Although Microsoft
Visual C++ comes with a copy of these header files, the versions contained in the Platform
SDK always match the latest version of the Windows operating systems, whereas the version
that comes with Visual C++ might be an older version that was current when Visual C++ was
released.) From an internals perspective, items of interest in the Platform SDK include the
Windows API header files (\Program Files\Microsoft SDK\Include) as well as several utilities
(Pfmon.exe, Pstat.exe, Pview.exe, Vadump.exe, and Winobj.exe). Some tools in the Platform
SDK also come with the Support Tools and Resource Kits. Finally, a few of these tools are also
shipped as example source code in both the Platform SDK and the MSDN Library.

34 Microsoft Windows Internals, Fourth Edition
Device Driver Kit (DDK)

The Windows DDK is also shipped as part of the MSDN Professional (and higher) subscrip-
tion levels, but unlike the Platform SDK, it is not available for free download (although you
can order the CD-ROM for a minimal cost). The Windows DDK documentation is included in
the MSDN Library.

Although the DDK is aimed at device-driver developers, it is an abundant source of Windows-
internals information. For example, while Chapter 9 describes the I/O system architecture,
driver model, and basic device driver data structures, it does not describe the individual ker-
nel support functions in detail. The DDK documentation contains a comprehensive descrip-
tion of all the Windows kernel support functions and mechanisms used by device drivers in
both a tutorial and reference form.

Besides including the documentation, the DDK contains header files (in particular, Ntddk.h
and Wdm.h) that define key internal data structures and constants as well as interfaces to
many internal system routines. These files are useful when exploring Windows internal data
structures with the kernel debugger because although the general layout and content of these
structures are shown in this book, detailed field-level descriptions (such as size and data
types) are not. A number of these data structures (such as object dispatcher headers, wait
blocks, events, mutants, semaphores, and so on) are, however, fully described in the DDK.

So if you want to dig into the I/O system and driver model beyond what is presented in this
book, read the DDK documentation (especially the Kernel-Mode Driver Architecture Design
Guide and Reference manuals). Another excellent source is Programming the Microsoft
Windows Driver Model, Second Edition (Microsoft Press) by Walt Oney.

Sysinternals Tools

Many experiments in this book use freeware tools that you can download from www.sysinter-
nals.com. Mark Russinovich, coauthor of this book, wrote most of these tools. The most pop-
ular tools include Process Explorer, Filemon, and Regmon. Note that many of these utilities
involve the installation and execution of kernel-mode device drivers and thus require admin-
istrator privileges.

Conclusion
In this chapter, you’ve been introduced to the key Windows technical concepts and terms that
will be used throughout the book. You’ve also had a glimpse of the many useful tools available
for digging into Windows internals. Now we’re ready to begin our exploration of the internal
design of the system, beginning with an overall view of the system architecture and its key
components.

Chapter 2

System Architecture

Now that we’ve covered the terms, concepts, and tools you need to be familiar with, we’re
ready to start our exploration of the internal design goals and structure of the Microsoft Win-
dows operating system. This chapter explains the overall architecture of the system—the key
components, how they interact with each other, and the context in which they run. To provide
a framework for understanding the internals of Windows, let’s first review the requirements
and goals that shaped the original design and specification of the system.

Requirements and Design Goals
The following requirements drove the specification of Windows NT back in 1989:

■ Provide a true 32-bit, preemptive, reentrant, virtual memory operating system

■ Run on multiple hardware architectures and platforms

■ Run and scale well on symmetric multiprocessing systems

■ Be a great distributed computing platform, both as a network client and as a server

■ Run most existing 16-bit MS-DOS and Microsoft Windows 3.1 applications

■ Meet government requirements for POSIX 1003.1 compliance

■ Meet government and industry requirements for operating system security

■ Be easily adaptable to the global market by supporting Unicode

To guide the thousands of decisions that had to be made to create a system that met these
requirements, the Windows NT design team adopted the following design goals at the begin-
ning of the project:

■ Extensibility The code must be written to comfortably grow and change as market
requirements change.

■ Portability The system must be able to run on multiple hardware architectures and
must be able to move with relative ease to new ones as market demands dictate.

■ Reliability and robustness The system should protect itself from both internal malfunc-
tion and external tampering. Applications should not be able to harm the operating sys-
tem or other applications.
35

36 Microsoft Windows Internals, Fourth Edition
■ Compatibility Although Windows NT should extend existing technology, its user inter-
face and APIs should be compatible with older versions of Windows and with MS-DOS.
It should also interoperate well with other systems such as UNIX, OS/2, and NetWare.

■ Performance Within the constraints of the other design goals, the system should be as
fast and responsive as possible on each hardware platform.

As we explore the details of the internal structure and operation of Windows, you’ll see how
these original design goals and market requirements were woven successfully into the con-
struction of the system. But before we start that exploration, let’s examine the overall design
model for Windows and compare it with other modern operating systems.

Operating System Model
In most multiuser operating systems, applications are separated from the operating system
itself—the operating system kernel code runs in a privileged processor mode (referred to as
kernel mode in this book), with access to system data and to the hardware; application code
runs in a nonprivileged processor mode (called user mode), with a limited set of interfaces
available, limited access to system data, and no direct access to hardware. When a user-mode
program calls a system service, the processor traps the call and then switches the calling
thread to kernel mode. When the system service completes, the operating system switches the
thread context back to user mode and allows the caller to continue.

Windows is similar to most UNIX systems in that it’s a monolithic operating system in the
sense that the bulk of the operating system and device driver code shares the same kernel-
mode protected memory space. This means that any operating system component or device
driver can potentially corrupt data being used by other operating system components.

Is Windows a Microkernel-Based System?
Although some claim it as such, Windows isn’t a microkernel-based operating system in
the classic definition of microkernels, where the principal operating system compo-
nents (such as the memory manager, process manager, and I/O manager) run as sepa-
rate processes in their own private address spaces, layered on a primitive set of services
the microkernel provides. For example, the Carnegie Mellon University Mach operating
system, a contemporary example of a microkernel architecture, implements a minimal
kernel that comprises thread scheduling, message passing, virtual memory, and device
drivers. Everything else, including various APIs, file systems, and networking, runs in
user mode. However, commercial implementations of the Mach microkernel operating
system typically run at least all file system, networking, and memory management code
in kernel mode. The reason is simple: the pure microkernel design is commercially
impractical because it’s too inefficient.

Chapter 2: System Architecture 37
Does the fact that so much of Windows runs in kernel mode mean that it’s more suscep-
tible to crashes than a true microkernel operating system? Not at all. Consider the fol-
lowing scenario. Suppose the file system code of an operating system has a bug that
causes it to crash from time to time. In a traditional operating system, a bug in kernel-
mode code such as the memory manager or the file system would likely crash the entire
operating system. In a pure microkernel operating system, such components run in user
mode, so theoretically a bug would simply mean that the component’s process exits. But
in practical terms, the system would crash because recovering from the failure of such a
critical process would likely be impossible.

All these operating system components are, of course, fully protected from errant applications
because applications don’t have direct access to the code and data of the privileged part of the
operating system (although they can quickly call other kernel services). This protection is one
of the reasons that Windows has the reputation for being both robust and stable as an appli-
cation server and as a workstation platform yet fast and nimble from the perspective of core
operating system services, such as virtual memory management, file I/O, networking, and file
and print sharing.

The kernel-mode components of Windows also embody basic object-oriented design princi-
ples. For example, they don’t in general reach into one another’s data structures to access
information maintained by individual components. Instead, they use formal interfaces to pass
parameters and access and/or modify data structures.

Despite its pervasive use of objects to represent shared system resources, Windows is not an
object-oriented system in the strict sense. Most of the operating system code is written in C for
portability and because C development tools are widely available. C doesn’t directly support
object-oriented constructs, such as dynamic binding of data types, polymorphic functions, or
class inheritance. Therefore, the C-based implementation of objects in Windows borrows
from, but doesn’t depend on, features of particular object-oriented languages.

Architecture Overview
With this brief overview of the design goals and packaging of Windows, let’s take a look at the
key system components that make up its architecture. A simplified version of this architecture
is shown in Figure 2-1. Keep in mind that this diagram is basic—it doesn’t show everything.
(For example, the networking components and the various types of device driver layering are
not shown.)

38 Microsoft Windows Internals, Fourth Edition
Figure 2-1 Simplified Windows architecture

In Figure 2-1, first notice the line dividing the user-mode and kernel-mode parts of the Win-
dows operating system. The boxes above the line represent user-mode processes, and the
components below the line are kernel-mode operating system services. As mentioned in
Chapter 1, user-mode threads execute in a protected process address space (although while
they are executing in kernel mode, they have access to system space). Thus, system support
processes, service processes, user applications, and environment subsystems each have their
own private process address space.

The four basic types of user-mode processes are described as follows:

■ Fixed (or hardwired) system support processes, such as the logon process and the session
manager, that are not Windows services. (That is, they are not started by the service con-
trol manager. Chapter 4 describes services in detail.)

■ Service processes that host Windows services, such as the Task Scheduler and Spooler
services. Services generally have the requirement that they run independently of user
logons. Many Windows server applications, such as Microsoft SQL Server and Microsoft
Exchange Server, also include components that run as services.

■ User applications, which can be one of six types: Windows 32-bit, Windows 64-bit, Win-
dows 3.1 16-bit, MS-DOS 16-bit, POSIX 32-bit, or OS/2 32-bit.

■ Environment subsystem server processes, which implement part of the support for the oper-
ating system environment, or personality presented to the user and programmer. Win-
dows NT originally shipped with three environment subsystems: Windows, POSIX, and
OS/2. OS/2 was dropped as of Windows 2000. As of Windows XP, only the Windows
subsystem is shipped in the base product—an enhanced POSIX subsystem is available as
part of the free Services for Unix product.

In Figure 2-1, notice the “Subsystem DLLs” box below the “Service processes” and “User applica-
tions” boxes. Under Windows, user applications don’t call the native Windows operating system
services directly; rather, they go through one or more subsystem dynamic-link libraries (DLLs). The

User mode

Kernel mode

Windowing
and graphics

Hardware abstraction layer (HAL)

Device driversKernel

Executive

System
support

processes

Service
processes

User
applications

Environment
subsystems

Subsystem DLLs

Chapter 2: System Architecture 39
role of the subsystem DLLs is to translate a documented function into the appropriate internal
(and generally undocumented) Windows system service calls. This translation might or might
not involve sending a message to the environment subsystem process that is serving the user
application.

The kernel-mode components of Windows include the following:

■ The Windows executive contains the base operating system services, such as memory
management, process and thread management, security, I/O, networking, and interpro-
cess communication.

■ The Windows kernel consists of low-level operating system functions, such as thread
scheduling, interrupt and exception dispatching, and multiprocessor synchronization.
It also provides a set of routines and basic objects that the rest of the executive uses to
implement higher-level constructs.

■ Device drivers include both hardware device drivers that translate user I/O function calls
into specific hardware device I/O requests as well as file system and network drivers.

■ The hardware abstraction layer (HAL) is a layer of code that isolates the kernel, device
drivers, and the rest of the Windows executive from platform-specific hardware differ-
ences (such as differences between motherboards).

■ The windowing and graphics system implements the graphical user interface (GUI) func-
tions (better known as the Windows USER and GDI functions), such as dealing with
windows, user interface controls, and drawing.

Table 2-1 lists the filenames of the core Windows operating system components. (You’ll need
to know these filenames because we’ll be referring to some system files by name.) Each of
these components is covered in greater detail both later in this chapter and in the chapters
that follow.

Before we dig into the details of these system components, though, let’s examine how Win-
dows achieves portability across multiple hardware architectures.

Table 2-1 Core Windows System Files

Filename Components

Ntoskrnl.exe Executive and kernel

Ntkrnlpa.exe (32-bit systems only) Executive and kernel with support for Physical Address
Extension (PAE), which allows addressing of up to 64 GB
of physical memory

Hal.dll Hardware abstraction layer

Win32k.sys Kernel-mode part of the Windows subsystem

Ntdll.dll Internal support functions and system service dispatch
stubs to executive functions

Kernel32.dll, Advapi32.dll, User32.dll,
Gdi32.dll

Core Windows subsystem DLLs

40 Microsoft Windows Internals, Fourth Edition
Portability

Windows was designed to run on a variety of hardware architectures, including Intel-based CISC
systems as well as RISC systems. The initial release of Windows NT supported the x86 and MIPS
architecture. Support for the Digital Equipment Corporation (which was bought by Compaq,
who later merged with Hewlett Packard) Alpha AXP was added shortly thereafter. (Although
Alpha AXP was a 64-bit processor, Windows NT ran in 32-bit mode. During the development of
Windows 2000, a native 64-bit version was running on Alpha AXP, but this never was released.)
Support for a fourth processor architecture, the Motorola PowerPC, was added in Windows NT
3.51. Because of changing market demands, however, support for the MIPS and PowerPC archi-
tectures was dropped before development began on Windows 2000. Later, Compaq withdrew
support for the Alpha AXP architecture, resulting in Windows 2000 being supported only on the
x86 architecture. The most recent releases, Windows XP and Windows Server 2003, add support
for three 64-bit processor families: the Intel Itanium IA-64 family, the AMD x86-64 family, and the
Intel 64-bit Extension Technology (EM64T) for x86 (which is compatible with the AMD x86-64
architecture, although there are slight differences in instructions supported). The latter two pro-
cessor families are called 64-bit extended systems and in this book are referred to as x64. The most
recent releases, Windows XP and Windows Server 2003, add support for three 64-bit processor
families: the Intel Itanium IA-64 family, the AMD64 family, and the Intel 64-bit Extension Tech-
nology (EM64T) for x86 (which is compatible with the AMD64 architecture, although there are
slight differences in instructions supported). (How Windows runs 32-bit applications on 64-bit
Windows is explained in Chapter 3.)

Windows achieves portability across hardware architectures and platforms in two primary ways:

■ Windows has a layered design, with low-level portions of the system that are processor-
architecture-specific or platform-specific isolated into separate modules so that upper
layers of the system can be shielded from the differences between architectures and
among hardware platforms. The two key components that provide operating system
portability are the kernel (contained in Ntoskrnl.exe) and the hardware abstraction
layer (or HAL, contained in Hal.dll). Both these components are described in more
detail later in this chapter. Functions that are architecture-specific (such as thread con-
text switching and trap dispatching) are implemented in the kernel. Functions that can
differ among systems within the same architecture (for example, different mother-
boards) are implemented in the HAL. The only other component with a significant
amount of architecture-specific code is the memory manager, but even that is a small
amount compared to the system as a whole.

■ The vast majority of Windows is written in C, with some portions in C++. Assembly lan-
guage is used only for those parts of the operating system that need to communicate
directly with system hardware (such as the interrupt trap handler) or that are extremely
performance-sensitive (such as context switching). Assembly language code exists not
only in the kernel and the HAL but also in a few other places within the core operating
system (such as the routines that implement interlocked instructions as well as one
module in the local procedure call facility), in the kernel-mode part of the Windows

Chapter 2: System Architecture 41
subsystem, and even in some user-mode libraries, such as the process startup code in
Ntdll.dll (a system library explained later in this chapter).

Symmetric Multiprocessing
Multitasking is the operating system technique for sharing a single processor among multiple
threads of execution. When a computer has more than one processor, however, it can execute
two threads simultaneously. Thus, whereas a multitasking operating system only appears to
execute multiple threads at the same time, a multiprocessing operating system actually does
it, executing one thread on each of its processors.

As mentioned at the beginning of this chapter, one of the key design goals for Windows was
that it had to run well on multiprocessor computer systems. Windows is a symmetric multipro-
cessing (SMP) operating system. There is no master processor—the operating system as well as
user threads can be scheduled to run on any processor. Also, all the processors share just one
memory space. This model contrasts with asymmetric multiprocessing (ASMP), in which the
operating system typically selects one processor to execute operating system kernel code
while other processors run only user code. The differences in the two multiprocessing models
are illustrated in Figure 2-2.

Figure 2-2 Symmetric vs. asymmetric multiprocessing

Windows XP and Windows Server 2003 support two new types of multiprocessor systems:
hyperthreading and NUMA (non-uniform memory architecture). These are briefly mentioned
in the following paragraphs. (For a complete detailed description of the scheduling support
for these systems, see the thread scheduling section in Chapter 6.)

Symmetric Asymmetric

Memory

Processor A Processor B

User
thread

User
thread

Operating
system

User
thread

User
thread

Operating
system

Operating
system

User
thread

User
thread

User
thread

Processor A Processor B

Memory

I/O devices I/O devices

42 Microsoft Windows Internals, Fourth Edition
Hyperthreading is a technology introduced by Intel that provides many logical processors on
one physical processor. Each logical processor has its CPU state, but the execution engine and
onboard cache is shared. This permits one logical CPU to make progress while the other log-
ical CPUs are busy (such as performing interrupt processing work, which prevents threads
from running on that logical processor). The scheduling algorithms as of Windows XP have
been enhanced to make optimal use of multiprocessor hyperthreaded machines, such as by
scheduling threads on an idle physical processor versus choosing an idle logical processor on
a physical processor whose other logical processors are busy.

In non-uniform memory architecture NUMA systems, processors are grouped in smaller units
called nodes. Each node has its own processors and memory and is connected to the larger
system through a cache-coherent interconnect bus. Windows on a NUMA system still runs as
an SMP system, in that all processors have access to all memory—it’s just that node-local mem-
ory is faster to reference than memory attached to other nodes. The system attempts to
improve performance by scheduling threads on processors that are in the same node as the
memory being used. It attempts to satisfy memory-allocation requests from within the node,
but will allocate memory from other nodes if necessary.

Although Windows was originally designed to support up to 32 processors, nothing inherent
in the multiprocessor design limits the number of processors to 32—that number is simply an
obvious and convenient limit because 32 processors can easily be represented as a bit mask
using a native 32-bit data type. In fact, the 64-bit versions of Windows support up to 64 pro-
cessors, because the native size of a word on a 64-bit machine is 64 bits.

The actual number of supported processors depends on the edition of Windows being used.
(See tables 2-3 and 2-4.) This number is stored in the registry value HKLM\SYSTEM\Current-
ControlSet\Control\Session Manager\LicensedProcessors. (Keep in mind that tampering
with that data is a violation of the software license and modifying the registry to allow use of
more processors involves more than just changing this value.)

For performance reasons, there are separate uniprocessor and multiprocessor versions of the
kernel and HAL (and in the case of Windows 2000, a few other key system files). On Win-
dows 2000, six system files (as explained in the following Note) are different on a multipro-
cessor system than on a uniprocessor system; on 32-bit Windows XP and Windows Server
2003 systems, only three are different. (See Table 2-2.) On 64-bit Windows systems, there is
no PAE kernel, so only the kernel and HAL vary from uniprocessor to multiprocessor systems.

At installation time, the appropriate files are selected and copied to the local \Windows\
System32 directory. To determine which files were copied, see the file \Windows\
Repair\Setup.log, which itemizes all the files that were copied to the local system disk and
where they came from off the distribution media.

Chapter 2: System Architecture 43
Note If you look in the \I386\UNIPROC folder in the Windows 2000 distribution tree, you’ll
see a file named Winsrv.dll. Although this file exists in a folder named UNIPROC, implying that
there is a uniprocessor version, in fact there is only one version of this image for both multi-
processor and uniprocessor systems. This folder has been removed in Windows XP and Win-
dows Server 2003.

EXPERIMENT: Looking at Multiprocessor-Specific Support Files
on Windows 2000
You can see the files that are different for a 32-bit Windows 2000 multiprocessor system
by looking at the driver details for the Computer in Device Manager:

1. Open the System properties (either by selecting System from Control Panel or by
right-clicking the My Computer icon on your desktop and selecting Properties).

2. Click the Hardware tab.

3. Click Device Manager.

4. Expand the Computer object.

5. Double-click the child node underneath Computer.

6. Click the Driver tab.

7. Click Driver Details.

Table 2-2 Multiprocessor-Specific vs. Uniprocessor-Specific System Files

Name of File on System
Disk

Name of Uniprocessor Version on
Distribution Media

Name of Multiprocessor Version
on Distribution Media

Ntoskrnl.exe Ntoskrnl.exe Ntkrnlmp.exe

Ntkrnlpa.exe (PAE kernel;
32-bit systems only)

Ntkrnlpa.exe in \Win-
dows\<arch>\Driver.cab

Ntkrpamp.exe in \Win-
dows\<arch>\Driver.cab

Hal.dll Depends on system type (See the
list of HALs in Table 2-6.)

Depends on system type (See the
list of HALs in Table 2-6.)

Windows 2000 only

Win32k.sys \I386\UNIPROC\Win32k.sys Win32k.sys in \I386\Driver.cab

Ntdll.dll \I386\UNIPROC\Ntdll.dll \I386\Ntdll.dll

Kernel32.dll \I386\UNIPROC\Kernel32.dll \I386\Kernel32.dll

44 Microsoft Windows Internals, Fourth Edition
You should see the following dialog box for a multiprocessor system:

The reason for having uniprocessor versions of these key system files is performance—multi-
processor synchronization is inherently more complex and time consuming than the use of a
single processor, so by having special uniprocessor versions of the key system files, this over-
head is avoided on uniprocessor systems (which constitute the vast majority of systems run-
ning Windows).

Interestingly, although the uniprocessor and multiprocessor versions of Ntoskrnl are gener-
ated using conditionally compiled source code, the uniprocessor versions of Ntdll.dll and
Kernel32.dll for Windows 2000 are created by patching the x86 LOCK and UNLOCK instruc-
tions, which are used to synchronize multiple threads with no-operation (NOP) instructions
(which do nothing).

The rest of the system files that make up Windows (including all utilities, libraries, and device
drivers) have the same version on both uniprocessor and multiprocessor systems (that is,
they handle multiprocessor synchronization issues correctly). You should use this approach
on any software you build, whether it is a Windows application or a device driver—keep mul-
tiprocessor synchronization issues in mind when you design your software, and test the soft-
ware on both uniprocessor and multiprocessor systems.

Chapter 2: System Architecture 45
EXPERIMENT: Checking Which Ntoskrnl Version You’re Running
In Windows 2000 and later, there is no utility to show which version of Ntoskrnl you are
running. However, an Event Log entry is written each time the system boots that does
record the type of kernel image that loaded (uniprocessor vs. multiprocessor and free vs.
checked), as shown in the following screen shot. (From the Start menu select Programs/
Administrative Tools/Event Viewer, select System Log, and double-click an Event Log
entry with an Event ID of 6009, indicating the entry was written at the system start.)

This Event Log entry doesn’t indicate whether you booted the PAE version of the kernel
image that supports more than 4 GB of physical memory (Ntkrnlpa.exe). However, you
can tell if you booted the PAE kernel by looking at the registry value HKLM\SYS-
TEM\CurrentControlSet\Control\SystemStartOptions. Also, if you boot the PAE ker-
nel, the registry value HKLM\SYSTEM\CurrentControlSet\Control\Session
Manager\Memory Management\PhysicalAddressExtension is set to 1.

You can also determine whether you installed the multiprocessor version of Ntoskrnl
(or Ntkrnlpa) by examining the file properties: run Windows Explorer, right-click on
Ntoskrnl.exe in your \Windows\System32 folder, and select Properties. Then click on

46 Microsoft Windows Internals, Fourth Edition
the Version tab, and select the Original Filename property—if you’re running the multi-
processor version, you’ll see the following dialog box:

Finally, as mentioned earlier, you can see exactly which kernel image and HAL were
selected at installation time by looking at the file \Windows\Repair\Setup.log.

Scalability

One of the key issues with multiprocessor systems is scalability. To run correctly on an SMP
system, operating system code must adhere to strict guidelines and rules. Resource conten-
tion and other performance issues are more complicated in multiprocessing systems than in
uniprocessor systems and must be accounted for in the system’s design. Windows incorpo-
rates several features that are crucial to its success as a multiprocessor operating system:

■ The ability to run operating system code on any available processor and on multiple
processors at the same time

■ Multiple threads of execution within a single process, each of which can execute simul-
taneously on different processors

■ Fine-grained synchronization within the kernel (such as spinlocks, queued spinlocks,
and pushlocks, described in Chapter 3) as well as within device drivers and server pro-
cesses, which allows more components to run concurrently on multiple processors

■ Programming mechanisms such as I/O completion ports (described in Chapter 9) that
facilitate the efficient implementation of multithreaded server processes that can scale
well on multiprocessor systems.

Chapter 2: System Architecture 47
The scalability of the Windows kernel has evolved over time. For example, Windows Server
2003 has per-CPU scheduling queues, which permits thread scheduling decisions to occur in
parallel on multiple machines. Multiprocessor thread scheduling details are covered in Chap-
ter 6. Further details on multiprocessor synchronization can be found in Chapter 3.

Differences Between Client and Server Versions

Windows ships in both client and server retail packages. In Windows 2000, the client version
is called Windows 2000 Professional. There are three Windows 2000 server versions: Win-
dows 2000 Server, Advanced Server, and Datacenter Server.

There are six client versions of Windows XP: Windows XP Home Edition, Windows XP Pro-
fessional, Windows XP Starter Edition, Windows XP Tablet PC Edition, Windows XP Media
Center Edition, and Windows XP Embedded. The latter three are supersets of Windows XP
Professional and are not described in detail in this book because they are all built on the same
core operating system as Windows XP Professional.

There are six variants of Windows Server 2003: Windows Server 2003 Web Edition, Standard
Edition, Small Business Server, Storage Server, Enterprise Edition, and Datacenter Edition.

These versions differ by:

■ The number of processors supported

■ The amount of physical memory supported

■ The number of concurrent network connections supported (For example, a maximum of
10 concurrent connections are allowed to the file and print services in the client version.)

■ Layered services that come with Server editions that don’t come with the Professional edi-
tion (for example, directory services, clustering, and multiuser Terminal Services support)

Table 2-3 summarizes the differences in memory and processor support for Windows 2000.
Table 2-4 lists the same information for Windows XP and Windows Server 2003. For a
detailed comparison chart of the different editions of Windows Server 2003, see http://
www.microsoft.com/windowsserver2003/evaluation/features/compareeditions.mspx.

Table 2-3 Differences Between Windows 2000 Professional and Server

Edition
Number of Processors
Supported

Physical Memory
Supported

Windows 2000 Professional 2 4 GB

Windows 2000 Server 4 4 GB

Windows 2000 Advanced Server 8 8 GB

Windows 2000 Datacenter Server 32 64 GB

48 Microsoft Windows Internals, Fourth Edition
Although there are several client and server retail packages of the Windows operating system,
they share a common set of core system files, including the kernel image, Ntoskrnl.exe (and
the PAE version, Ntkrnlpa.exe); the HAL libraries; the device drivers; and the base system util-
ities and DLLs. These files are identical for all editions of Windows 2000.

Note Windows XP was the first client release of the Windows NT code base to ship without
corresponding server versions. Instead, development continued on what became Windows
Server 2003 for over a year after the release of Windows XP. Therefore, the core system files are
not identical for Windows XP and Windows Server 2003. Even so, the differences are not major
(and in many cases, components were unchanged).

So if the kernel image for Windows 2000 Professional and Windows 2000 Server are identical
(and similar for Windows XP and Windows Server 2003), how does the system know which
edition is booted? By querying the registry values ProductType and ProductSuite under the
HKLM\ SYSTEM\CurrentControlSet\Control\ProductOptions key. ProductType is used to

Table 2-4 Differences Between Windows XP and Windows Server 2003

Number of
Processors
Supported
(32-bit
edition)

Physical
Memory
Supported
(32-bit
edition)

Number of
Processors
Supported
(64-bit
edition)

Physical
Memory
Supported
(Itanium
editions)

Physical
Memory
Supported
(x64 editions)

Windows XP
Home Edition

1 4 GB Not available Not available Not available

Windows XP
Professional

2 4 GB 2 16 GB 16 GB

Windows
Server 2003
Web Edition

2 2 GB Not available Not available Not available

Windows
Server 2003
Small Business
Server

2 2 GB Not available Not available Not available

Windows
Server 2003
Standard Edi-
tion

4 4 GB Not available Not available Not available

Windows
Server 2003
Enterprise Edi-
tion

8 32 GB 8 64 GB 64 GB

Windows
Server 2003
Datacenter
Edition

32 128 GB on
x64; 64 GB on
x86

64 512 GB
(1024 GB in
SP1)

Not available

Chapter 2: System Architecture 49
distinguish whether the system is a client system or a server system (of any flavor). The valid
values are listed in Table 2-5. The result is stored in the system global variable MmProductType,
which can be queried from a device driver using the kernel-mode support function MmIsThis-
AnNtAsSystem, documented in the Windows DDK.

A different registry value, ProductSuite, distinguishes the various flavors of Windows Server
systems (Standard, Enterprise, Datacenter, and so on) as well as distinguishing a Windows XP
Home from a Windows XP Professional system.

If user programs need to determine which edition of Windows is running, they can call the
Windows VerifyVersionInfo function, documented in the Platform SDK. Device drivers can call
the kernel-mode function RtlGetVersion, documented in the Windows DDK.

So if the core files are essentially the same for the client and server versions, how do the sys-
tems differ in operation? In short, Server systems are by default optimized for system through-
put as high-performance application servers, whereas the client version, although it has server
capabilities, is optimized for response time for interactive desktop use. For example, based on
the product type, several resource allocation decisions are made differently at system boot
time, such as the size and number of operating system heaps (or pools), the number of inter-
nal system worker threads, and the size of the system data cache. Also, run-time policy deci-
sions, such as the way the memory manager trades off system and process memory demands,
differ between the server and client editions. Even some thread scheduling details have differ-
ent default behavior in the two families (the default length of the time slice, or thread quan-
tum—see Chapter 6 for details). Where there are significant operational differences in the two
products, these are highlighted in the pertinent chapters throughout the rest of this book.
Unless otherwise noted, everything in this book applies to both the client and server versions.

Checked Build

There is a special debug version of Windows 2000 Professional, Windows XP Professional,
and Windows Server 2003 called the checked build (available only with the MSDN Profes-
sional or higher subscription). It is a recompilation of the Windows source code with a com-
pile-time flag defined called “DBG” (to cause compile time conditional debugging and tracing
code to be included). Also, to make it easier to understand the machine code, the post-pro-
cessing of the Windows binaries to optimize code layout for faster execution is not performed.
(See the section “Performance-Optimized Code” in the Debugging Tools help file.)

Table 2-5 ProductType Registry Values

Edition of Windows Value of ProductType

Windows 2000 Professional, Windows XP Professional,
Windows XP Home Edition

WinNT

Windows Server (domain controller) LanmanNT

Windows Server (server only) ServerNT

50 Microsoft Windows Internals, Fourth Edition
The checked build is provided primarily to aid device driver developers because it performs
more stringent error checking on kernel-mode functions called by device drivers or other sys-
tem code. For example, if a driver (or some other piece of kernel-mode code) makes an invalid
call to a system function that is checking parameters (such as acquiring a spinlock at the wrong
interrupt level), the system will stop execution when the problem is detected rather than allow
some data structure to be corrupted and the system to possibly crash at a later time.

EXPERIMENT: Determining If You Are Running the Checked Build
There is no built-in tool to display whether you are running the checked build or the
retail build (called the free build). However, this information is available through the
“Debug” property of the Windows Management Instrumentation (WMI)
Win32_OperatingSystem class. The following sample Visual Basic script displays this
property:

strComputer = "."

Set objWMIService = GetObject("winmgmts:" _

& "{impersonationLevel=impersonate}!\\" & strComputer & "\root\cimv2")

Set colOperatingSystems = objWMIService.ExecQuery _

("SELECT * FROM Win32_OperatingSystem"S)

For Each objOperatingSystem in colOperatingSystems

Wscript.Echo "Caption: " & objOperatingSystem.Caption

Wscript.Echo "Debug: " & objOperatingSystem.Debug

Wscript.Echo "Version: " & objOperatingSystem.Version

Next

To try this, type in the preceding script and save it as file. The following is the output
from running the script:

C:\>cscript osversion.vbs

Microsoft (R) Windows Script Host Version 5.6

Copyright (C) Microsoft Corporation 1996-2001. All rights reserved.

Caption: Microsoft Windows XP Professional

Debug: False

Version: 5.1.2600

This system is not running the checked build, as the Debug flag shown here says False.

Much of the additional code in the checked-build binaries is a result of using the ASSERT
macro, which is defined in the DDK header file Ntddk.h and documented in the DDK docu-
mentation. This macro tests a condition (such as the validity of a data structure or parameter),
and if the expression evaluates to FALSE, the macro calls the kernel-mode function RtlAssert,
which calls DbgPrint to send the text of the debug message to a debug message buffer. If a ker-
nel debugger is attached, this message is displayed automatically followed by a prompt asking
the user what to do about the assertion failure (breakpoint, ignore, terminate process, or ter-
minate thread). If the system wasn’t booted with the kernel debugger (using the /DEBUG

Chapter 2: System Architecture 51
switch in Boot.ini) and no kernel debugger is currently attached, failure of an ASSERT test will
crash the system. For a list of ASSERT checks made by some of the kernel support routines,
see the section “Checked Build ASSERTs” in the Windows DDK documentation.

Note On the checked build, if you compare Ntoskrnl.exe and Ntkrnlmp.exe or Ntkrnlpa.exe
and Ntkrpamp.exe, you’ll find that they are identical—they are all multiprocessor versions of
the same files. In other words, there is no debug uniprocessor version of the kernel images pro-
vided with the checked build.

The checked build is also useful for system administrators because of the additional detailed
informational tracing that can be enabled for certain components. (For detailed instructions,
see the Microsoft Knowledge Base Article number 314743 entitled HOWTO: Enable Verbose
Debug Tracing in Various Drivers and Subsystems.) This information output is sent to an internal
debug message buffer using the DbgPrint function referred to earlier. To view the debug mes-
sages, you can either attach a kernel debugger to the target system (which requires booting
the target system in debugging mode), use the !dbgprint command while performing local ker-
nel debugging, or use the Dbgview.exe tool from www.sysinternals.com.

You don’t have to install the entire checked build to take advantage of the debug version of the
operating system. You can just copy the checked version of the kernel image (Ntoskrnl.exe)
and the appropriate HAL (Hal.dll) to a normal retail installation. The advantage of this
approach is that device drivers and other kernel code get the rigorous checking of the checked
build without having to run the slower debug versions of all components in the system. For
detailed instructions on how to do this, see the section “Installing Just the Checked Operating
System and HAL” in the Windows DDK documentation. Because Microsoft doesn’t supply a
checked build version of Windows 2000 Server, you can also apply this technique to run the
checked version of the kernel on a Windows 2000 Server system.

Finally, the checked build can also be useful for testing user-mode code only because the tim-
ing of the system is different. (This is because of the additional checking taking place within
the kernel and the fact that the components are compiled without optimizations.) Often, mul-
tithreaded synchronization bugs are related to specific timing conditions. By running your
tests on a system running the checked build (or at least the checked kernel and HAL), the fact
that the timing of the whole system is different might cause latent timing bugs to surface that
do not occur on a normal retail system.

Key System Components
Now that we’ve looked at the high-level architecture of Windows, let’s delve deeper into the
internal structure and the role each key operating system component plays. Figure 2-3 is a
more detailed and complete diagram of the core Windows system architecture and compo-
nents than was shown earlier in the chapter (in Figure 2-2). Note that it still does not show all
components (networking in particular, which is explained in Chapter 13).

52 Microsoft Windows Internals, Fourth Edition
The following sections elaborate on each major element of this diagram. Chapter 3 explains
the primary control mechanisms the system uses (such as the object manager, interrupts, and
so forth). Chapter 5 describes the process of starting and shutting down Windows, and Chap-
ter 4 details management mechanisms such as the registry, service processes, and Windows
Management Instrumentation (WMI). Then the remaining chapters explore in even more
detail the internal structure and operation of key areas such as processes and threads, mem-
ory management, security, the I/O manager, storage management, the cache manager, the
Windows file system (NTFS), and networking.

Figure 2-3 Windows architecture

System Processes Services Applications Environment
Subsystems

Service
control mgr.

LSASS

Winlogon

Session
manager

SvcHost.exe

WinMgt.exe

SpoolSv.exe

Services.exe

Windows

OS/2

POSIX

Windows DLLs

NTDLL.DLL

System Service Dispatcher

(Kernel mode callable interfaces)

I/O Mgr Plug
 and

Play M

g
r

O
b

ject
M

g
r

File
System

C

ache

Security
Reference
M

onitor

V
Irtual

M
em

ory

Processes
&

Thread

s

C
onfig

uration
M

g
r (reg

istry)

Local
Proced

ure
C

all

Windows
USER,
GDI

Graphics
drivers

Hardware Abstraction Layer (HAL)

Hardware interfaces (buses, I/O devices, interrupts,
interval timers, DMA, memory cache control, etc.)

System
threads

Task Manager

Explorer

User
application

Subsystem DLLs

Device &
File Sys.
Drivers

Kernel

User mode

Kernel mode

Chapter 2: System Architecture 53
Environment Subsystems and Subsystem DLLs

As shown in Figure 2-3, Windows originally had three environment subsystems: OS/2,
POSIX, and Windows. As stated earlier, the OS/2 subsystem was removed in Windows 2000.
Although the basic POSIX subsystem that originally shipped with Windows no longer ships
with the system as of Windows XP, a greatly enhanced version is available for free as part of
the Services for UNIX product.

As we’ll explain shortly, of the three, the Windows subsystem is special in that Windows can’t
run without it. (It owns the keyboard, mouse, and display, and it is required to be present even
on server systems with no interactive users logged in.) In fact, the other two subsystems are
configured to start on demand, whereas the Windows subsystem must always be running.

The subsystem startup information is stored under the registry key HKLM\SYSTEM\Current-
ControlSet\Control\Session Manager\SubSystems. Figure 2-4 shows the values under this key.

Figure 2-4 Registry Editor showing Windows startup information

The Required value lists the subsystems that load when the system boots. The value has two
strings: Windows and Debug. The Windows value contains the file specification of the Win-
dows subsystem, Csrss.exe, which stands for Client/Server Run-Time Subsystem. (See the
Note later in this section.) Debug is blank (because it’s used for internal testing) and therefore
does nothing. The Optional value indicates that the OS/2 and POSIX subsystems will be
started on demand. The registry value Kmode contains the filename of the kernel-mode por-
tion of the Windows subsystem, Win32k.sys (explained later in this chapter).

The role of an environment subsystem is to expose some subset of the base Windows execu-
tive system services to application programs. Each subsystem can provide access to different
subsets of the native services in Windows. That means that some things can be done from an
application built on one subsystem that can’t be done by an application built on another sub-
system. For example, a Windows application can’t use the POSIX fork function.

Each executable image (.exe) is bound to one and only one subsystem. When an image is run,
the process creation code examines the subsystem type code in the image header so that it can
notify the proper subsystem of the new process. This type code is specified with the /SUB-
SYSTEM qualifier of the link command in Microsoft Visual C++ and can be viewed with the
Exetype tool in the Windows resource kits.

54 Microsoft Windows Internals, Fourth Edition
Note As a historical note, the reason the Windows subsystem process is called Csrss.exe is
that in the original design of Windows NT, all the subsystems were going to execute as threads
inside a single systemwide environment subsystem process. When the POSIX and OS/2 sub-
systems were removed and put in their own processes, the filename for the Windows sub-
system process wasn’t changed.

Function calls can’t be mixed between subsystems. In other words, a POSIX application can
call only services exported by the POSIX subsystem, and a Windows application can call only
services exported by the Windows subsystem. As you’ll see later, this restriction is one reason
why the original POSIX subsystem, which implements a very limited set of functions (only
POSIX 1003.1), wasn’t a useful environment for porting UNIX applications.

As mentioned earlier, user applications don’t call Windows system services directly. Instead,
they go through one or more subsystem DLLs. These libraries export the documented inter-
face that the programs linked to that subsystem can call. For example, the Windows sub-
system DLLs (such as Kernel32.dll, Advapi32.dll, User32.dll, and Gdi32.dll) implement the
Windows API functions. The POSIX subsystem DLL (Psxdll.dll) implements the POSIX API
functions.

EXPERIMENT: Viewing the Image Subsystem Type
You can see the image subsystem type by using either the Exetype tool in the Windows
resource kits or the Dependency Walker tool (Depends.exe) in the Windows Support
Tools and Platform SDK. For example, notice the image types for two different Windows
images, Notepad.exe (the simple text editor) and Cmd.exe (the Windows command
prompt):

C:\>exetype \Windows\system32\notepad.exe

File "\Windows\system32\notepad.exe" is of the following type:

Windows NT

32 bit machine

Built for the Intel 80386 processor

Runs under the Windows GUI subsystem

C:\>exetype \Windows\system32\cmd.exe

File "\Windows\system32\cmd.exe" is of the following type:

Windows NT

32 bit machine

Built for the Intel 80386 processor

Runs under the Windows character-based subsystem

This shows that Notepad is a GUI program while Cmd is a console or character-based
program. And although the output of the Exetype tool implies there are two different
subsystems for GUI and character-based programs, there is just one Windows sub-
system. Also, Windows isn’t supported on the Intel 386 processor (or the 486 for that
matter)—the text output by the Exetype program hasn’t been updated.

Chapter 2: System Architecture 55
When an application calls a function in a subsystem DLL, one of three things can occur:

■ The function is entirely implemented in user mode inside the subsystem DLL. In other
words, no message is sent to the environment subsystem process, and no Windows
executive system services are called. The function is performed in user mode, and the
results are returned to the caller. Examples of such functions include GetCurrentProcess
(which always returns -1, a value that is defined to refer to the current process in all pro-
cess-related functions) and GetCurrentProcessId. (The process ID doesn’t change for a
running process, so this ID is retrieved from a cached location, thus avoiding the need to
call into the kernel.)

■ The function requires one or more calls to the Windows executive. For example, the
Windows ReadFile and WriteFile functions involve calling the underlying internal (and
undocumented) Windows I/O system services NtReadFile and NtWriteFile, respectively.

■ The function requires some work to be done in the environment subsystem process.
(The environment subsystem processes, running in user mode, are responsible for
maintaining the state of the client applications running under their control.) In this
case, a client/server request is made to the environment subsystem via a message sent to
the subsystem to perform some operation. The subsystem DLL then waits for a reply
before returning to the caller.

Some functions can be a combination of the second and third items just listed, such as the
Windows CreateProcess and CreateThread functions.

Although Windows was designed to support multiple, independent environment subsystems,
from a practical perspective, having each subsystem implement all the code to handle win-
dowing and display I/O would result in a large amount of duplication of system functions
that, ultimately, would have negatively affected both system size and performance. Because
Windows was the primary subsystem, the Windows designers decided to locate these basic
functions there and have the other subsystems call on the Windows subsystem to perform
display I/O. Thus, the POSIX and OS/2 subsystems call services in the Windows subsystem
to perform display I/O. (In fact, if you examine the subsystem type for these images, you’ll see
that they are Windows executables.)

Let’s take a closer look at each of the environment subsystems.

Windows Subsystem

The Windows subsystem consists of the following major components:

■ The environment subsystem process (Csrss.exe) contains support for:

❑ Console (text) windows

❑ Creating and deleting processes and threads

❑ Portions of the support for 16-bit virtual DOS machine (VDM) processes

56 Microsoft Windows Internals, Fourth Edition
❑ Other miscellaneous functions, such as GetTempFile, DefineDosDevice, ExitWin-
dowsEx, and several natural language support functions

■ The kernel-mode device driver (Win32k.sys) contains:

❑ The window manager, which controls window displays; manages screen output;
collects input from keyboard, mouse, and other devices; and passes user messages
to applications.

❑ The Graphics Device Interface (GDI), which is a library of functions for graphics
output devices. It includes functions for line, text, and figure drawing and for
graphics manipulation.

■ Subsystem DLLs (such as Kernel32.dll, Advapi32.dll, User32.dll, and Gdi32.dll) trans-
late documented Windows API functions into the appropriate and mostly undocu-
mented kernel-mode system service calls to Ntoskrnl.exe and Win32k.sys.

■ Graphics device drivers are hardware-dependent graphics display drivers, printer driv-
ers, and video miniport drivers.

Applications call the standard USER functions to create user interface controls, such as win-
dows and buttons, on the display. The window manager communicates these requests to the
GDI, which passes them to the graphics device drivers, where they are formatted for the dis-
play device. A display driver is paired with a video miniport driver to complete video display
support.

The GDI provides a set of standard two-dimensional functions that let applications communi-
cate with graphics devices without knowing anything about the devices. GDI functions medi-
ate between applications and graphics devices such as display drivers and printer drivers. The
GDI interprets application requests for graphic output and sends the requests to graphics dis-
play drivers. It also provides a standard interface for applications to use varying graphics out-
put devices. This interface enables application code to be independent of the hardware
devices and their drivers. The GDI tailors its messages to the capabilities of the device, often
dividing the request into manageable parts. For example, some devices can understand direc-
tions to draw an ellipse; others require the GDI to interpret the command as a series of pixels
placed at certain coordinates. For more information about the graphics and video driver archi-
tecture, see the “Design Guide” section of the book Graphics Drivers in the Windows DDK.

Prior to Windows NT 4, the window manager and graphics services were part of the user-
mode Windows subsystem process. In Windows NT 4, the bulk of the windowing and graph-
ics code was moved from running in the context of the Windows subsystem process to a set
of callable services running in kernel mode (in the file Win32k.sys). The primary reason for

Chapter 2: System Architecture 57
this shift was to improve overall system performance. Having a separate server process that
contains the Windows graphics subsystem required multiple thread and process context
switches, which consumed considerable CPU cycles and memory resources even though the
original design was highly optimized.

For example, for each thread on the client side there was a dedicated, paired server thread in the
Windows subsystem process waiting on the client thread for requests. A special interprocess
communication facility called fast LPC was used to send messages between these threads. Unlike
normal thread context switches, transitions between paired threads via fast LPC don’t cause a
rescheduling event in the kernel, thereby enabling the server thread to run for the remaining
time slice of the client thread before having to take its turn in the kernel’s preemptive thread
scheduler. Moreover, shared memory buffers were used to allow fast passing of large data struc-
tures, such as bitmaps, and clients had direct but read-only access to key server data structures
to minimize the need for thread/process transitions between clients and the Windows server.
Also, GDI operations were (and still are) batched. Batching means that a series of graphics calls
by a Windows application aren’t “pushed” over to the server and drawn on the output device
until a GDI batching queue is filled. You can set the size of the queue by using the Windows
GdiSetBatchLimit function, and you can flush the queue at any time with GdiFlush. Conversely,
read-only properties and data structures of GDI, once they were obtained from the Windows
subsystem process, were cached on the client side for fast subsequent access.

Despite these optimizations, however, the overall system performance was still not adequate
for graphics-intensive applications. The obvious solution was to eliminate the need for the
additional threads and resulting context switches by moving the windowing and graphics sys-
tem into kernel mode. Also, once applications have called into the window manager and the
GDI, those subsystems can access other Windows executive components directly without the
cost of user-mode or kernel-mode transitions. This direct access is especially important in the
case of the GDI calling through video drivers, a process that involves interaction with video
hardware at high frequencies and high bandwidths.

So, what remains in the user-mode process part of the Windows subsystem? All the drawing
and updating for console or text windows are handled by it because console applications have
no notion of repainting a window. It’s easy to see this activity—simply open a command
prompt and drag another window over it, and you’ll see the Windows subsystem consuming
CPU time as it repaints the console window. But other than console window support, only a
few Windows functions result in sending a message to the Windows subsystem process any-
more: process and thread creation and termination, network drive letter mapping, and cre-
ation of temporary files. In general, a running Windows application won’t be causing many, if
any, context switches to the Windows subsystem process.

58 Microsoft Windows Internals, Fourth Edition
Is Windows Less Stable with USER and GDI in Kernel Mode?
Some people wondered whether moving this much code into kernel mode would sub-
stantially affect system stability. The reason the impact on system stability has been min-
imal is that prior to Windows NT 4 (and this is still true today), a bug (such as an access
violation) in the user-mode Windows subsystem process (Csrss.exe) results in a system
crash because the Windows subsystem process was (and still is) a vital process to the
running of the system. Because it was the process that contained the data structures that
described the windows on the display, the death of that process would kill the user
interface. However, even a Windows system operating as a server, with no interactive
processes, can’t run without this process, because server processes might be using win-
dow messaging to drive the internal state of the application. With Windows, an access
violation in the same code now running in kernel mode simply crashes the system more
quickly, because exceptions in kernel mode result in a system crash.

There is, however, one additional theoretical danger that didn’t exist prior to moving the
windowing and graphics system into kernel mode. Because this body of code is now run-
ning in kernel mode, a bug (such as the use of a bad pointer) could result in corrupting ker-
nel-mode protected data structures. Prior to Windows NT 4, such references would have
caused an access violation because kernel-mode pages aren’t writable from user mode. But
a system crash would have then resulted, as described earlier. With the code now running
in kernel mode, a bad pointer reference that caused a write operation to some kernel-mode
page might not immediately cause a system crash, but if it corrupted some data structure,
a crash would likely result soon after. There is a small chance, however, that such a reference
could corrupt a memory buffer (rather than a data structure), possibly resulting in return-
ing corrupt data to a user program or writing bad data to the disk.

Another area of possible impact can come from the move of the graphics drivers into
kernel mode. Previously, some portions of a graphics driver ran within Csrss and others
ran in kernel mode. Now, the entire driver runs in kernel mode. Although Microsoft
doesn’t develop all the graphics device drivers supported in Windows, it does work
directly with hardware manufacturers to help ensure that they are able to produce reli-
able and efficient drivers. All drivers shipped with the system are submitted to the same
rigorous testing as other executive components.

Finally, it’s important to understand that this design (running the windowing and
graphics subsystem in kernel mode) is not fundamentally risky. It is identical to the
approaches many other device drivers use (for example, network card drivers and hard
disk drivers). All these drivers have been operating in kernel mode since the inception of
Windows NT with a high degree of reliability.

Some people speculated that the move of the window manager and the GDI into kernel
mode would hurt the preemptive multitasking capability of Windows. The theory was
that with all the additional Windows processing time spent in kernel mode, other

Chapter 2: System Architecture 59
threads would have less opportunity to be run preemptively. This view was based on a
misunderstanding of the Windows architecture. It is true that in many other nominally
preemptive operating systems, executing in kernel mode is never preempted by the
operating system scheduler—or is preempted only at a certain limited number of pre-
defined points of kernel reentrancy. In Windows, however, threads running anywhere
in the executive are preempted and scheduled alongside threads running in user mode,
and all code within the executive is fully reentrant. Among other reasons, this capability
is necessary to achieve a high degree of system scalability on SMP hardware.

Another line of speculation was that SMP scaling would be hurt by this change. The the-
ory went like this: Previously, an interaction between an application and the window
manager or the GDI involved two threads, one in the application and one in Csrss.exe.
Therefore, on an SMP system, the two threads could run in parallel, thus improving
throughput. This analysis shows a misunderstanding of how Windows NT technology
worked prior to Windows NT 4. In most cases, calls from a client application to the Win-
dows subsystem process run synchronously; that is, the client thread entirely blocks
waiting on the server thread and begins to run again only when the server thread has
completed the call. Therefore, no parallelism on SMP hardware can ever be achieved.
This phenomenon is easily observable with a busy graphics application using the Perfor-
mance tool on an SMP system. The observer will discover that on a two-processor sys-
tem each processor is approximately 50 percent loaded, and it’s relatively easy to find
the single Csrss thread that is paired off with the busy application thread. Indeed,
because the two threads are fairly intimate with each other and sharing state, the proces-
sors’ caches must be flushed constantly to maintain coherency. This constant flushing is
the reason that with Windows NT 3.51 a single-threaded graphics application typically
runs slightly slower on an SMP machine than on a single processor system.

As a result, the changes in Windows NT 4 increased SMP throughput of applications
that make heavy use of the window manager and the GDI, especially when more than
one application thread is busy. When two application threads are busy on a two-proces-
sor Windows NT 3.51–based machine, a total of four threads (two in the application
plus two in Csrss) are battling for time on the two processors. Although only two are typ-
ically ready to run at any given time, the lack of a consistent pattern in which threads
run results in a loss of locality of reference and cache coherency. This loss occurs
because the busy threads are likely to get shuffled from one processor to another. In the
Windows NT 4 design, each of the two application threads essentially has its own pro-
cessor, and the automatic thread affinity of Windows tends to run the same thread on
the same processor indefinitely, thus maximizing locality of reference and minimizing
the need to synchronize the private per-processor memory caches.

So in summary, moving the window manager and the GDI from user mode to kernel
mode has provided improved performance without any significant decrease in system
stability or reliability, even in the case of multiple sessions being created in a Terminal
Service enabled configuration.

60 Microsoft Windows Internals, Fourth Edition
POSIX Subsystem

POSIX, an acronym loosely defined as “a portable operating system interface based on
UNIX,” refers to a collection of international standards for UNIX-style operating system inter-
faces. The POSIX standards encourage vendors implementing UNIX-style interfaces to make
them compatible so that programmers can move their applications easily from one system to
another.

Windows implements only one of the many POSIX standards, POSIX.1, formally known as
ISO/IEC 9945-1:1990 or IEEE POSIX standard 1003.1-1990. This standard was included pri-
marily to meet U.S. government procurement requirements set in the mid-to-late 1980s that
mandated POSIX.1 compliance as specified in Federal Information Processing Standard
(FIPS) 151-2, developed by the National Institute of Standards and Technology. Windows NT
3.5, 3.51, and 4 have been formally tested and certified according to FIPS 151-2.

Because POSIX.1 compliance was a mandatory goal for Windows, the operating system was
designed to ensure that the required base system support was present to allow for the imple-
mentation of a POSIX.1 subsystem (such as the fork function, which is implemented in the
Windows executive, and the support for hard file links in the Windows file system). However,
because POSIX.1 defines a limited set of services (such as process control, interprocess com-
munication, simple character cell I/O, and so on), the POSIX subsystem that comes with Win-
dows 2000 isn’t a complete programming environment. And because applications can’t mix
calls between subsystems on Windows, by default, POSIX applications are limited to the strict
set of services defined in POSIX.1. This restriction means that a POSIX executable on Win-
dows can’t create a thread or a window or use remote procedure calls (RPCs) or sockets.

To address this limitation, Microsoft provides a product called Windows Services for Unix,
which includes (as of version 3.5) an enhanced POSIX subsystem environment that provides
nearly 2000 UNIX functions and 300 UNIX-like tools and utilities. (See http://
www.microsoft.com/windows/sfu/default.asp for more information on Windows Services for
Unix.)

This enhanced POSIX subsystem assists in porting UNIX applications to Windows. However,
because the programs are still linked as POSIX executables, they cannot call Windows func-
tions. To port UNIX applications to Windows and allow the use of Windows functions, you
can purchase UNIX-to-Windows porting packages, such as the MKS Toolkit products avail-
able from Mortice Kern Systems Inc. (www.mkssoftware.com). With this approach, a UNIX
application can be recompiled and relinked as a Windows executable and can slowly start to
integrate calls to native Windows functions.

Chapter 2: System Architecture 61
EXPERIMENT: Watching the POSIX Subsystem Start
The POSIX subsystem is configured by default to start the first time a POSIX executable
is run, so you can watch it start by running a POSIX program, such as one of the POSIX
utilities that comes with the Windows Services for Unix. (You can also find a small set of
POSIX utilities in the \Apps\POSIX folder on the Windows 2000 resource kit tools
media—they are not installed as part of the resource kit tools installation.) Follow these
steps to watch the POSIX subsystem start:

1. Start a command prompt.

2. Run Process Explorer and check that the POSIX subsystem isn’t already running
(that is, that there’s no Psxss.exe process on the system). Make sure Process
Explorer is displaying the process list in tree view (by pressing Ctrl+T).

3. Run a POSIX program, such as the C Shell or Korn Shell included with Windows
Services for Unix (or a POSIX tool from the Windows 2000 resource kit, such as
\Apps\POSIX\Ls.exe).

4. Go back to Process Explorer and notice the new Psxss.exe process that is a child of
Smss.exe (which, depending on your different highlight duration, might still be
highlighted as a new process on the display).

To compile and link a POSIX application in Windows requires the POSIX headers and librar-
ies from the Platform SDK. POSIX executables are linked against the POSIX subsystem
library, Psxdll.dll. Because by default Windows is configured to start the POSIX subsystem on
demand, the first time you run a POSIX application, the POSIX subsystem process
(Psxss.exe) must be started. It remains running until the system reboots. (If you kill the
POSIX subsystem process, you won’t be able to run more POSIX applications until you
reboot.) The POSIX image itself isn’t run directly—instead, a special support image called
Posix.exe is launched, which in turn creates a child process to run the POSIX application.

OS/2 Subsystem

The OS/2 environment subsystem, like the built-in POSIX subsystem, is fairly limited in use-
fulness in that it supports only OS/2 1.2 16-bit character-based or video I/O (VIO) applica-
tions. Although Microsoft did sell a replacement OS/2 1.2 Presentation Manager subsystem
for Windows NT 4, it didn’t support OS/2 2.x (or later) applications (and it isn’t available for
Windows 2000 or later).

Also, because Windows doesn’t allow direct hardware access by user applications, OS/2 pro-
grams that contain I/O privilege segments that attempt to perform IN/OUT instructions (to
access some hardware device) as well as advanced video I/O (AVIO) aren’t supported. Appli-
cations that use the CLI/STI instructions are supported—but all the other OS/2 applications

62 Microsoft Windows Internals, Fourth Edition
in the system and all the other threads in the OS/2 process issuing the CLI instructions are
suspended until an STI instruction is executed.

The 16-MB memory limitation on native OS/2 1.2 doesn’t apply to Windows—the OS/2 sub-
system uses the 32-bit virtual address space of Windows to provide up to 512 MB of memory
to OS/2 1.2 applications, as illustrated in Figure 2-5.

Figure 2-5 OS/2 subsystem virtual memory layout

The tiled area is 512 MB of virtual address space that is reserved up front and then committed
or decommitted when 16-bit applications need segments. The OS/2 subsystem maintains a
local descriptor table (LDT) for each process, with shared memory segments at the same LDT
slot for all OS/2 processes.

As we’ll discuss in detail in Chapter 6, threads are the elements of a program that execute, and
as such they must be scheduled for processor time. Although Windows priority levels range
from 0 through 31, the 64 OS/2 priority levels (0 through 63) are mapped to Windows
dynamic priorities 1 through 15. OS/2 threads never receive Windows real-time priorities 16
through 31.

As with the POSIX subsystem, the OS/2 subsystem starts automatically the first time you acti-
vate a compatible OS/2 image. It remains running until the system is rebooted.

For more information on how Windows handles running POSIX and OS/2 applications, see
the section “Flow of CreateProcess” in Chapter 6.

Logical video buffer (LVB)
mapped to both 16-bit
application code and
32-bit OS/2 subsystem code

Heap area (used for 32-bit
structures that can be mapped into
16-bit application space)

16-bit DLLs and executables

16-bit application shared memory

16-bit application private memory
(DosAllocSec and so on)

Rtl heap and more

Win32 code and data
OS/2 client code and data
RTL code
.
.
.

2 GB

High 32-bit user-mode area

16-bit

32-bit

Tiled area (512 MB)

Low 32-bit user-mode area
0

Chapter 2: System Architecture 63
Ntdll.dll

Ntdll.dll is a special system support library primarily for the use of subsystem DLLs. It con-
tains two types of functions:

■ System service dispatch stubs to Windows executive system services

■ Internal support functions used by subsystems, subsystem DLLs, and other native
images

The first group of functions provides the interface to the Windows executive system services
that can be called from user mode. There are more than 200 such functions, such as NtCreate-
File, NtSetEvent, and so on. As noted earlier, most of the capabilities of these functions are
accessible through the Windows API. (A number are not, however, and are for use within the
operating system.)

For each of these functions, Ntdll contains an entry point with the same name. The code
inside the function contains the architecture-specific instruction that causes a transition into
kernel mode to invoke the system service dispatcher (explained in more detail in Chapter 3),
which after verifying some parameters, calls the actual kernel-mode system service that con-
tains the real code inside Ntoskrnl.exe.

Ntdll also contains many support functions, such as the image loader (functions that start
with Ldr), the heap manager, and Windows subsystem process communication functions
(functions that start with Csr), as well as general run-time library routines (functions that start
with Rtl). It also contains the user-mode asynchronous procedure call (APC) dispatcher and
exception dispatcher. (APCs and exceptions are explained in Chapter 3.)

Executive

The Windows executive is the upper layer of Ntoskrnl.exe. (The kernel is the lower layer.) The
executive includes the following types of functions:

■ Functions that are exported and callable from user mode. These functions are called sys-
tem services and are exported via Ntdll. Most of the services are accessible through the
Windows API or the APIs of another environment subsystem. A few services, however,
aren’t available through any documented subsystem function. (Examples include LPCs
and various query functions such as NtQueryInformationProcess, specialized functions
such as NtCreatePagingFile, and so on.)

■ Device driver functions that are called through the use of the DeviceIoControl function.
This provides a general interface from user mode to kernel mode to call functions in
device drivers that are not associated with a read or write.

■ Functions that can be called only from kernel mode that are exported and documented
in the Windows DDK or Windows Installable File System (IFS) Kit. (For information on
the Windows IFS Kit, go to http://www.microsoft.com/whdc/ddk/ifskit/default.mspx.)

64 Microsoft Windows Internals, Fourth Edition
■ Functions that are exported and callable from kernel mode but are not documented in
the Windows DDK or IFS Kit (such as the functions called by the boot video driver,
which start with Inbv).

■ Functions that are defined as global symbols but are not exported. These include inter-
nal support functions called within Ntoskrnl, such as those that start with Iop (internal
I/O manager support functions) or Mi (internal memory management support func-
tions).

■ Functions that are internal to a module that are not defined as global symbols.

The executive contains the following major components, each of which is covered in detail in
a subsequent chapter of this book:

■ The configuration manager (explained in Chapter 4) is responsible for implementing and
managing the system registry.

■ The process and thread manager (explained in Chapter 6) creates and terminates pro-
cesses and threads. The underlying support for processes and threads is implemented
in the Windows kernel; the executive adds additional semantics and functions to these
lower-level objects.

■ The security reference monitor (or SRM, described in Chapter 8) enforces security policies
on the local computer. It guards operating system resources, performing run-time object
protection and auditing.

■ The I/O manager (explained in Chapter 9) implements device-independent I/O and is
responsible for dispatching to the appropriate device drivers for further processing.

■ The Plug and Play (PnP) manager (explained in Chapter 9) determines which drivers are
required to support a particular device and loads those drivers. It retrieves the hardware
resource requirements for each device during enumeration. Based on the resource
requirements of each device, the PnP manager assigns the appropriate hardware
resources such as I/O ports, IRQs, DMA channels, and memory locations. It is also
responsible for sending proper event notification for device changes (addition or
removal of a device) on the system.

■ The power manager (explained in Chapter 9) coordinates power events and generates
power management I/O notifications to device drivers. When the system is idle, the
power manager can be configured to reduce power consumption by putting the CPU to
sleep. Changes in power consumption by individual devices are handled by device driv-
ers but are coordinated by the power manager.

■ The WDM Windows Management Instrumentation routines (explained in Chapter 4)
enable device drivers to publish performance and configuration information and receive
commands from the user-mode WMI service. Consumers of WMI information can be on
the local machine or remote across the network.

Chapter 2: System Architecture 65
■ The cache manager (explained in Chapter 11) improves the performance of file-based
I/O by causing recently referenced disk data to reside in main memory for quick access
(and by deferring disk writes by holding the updates in memory for a short time before
sending them to the disk). As you’ll see, it does this by using the memory manager’s
support for mapped files.

■ The memory manager (explained in Chapter 7) implements virtual memory, a memory
management scheme that provides a large, private address space for each process that
can exceed available physical memory. The memory manager also provides the underly-
ing support for the cache manager.

■ The logical prefetcher (explained in Chapter 7) accelerates system and process startup by
optimizing the loading of data referenced during the startup of the system or a process.

In addition, the executive contains four main groups of support functions that are used by the
executive components just listed. About a third of these support functions are documented in
the DDK because device drivers also use them. These are the four categories of support func-
tions:

■ The object manager, which creates, manages, and deletes Windows executive objects and
abstract data types that are used to represent operating system resources such as pro-
cesses, threads, and the various synchronization objects. The object manager is
explained in Chapter 3.

■ The LPC facility (explained in Chapter 3) passes messages between a client process and
a server process on the same computer. LPC is a flexible, optimized version of remote
procedure call (RPC), an industry-standard communication facility for client and server
processes across a network.

■ A broad set of common run-time library functions, such as string processing, arithmetic
operations, data type conversion, and security structure processing.

■ Executive support routines, such as system memory allocation (paged and nonpaged
pool), interlocked memory access, as well as two special types of synchronization
objects: resources and fast mutexes.

Kernel

The kernel consists of a set of functions in Ntoskrnl.exe that provide fundamental mecha-
nisms (such as thread scheduling and synchronization services) used by the executive com-
ponents, as well as low-level hardware architecture-dependent support (such as interrupt and
exception dispatching), that are different on each processor architecture. The kernel code is
written primarily in C, with assembly code reserved for those tasks that require access to spe-
cialized processor instructions and registers not easily accessible from C.

66 Microsoft Windows Internals, Fourth Edition
Like the various executive support functions mentioned in the preceding section, a number of
functions in the kernel are documented in the DDK (and can be found by searching for func-
tions beginning with Ke) because they are needed to implement device drivers.

Kernel Objects

The kernel provides a low-level base of well-defined, predictable operating system primitives
and mechanisms that allow higher-level components of the executive to do what they need to
do. The kernel separates itself from the rest of the executive by implementing operating sys-
tem mechanisms and avoiding policy making. It leaves nearly all policy decisions to the exec-
utive, with the exception of thread scheduling and dispatching, which the kernel implements.

Outside the kernel, the executive represents threads and other shareable resources as objects.
These objects require some policy overhead, such as object handles to manipulate them, secu-
rity checks to protect them, and resource quotas to be deducted when they are created. This
overhead is eliminated in the kernel, which implements a set of simpler objects, called kernel
objects, that help the kernel control central processing and support the creation of executive
objects. Most executive-level objects encapsulate one or more kernel objects, incorporating
their kernel-defined attributes.

One set of kernel objects, called control objects, establishes semantics for controlling various
operating system functions. This set includes the APC object, the deferred procedure call (DPC)
object, and several objects the I/O manager uses, such as the interrupt object.

Another set of kernel objects, known as dispatcher objects, incorporates synchronization capa-
bilities that alter or affect thread scheduling. The dispatcher objects include the kernel thread,
mutex (called mutant internally), event, kernel event pair, semaphore, timer, and waitable
timer. The executive uses kernel functions to create instances of kernel objects, to manipulate
them, and to construct the more complex objects it provides to user mode. Objects are
explained in more detail in Chapter 3, and processes and threads are described in Chapter 6.

Hardware Support

The other major job of the kernel is to abstract or isolate the executive and device drivers from
variations between the hardware architectures supported by Windows. This job includes han-
dling variations in functions such as interrupt handling, exception dispatching, and multipro-
cessor synchronization.

Even for these hardware-related functions, the design of the kernel attempts to maximize the
amount of common code. The kernel supports a set of interfaces that are portable and seman-
tically identical across architectures. Most of the code that implements this portable interface
is also identical across architectures.

Some of these interfaces are implemented differently on different architectures, however, or
some of the interfaces are partially implemented with architecture-specific code. These

Chapter 2: System Architecture 67
architecturally independent interfaces can be called on any machine, and the semantics of
the interface will be the same whether or not the code varies by architecture. Some kernel
interfaces (such as spinlock routines, which are described in Chapter 3) are actually imple-
mented in the HAL (described in the next section) because their implementation can vary
for systems within the same architecture family.

The kernel also contains a small amount of code with x86-specific interfaces needed to support
old MS-DOS programs. These x86 interfaces aren’t portable in the sense that they can’t be
called on a machine based on any other architecture; they won’t be present. This x86-specific
code, for example, supports calls to manipulate global descriptor tables (GDTs) and LDTs,
hardware features of the x86.

Other examples of architecture-specific code in the kernel include the interface to provide
translation buffer and CPU cache support. This support requires different code for the differ-
ent architectures because of the way caches are implemented.

Another example is context switching. Although at a high level the same algorithm is used for
thread selection and context switching (the context of the previous thread is saved, the con-
text of the new thread is loaded, and the new thread is started), there are architectural differ-
ences among the implementations on different processors. Because the context is described
by the processor state (registers and so on), what is saved and loaded varies depending on the
architecture.

Hardware Abstraction Layer

As mentioned at the beginning of this chapter, one of the crucial elements of the Windows
design is its portability across a variety of hardware platforms. The hardware abstraction layer
(HAL) is a key part of making this portability possible. The HAL is a loadable kernel-mode
module (Hal.dll) that provides the low-level interface to the hardware platform on which
Windows is running. It hides hardware-dependent details such as I/O interfaces, interrupt
controllers, and multiprocessor communication mechanisms—any functions that are both
architecture-specific and machine-dependent.

So rather than access hardware directly, Windows internal components as well as user-written
device drivers maintain portability by calling the HAL routines when they need platform-
dependent information. For this reason, the HAL routines are documented in the Windows
DDK. To find out more about the HAL and its use by device drivers, refer to the DDK.

Although several HALs are included with Windows (as shown in Table 2-6), only one is cho-
sen at installation time and copied to the system disk with the filename Hal.dll. (Other oper-
ating systems, such as VMS, select the equivalent of the HAL at system boot time.) Therefore,
you can’t assume that a system disk from one x86 installation will boot on a different proces-
sor if the HAL that supports the other processor is different.

68 Microsoft Windows Internals, Fourth Edition
Note As of Windows Server 2003, no vendor-specific HALs are shipped with the base sys-
tem.

EXPERIMENT: Viewing the Base HALs Included with Windows
To view the HALs included with Windows, open the file Driver.cab in the appropriate
architecture-specific folder underneath \Windows\Driver Cache. (For example, for x86
systems, the file name is \Windows\Driver Cache\i386\Driver.cab.) Scroll down to the
files beginning with “Hal” and you should see the files listed in Table 2-6.

EXPERIMENT: Determining Which HAL You’re Running
There are two ways to determine which HAL you’re running:

1. Open the file \Windows\Repair\Setup.log, search for Hal.dll, and look at the file-
name after the equals sign. This is the name of the HAL on the distribution media
extracted from Driver.cab.

2. In Device Manager (right-click on the My Computer icon on your desktop, select
Properties, click on the Hardware tab, and then click Device Manager), look at the
name of the “driver” under the Computer device type. For example, the following
screen shot is from a system running the ACPI HAL:

Table 2-6 List of x86 HALs in \Windows\Driver Cache\i386\Driver.cab

HAL File Name Systems Supported

Hal.dll Standard PCs

Halacpi.dll Advanced Configuration and Power Interface (ACPI) PCs

Halapic.dll Advanced Programmable Interrupt Controller (APIC) PCs

Halaacpi.dll APIC ACPI PCs

Halmps.dll Multiprocessor PCs

Halmacpi.dll Multiprocessor ACPI PCs

Halborg.dll Silicon Graphics Workstation (Windows 2000 only; platform no longer
marketed)

Halsp.dll Compaq SystemPro (Windows XP only)

Chapter 2: System Architecture 69
EXPERIMENT: Viewing NTOSKRNL and HAL Image Dependencies
You can view the relationship of the kernel and HAL images by examining their export
and import tables using the Dependency Walker tool (Depends.exe), which is con-
tained in the Windows Support Tools and the Platform SDK. To examine an image in
the Dependency Walker, select Open from the File menu to open the desired image file.

Here is a sample of output you can see by viewing the dependencies of Ntoskrnl using
this tool:

Notice that Ntoskrnl is linked against the HAL, which is in turn linked against Ntoskrnl.
(They both use functions in each other.) Ntoskrnl is also linked against Bootvid.dll, the
boot video driver that is used to implement the GUI startup screen. On Windows XP
and later, you will see an additional DLL, Kdcom.dll, in the list. This contains kernel
debugger infrastructure code that used to be part of Ntoskrnl.exe.

For a detailed description of the information displayed by this tool, see the Dependency
Walker help file (Depends.hlp).

Device Drivers

Although device drivers are explained in detail in Chapter 9, this section provides a brief over-
view of the types of drivers and explains how to list the drivers installed and loaded on your
system.

70 Microsoft Windows Internals, Fourth Edition
Device drivers are loadable kernel-mode modules (typically ending in .sys) that interface
between the I/O manager and the relevant hardware. They run in kernel mode in one of three
contexts:

■ In the context of the user thread that initiated an I/O function

■ In the context of a kernel-mode system thread

■ As a result of an interrupt (and therefore not in the context of any particular process or
thread—whichever process or thread was current when the interrupt occurred)

As stated in the preceding section, device drivers in Windows don’t manipulate hardware
directly, but rather they call functions in the HAL to interface with the hardware. Drivers are
typically written in C (sometimes C++) and therefore, with proper use of HAL routines, can be
source code portable across the CPU architectures supported by Windows and binary porta-
ble within an architecture family.

There are several types of device drivers:

■ Hardware device drivers manipulate hardware (using the HAL) to write output to or
retrieve input from a physical device or network. There are many types of hardware
device drivers, such as bus drivers, human interface drivers, mass storage drivers, and so
on.

■ File system drivers are Windows drivers that accept file-oriented I/O requests and trans-
late them into I/O requests bound for a particular device.

■ File system filter drivers, such as those that perform disk mirroring and encryption, inter-
cept I/Os and perform some added-value processing before passing the I/O to the next
layer.

■ Network redirectors and servers are file system drivers that transmit file system I/O
requests to a machine on the network and receive such requests, respectively.

■ Protocol drivers implement a networking protocol such as TCP/IP, NetBEUI, and IPX/
SPX.

■ Kernel streaming filter drivers are chained together to perform signal processing on data
streams, such as recording or displaying audio and video.

Because installing a device driver is the only way to add user-written kernel-mode code to the
system, some programmers have written device drivers simply as a way to access internal
operating system functions or data structures that are not accessible from user mode (but that
are documented and supported in the DDK). For example, many of the utilities from www.sys-
internals.com combine a Windows GUI application and a device driver that is used to gather
internal system state and call kernel-mode-only accessible functions not accessible from the
user-mode Windows API.

Chapter 2: System Architecture 71
Windows Driver Model (WDM)

Windows 2000 added support for Plug and Play, Power Options, and an extension to the
Windows NT driver model called the Windows Driver Model (WDM). Windows 2000 and
later can run legacy Windows NT 4 drivers, but because these don’t support Plug and Play
and Power Options, systems running these drivers will have reduced capabilities in these two
areas.

From the WDM perspective, there are three kinds of drivers:

■ A bus driver services a bus controller, adapter, bridge, or any device that has child
devices. Bus drivers are required drivers, and Microsoft generally provides them; each
type of bus (such as PCI, PCMCIA, and USB) on a system has one bus driver. Third par-
ties can write bus drivers to provide support for new buses, such as VMEbus, Multibus,
and Futurebus.

■ A function driver is the main device driver and provides the operational interface for its
device. It is a required driver unless the device is used raw (an implementation in which
I/O is done by the bus driver and any bus filter drivers, such as SCSI PassThru). A func-
tion driver is by definition the driver that knows the most about a particular device, and
it is usually the only driver that accesses device-specific registers.

■ A filter driver is used to add functionality to a device (or existing driver) or to modify
I/O requests or responses from other drivers (and is often used to fix hardware that
provides incorrect information about its hardware resource requirements). Filter driv-
ers are optional and can exist in any number, placed above or below a function driver
and above a bus driver. Usually, system original equipment manufacturers (OEMs) or
independent hardware vendors (IHVs) supply filter drivers.

In the WDM driver environment, no single driver controls all aspects of a device: a bus driver
is concerned with reporting the devices on its bus to the PnP manager, while a function driver
manipulates the device.

In most cases, lower-level filter drivers modify the behavior of device hardware. For example,
if a device reports to its bus driver that it requires four I/O ports when it actually requires 16
I/O ports, a lower-level device-specific function filter driver could intercept the list of hard-
ware resources reported by the bus driver to the PnP manager, and update the count of I/O
ports.

Upper-level filter drivers usually provide added-value features for a device. For example, an
upper-level device filter driver for a keyboard can enforce additional security checks.

Interrupt processing is explained in Chapter 3. Further details about the I/O manager, WDM,
Plug and Play, and Power Options are included in Chapter 9.

72 Microsoft Windows Internals, Fourth Edition
EXPERIMENT: Viewing the Installed Device Drivers
You can list the installed drivers by running Computer Management. (From the Start
menu, select Programs, Administrative Tools, and then Computer Management; or from
Control Panel, open Administrative Tools and select Computer Management.) From
within Computer Management, expand System Information and then Software Environ-
ment, and open Drivers. Here’s an example output of the list of installed drivers:

This window displays the list of device drivers defined in the registry, their type, and
their state (Running or Stopped). Device drivers and Windows service processes are
both defined in the same place: HKLM\ SYSTEM\CurrentControlSet\Services. How-
ever, they are distinguished by a type code—for example, type 1 is a kernel-mode device
driver. (For a complete list of the information stored in the registry for device drivers, see
Table 4-7.)

Alternatively, you list the currently loaded device drivers with the Drivers utility (Driv-
ers.exe in the Windows 2000 resource kits) or the Pstat utility (Pstat.exe in the Win-
dows XP Support Tools, Windows Server 2003 Support Tools, Windows 2000 resource
kits, and the Platform SDK). Here is a partial output from the Drivers utility:

C:\>drivers

ModuleName Code Data Bss Paged Init LinkDate

--

ntoskrnl.exe 429184 96896 0 775360 138880 Tue Dec 07 18:41:11 1999

hal.dll 25856 6016 0 16160 10240 Tue Nov 02 20:14:22 1999

BOOTVID.DLL 5664 2464 0 0 320 Wed Nov 03 20:24:33 1999

ACPI.sys 92096 8960 0 43488 4448 Wed Nov 10 20:06:04 1999

WMILIB.SYS 512 0 0 1152 192 Sat Sep 25 14:36:47 1999

pci.sys 12704 1536 0 31264 4608 Wed Oct 27 19:11:08 1999

isapnp.sys 14368 832 0 22944 2048 Sat Oct 02 16:00:35 1999

compbatt.sys 2496 0 0 2880 1216 Fri Oct 22 18:32:49 1999

BATTC.SYS 800 0 0 2976 704 Sun Oct 10 19:45:37 1999

intelide.sys 1760 32 0 0 128 Thu Oct 28 19:20:03 1999

PCIIDEX.SYS 4544 480 0 10944 1632 Wed Oct 27 19:02:19 1999

pcmcia.sys 32800 8864 0 23680 6240 Fri Oct 29 19:20:08 1999

ftdisk.sys 4640 32 0 95072 3392 Mon Nov 22 14:36:23 1999

--

Total 4363360 580320 0 3251424 432992

Chapter 2: System Architecture 73
Each loaded kernel-mode component (Ntoskrnl, the HAL, as well as device drivers) is
shown, along with the sizes of the sections in each image.

The Pstat utility also shows the loaded driver list, but only after it first displays the pro-
cess list and the threads in each process. Pstat includes one important piece of informa-
tion that the Drivers utility doesn’t: the load address of the module in system space. As
we’ll explain later, this address is needed to map running system threads to the device
driver in which they exist.

Peering into Undocumented Interfaces
Examining the names of the exported or global symbols in key system images (such as
Ntoskrnl.exe, Hal.dll, or Ntdll.dll) can be enlightening—you can get an idea of the kinds
of things Windows can do versus what happens to be documented and supported
today. Of course, just because you know the names of these functions doesn’t mean that
you can or should call them—the interfaces are undocumented and are subject to
change. We suggest that you look at these functions purely to gain more insight into the
kinds of internal functions Windows performs, not to bypass supported interfaces.

For example, looking at the list of functions in Ntdll.dll gives you the list of all the sys-
tem services that Windows provides to user-mode subsystem DLLs versus the subset
that each subsystem exposes. Although many of these functions map clearly to docu-
mented and supported Windows functions, several are not exposed via the Windows
API. (See the article “Inside the Native API” from www.sysinternals.com.)

Conversely, it’s also interesting to examine the imports of Windows subsystem DLLs
(such as Kernel32.dll or Advapi32.dll) and which functions they call in Ntdll.

Another interesting image to dump is Ntoskrnl.exe—although many of the exported rou-
tines that kernel-mode device drivers use are documented in the Windows DDK, quite
a few are not. You might also find it interesting to take a look at the import table for
Ntoskrnl and the HAL; this table shows the list of functions in the HAL that Ntoskrnl
uses and vice versa.

74 Microsoft Windows Internals, Fourth Edition
Table 2-7 lists most of the commonly used function name prefixes for the executive com-
ponents. Each of these major executive components also uses a variation of the prefix to
denote internal functions—either the first letter of the prefix followed by an i (for inter-
nal) or the full prefix followed by a p (for private). For example, Ki represents internal
kernel functions, and Psp refers to internal process support functions.

You can decipher the names of these exported functions more easily if you understand
the naming convention for Windows system routines. The general format is:

<Prefix><Operation><Object>

In this format, Prefix is the internal component that exports the routine, Operation
tells what is being done to the object or resource, and Object identifies what is being
operated on.

For example, ExAllocatePoolWithTag is the executive support routine to allocate from a
paged or nonpaged pool. KeInitializeThread is the routine that allocates and sets up a
kernel thread object.

Table 2-7 Commonly Used Prefixes

Prefix Component

Cc Cache manager

Cm Configuration manager

Ex Executive support routines

FsRtl File system driver run-time library

Hal Hardware abstraction layer

Io I/O manager

Ke Kernel

Lpc Local procedure call

Lsa Local security authentication

Mm Memory manager

Nt Windows system services (most of which are exported as Windows
functions)

Ob Object manager

Po Power manager

Pp PnP manager

Ps Process support

Rtl Run-time library

Se Security

Wmi Windows Management Instrumentation

Zw Mirror entry point for system services (beginning with Nt) that sets previous
access mode to kernel, which eliminates parameter validation, because Nt
system services validate parameters only if previous access mode is user

Chapter 2: System Architecture 75
System Processes

The following system processes appear on every Windows system. (Two of these—Idle and
System—are not full processes, as they are not running a user-mode executable.)

■ Idle process (contains one thread per CPU to account for idle CPU time)

■ System process (contains the majority of the kernel-mode system threads)

■ Session manager (Smss.exe)

■ Windows subsystem (Csrss.exe)

■ Logon process (Winlogon.exe)

■ Service control manager (Services.exe) and the child service processes it creates (such as
the system-supplied generic service host process, Svchost.exe)

■ Local security authentication server (Lsass.exe)

To understand the relationship of these processes, it is helpful to view the process “tree”—that
is, the parent/child relationship between processes. Seeing which process created each pro-
cess helps to understand where each process comes from. Figure 2-6 is a partial screen snap-
shot of the process tree with comments put on the first few system processes. (Process
Explorer allows you to add a comment for individual processes and optionally display that as
a column on the display.)

Figure 2-6 Initial System Process Tree

The next sections explain the key system processes shown in Figure 2-6. Although these sec-
tions briefly indicate the order of process startup, Chapter 5 contains a detailed description of
the steps involved in booting and starting Windows.

Idle Process

The first process listed in Figure 2-6 is the system idle process. As we’ll explain in Chapter 6,
processes are identified by their image name. However, this process (as well as the process

76 Microsoft Windows Internals, Fourth Edition
named System) isn’t running a real user-mode image (in that there is no “System Idle Pro-
cess.exe” in the \Windows directory). In addition, the name shown for this process differs
from utility to utility (because of implementation details). Table 2-8 lists several of the names
given to the Idle process (process ID 0). The Idle process is explained in detail in Chapter 6.

Now let’s look at system threads and the purpose of each of the system processes that are run-
ning real images.

Interrupts and DPCs

The two lines labeled Interrupts and DPCs represent time spent servicing interrupts and
deferred procedure calls. These mechanisms are explained in Chapter 3. Note that while Pro-
cess Explorer displays these as entries in the process list, they are not processes. They are
shown because they account for CPU time not charged to any process. (For example, a system
with heavy interrupt activity will not appear as a process consuming CPU time.) Note that
Task Manager includes interrupt and DPC time in the system idle time. Thus a system with
heavy interrupt activity will appear to be idle when using Task Manager.

System Process and System Threads

The System process (process ID 8 in Windows 2000 and process ID 4 in Windows XP and
Windows Server 2003) is the home for a special kind of thread that runs only in kernel mode:
a kernel-mode system thread. System threads have all the attributes and contexts of regular user-
mode threads (such as a hardware context, priority, and so on) but are different in that they
run only in kernel-mode executing code loaded in system space, whether that is in Ntosk-
rnl.exe or in any other loaded device driver. In addition, system threads don’t have a user pro-
cess address space and hence must allocate any dynamic storage from operating system
memory heaps, such as a paged or nonpaged pool.

System threads are created by the PsCreateSystemThread function (documented in the DDK),
which can be called only from kernel mode. Windows as well as various device drivers create
system threads during system initialization to perform operations that require thread context,
such as issuing and waiting for I/Os or other objects or polling a device. For example, the
memory manager uses system threads to implement such functions as writing dirty pages to
the page file or mapped files, swapping processes in and out of memory, and so forth. The ker-

Table 2-8 Names for Process ID 0 in Various Utilities

Utility Name for Process ID 0

Task Manager System Idle Process

Process Viewer (Pviewer.exe) Idle

Process Status (Pstat.exe) Idle Process

Process Explode (Pview.exe) System Process

Task List (Tlist.exe) System Process

QuickSlice (Qslice.exe) Systemprocess

Chapter 2: System Architecture 77
nel creates a system thread called the balance set manager that wakes up once per second to
possibly initiate various scheduling and memory management–related events. The cache
manager also uses system threads to implement both read-ahead and write-behind I/Os. The
file server device driver (Srv.sys) uses system threads to respond to network I/O requests for
file data on disk partitions shared to the network. Even the floppy driver has a system thread
to poll the floppy device. (Polling is more efficient in this case because an interrupt-driven
floppy driver consumes a large amount of system resources.) Further information on specific
system threads is included in the chapters in which the component is described.

By default, system threads are owned by the System process, but a device driver can create a
system thread in any process. For example, the Windows subsystem device driver
(Win32k.sys) creates system threads in the Windows subsystem process (Csrss.exe) so that
they can easily access data in the user-mode address space of that process.

When you’re troubleshooting or going through a system analysis, it’s useful to be able to map
the execution of individual system threads back to the driver or even to the subroutine that
contains the code. For example, on a heavily loaded file server, the System process will likely
be consuming considerable CPU time. But the knowledge that when the System process is
running “some system thread” is running isn’t enough to determine which device driver or
operating system component is running.

So if threads in the System process are running, first determine which ones are running (for
example, with the Performance tool). Once you find the thread (or threads) that is running,
look up in which driver the system thread began execution (which at least tells you which
driver likely created the thread) or examine the call stack (or at least the current address) of
the thread in question, which would indicate where the thread is currently executing.

Both of these techniques are illustrated in the following experiments.

EXPERIMENT: Identifying System Threads in the System Process
You can see that the threads inside the System process must be kernel-mode system
threads because the start address for each thread is greater than the start address of sys-
tem space (which by default begins at 0x80000000, unless the system was booted with
the /3GB Boot.ini switch). Also, if you look at the CPU time for these threads, you’ll see
that those that have accumulated any CPU time have run only in kernel mode.

To find out which driver created the system thread, look up the start address of the thread
(which you can display with Pviewer.exe) and look for the driver whose base address is
closest to (but before) the start address of the thread. Both the Pstat utility (at the end of
its output) as well as the !drivers kernel debugger command list the base address of each
loaded device driver.

To quickly find the current address of the thread, use the !stacks 0 command in the kernel
debugger. Here is sample output from a live system (using LiveKd):

78 Microsoft Windows Internals, Fourth Edition
kd> !stacks 0

Proc.Thread Thread ThreadState Blocker

[System]

8.000004 8146edb0 BLOCKED ntoskrnl!MmZeroPageThread+0x5f

8.00000c 8146e730 BLOCKED ?? Kernel stack not resident ??

8.000010 8146e4b0 BLOCKED ntoskrnl!ExpWorkerThread+0x73

8.000014 8146d030 BLOCKED ?? Kernel stack not resident ??

8.000018 8146ddb0 BLOCKED ntoskrnl!ExpWorkerThread+0x73

8.00001c 8146db30 BLOCKED ntoskrnl!ExpWorkerThread+0x73

8.000020 8146d8b0 BLOCKED ntoskrnl!ExpWorkerThread+0x73

8.000024 8146d630 BLOCKED ntoskrnl!ExpWorkerThread+0x73

8.000028 8146d3b0 BLOCKED ntoskrnl!ExpWorkerThread+0x73

8.00002c 8146c030 BLOCKED ntoskrnl!ExpWorkerThread+0x73

8.000030 8146cdb0 BLOCKED ntoskrnl!ExpWorkerThreadBalanceManager+0x55

8.000034 8146b470 BLOCKED ntoskrnl!MiDereferenceSegmentThread+0x44

8.000038 8146b1f0 BLOCKED ntoskrnl!MiModifiedPageWriterWorker+0x31

8.00003c 8146a030 BLOCKED ntoskrnl!KeBalanceSetManager+0x7e

8.000040 8146adb0 BLOCKED ntoskrnl!KeSwapProcessOrStack+0x24

8.000044 8146a5b0 BLOCKED ntoskrnl!FsRtlWorkerThread+0x33

8.000048 8146a330 BLOCKED ntoskrnl!FsRtlWorkerThread+0x33

8.00004c 81461030 BLOCKED ACPI!ACPIWorker+0x46

8.000050 8143a770 BLOCKED ntoskrnl!MiMappedPageWriter+0x4d

8.000054 81439730 BLOCKED dmio!voliod_loop+0x399

8.000058 81436c90 BLOCKED NDIS!ndisWorkerThread+0x22

8.00005c 813d9170 BLOCKED ltmdmntt!WakeupTimerThread+0x27

8.000060 813d8030 BLOCKED ltmdmntt!WriteRegistryThread+0x1c

8.000070 8139c850 BLOCKED raspptp!MainPassiveLevelThread+0x78

8.000074 8139c5d0 BLOCKED raspptp!PacketWorkingThread+0xc0

8.00006c 81384030 BLOCKED rasacd!AcdNotificationRequestThread+0xd8

8.000080 81333330 BLOCKED rdbss!RxpWorkerThreadDispatcher+0x6f

8.000084 813330b0 BLOCKED rdbss!RxSpinUpRequestsDispatcher+0x58

8.00008c 81321db0 BLOCKED ?? Kernel stack not resident ??

8.00015c 81205570 BLOCKED INO_FLTR+0x68bd

8.000160 81204570 BLOCKED INO_FLTR+0x80e9

8.000178 811fcdb0 BLOCKED irda!RxThread+0xfa

8.0002d0 811694f0 BLOCKED ?? Kernel stack not resident ??

8.0002d4 81168030 BLOCKED ?? Kernel stack not resident ??

8.000404 811002b0 BLOCKED rdbss!RxpWorkerThreadDispatcher+0x6f

8.000430 810f4990 READY parallel!ParallelThread+0x3e

8.00069c 80993030 READY rdbss!RxpWorkerThreadDispatcher+0x6f

The first column is the process ID and thread ID (in the form “process ID.thread ID”). The
second column is the current address of the thread. The third column indicates whether
the thread is in a wait state, ready state, or running state. (See Chapter 6 for a description
of thread states.) The last column is the top-most address on the thread’s stack. The infor-
mation in this last column makes it easy to see which driver each thread started in. For the
threads in Ntoskrnl, the name of the function gives a further indication of what the thread
is doing.

However, if the thread running is one of the system worker threads (ExpWorkerThread),
you still don’t really know what the thread is doing because any device driver can submit
work to a system worker thread. Therefore, the only way to trace back worker thread activ-
ity is to set a breakpoint at ExQueueWorkItem. When you reach the breakpoint, type !dso

Chapter 2: System Architecture 79
work_queue_item esp+4. This command will dump the first argument to ExQueue-
WorkItem (a work queue structure), which in turn contains the address of the worker rou-
tine to be called in the context of the worker thread. Alternatively, you can look at the
caller by using the k command in the kernel debugger, which displays the current call
stack. The current call stack will show the driver that is queuing the work to the worker
thread (as opposed to the routine to be called from the worker thread).

EXPERIMENT: Mapping a System Thread to a Device Driver
In this experiment, we’ll see how to map CPU activity in the System process to the
responsible system thread (and the driver it falls in) generating the activity. This is
important because when the System process is running, you must go to the thread gran-
ularity to really understand what’s going on. For this experiment, we will generate sys-
tem thread activity by generating file server activity on your machine. (The file server
driver, Srv.sys, creates system threads to handle inbound requests for file I/O. See
Chapter 13 for more information on this component.)

1. Open a command prompt.

2. Do a directory listing of your entire C drive using a network path to access your C
drive. For example, if your computer name is COMPUTER1, type “dir
\\computer1\c$ /s”. (The /s switch lists all subdirectories.)

3. Run Process Explorer, and double-click on the System process.

4. Click on the Threads tab.

5. Sort by the CSwitch Delta (context switch delta) column. You should see one or
more threads in Srv.sys running such as the following:

80 Microsoft Windows Internals, Fourth Edition
If you see a system thread running and you are not sure what the driver is, press the Mod-
ule button, which will bring up the file properties. Pressing the Module button while high-
lighting the thread in Srv.sys previously shown results in the following display:

Session Manager (Smss)

The Session Manager (\Windows\System32\Smss.exe) is the first user-mode process created
in the system. The kernel-mode system thread that performs the final phase of the initializa-
tion of the executive and kernel creates the actual Smss process.

The Session Manager is responsible for a number of important steps in starting Windows, such
as opening additional page files, performing delayed file rename and delete operations, and cre-
ating system environment variables. It also launches the subsystem processes (normally just
Csrss.exe) and the Winlogon process, which in turn creates the rest of the system processes.

Much of the configuration information in the registry that drives the initialization steps of
Smss can be found under HKLM\SYSTEM\CurrentControlSet\Control\Session Manager.
Some of these are explained in Chapter 5 in the section on Smss. (For a more complete
description of the keys and values, see the Registry Entries help file, Regentry.chm, in the
Windows 2000 resource kits.)

After performing these initialization steps, the main thread in Smss waits forever on the pro-
cess handles to Csrss and Winlogon. If either of these processes terminates unexpectedly,
Smss crashes the system (using the crash code STATUS_SYSTEM_PROCESS_TERMINATED,
or 0xC000021A), because Windows relies on their existence. Meanwhile, Smss waits for

Chapter 2: System Architecture 81
requests to load subsystems, debug events, and requests to create new terminal server ses-
sions. (For a description of terminal services, see the section “Terminal Services and Multiple
Sessions” in Chapter 1.)

Terminal Services session creation is performed by Smss. When a request comes in to Smss to
create a session, it first calls NtSetSystemInformation with a request to set up kernel-mode
session data structures. This in turn calls the internal memory manager function MmSession-
Create, which sets up the session virtual address space that will contain the session paged
pool and the per-session data structures allocated by the kernel-mode part of the Win32 sub-
system (Win32k.sys) and other session-space device drivers. (See Chapter 7 for more details.)
Smss then creates an instance of Winlogon and Csrss for the session.

Winlogon, LSASS and Userinit

The Windows logon process (\Windows\System32\Winlogon.exe) handles interactive user
logons and logoffs. Winlogon is notified of a user logon request when the secure attention
sequence (SAS) keystroke combination is entered. The default SAS on Windows is the combi-
nation Ctrl+Alt+Delete. The reason for the SAS is to protect users from password-capture pro-
grams that simulate the logon process, because this keyboard sequence cannot be intercepted
by a user mode application.

The identification and authentication aspects of the logon process are implemented in a replace-
able DLL named GINA (Graphical Identification and Authentication). The standard Windows
GINA, Msgina.dll, implements the default Windows logon interface. However, developers can
provide their own GINA DLL to implement other identification and authentication mechanisms
in place of the standard Windows username/password method (such as one based on a voice
print). In addition, Winlogon can load additional network provider DLLs that need to perform
secondary authentication. This capability allows multiple network providers to gather identifica-
tion and authentication information all at one time during normal logon.

Once the username and password have been captured, they are sent to the local security authen-
tication server process (\Windows\System32\Lsass.exe, described in Chapter 8) to be authenti-
cated. LSASS calls the appropriate authentication package (implemented as a DLL) to perform the
actual verification, such as checking whether a password matches what is stored in the active
directory or the SAM (the part of the registry that contains the definition of the users and groups).

Upon a successful authentication, LSASS calls a function in the security reference monitor (for
example, NtCreateToken) to generate an access token object that contains the user’s security
profile. This access token is then used by Winlogon to create the initial process(es) in the
user’s session. The initial process(es) are stored in the registry value Userinit under the regis-
try key HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon. (The
default is Userinit.exe, but there can be more than one image in the list.)

Userinit performs some initialization of the user environment (such as running the login script
and applying group policies) and then looks in the registry at the Shell value (under the same
Winlogon key referred to previously) and creates a process to run the system-defined shell (by

82 Microsoft Windows Internals, Fourth Edition
default, Explorer.exe). Then Userinit exits. This is the reason Explorer.exe is shown with no par-
ent—its parent has exited, and as explained earlier, tlist left-justifies processes whose parent isn’t
running. (Another way of looking at it is that Explorer is the grandchild of Winlogon.)

Winlogon is active not only during user logon and logoff but also whenever it intercepts the
SAS from the keyboard. For example, when you press Ctrl+Alt+Delete while logged in, the
Windows Security dialog box comes up, providing the options to log off, start the Task Man-
ager, lock the workstation, shut down the system, and so forth. Winlogon is the process that
handles this interaction.

For a complete description of the steps involved in the logon process, see the section “Smss,
Csrss, and Winlogon” in Chapter 5. For more details on security authentication, see Chapter
8. For details on the callable functions that interface with LSASS (the functions that start with
Lsa), see the documentation in the Platform SDK.

Service Control Manager (SCM)

Recall from earlier in the chapter that “services” on Windows can refer either to a server pro-
cess or to a device driver. This section deals with services that are user-mode processes. Ser-
vices are like UNIX “daemon processes” or VMS “detached processes” in that they can be
configured to start automatically at system boot time without requiring an interactive logon.
They can also be started manually (such as by running the Services administrative tool or by
calling the Windows StartService function). Typically, services do not interact with the logged-
on user, although there are special conditions when this is possible. (See Chapter 4.)

The service control manager is a special system process running the image \Windows\
System32\Services.exe that is responsible for starting, stopping, and interacting with service pro-
cesses. Service programs are really just Windows images that call special Windows functions to
interact with the service control manager to perform such actions as registering the service’s suc-
cessful startup, responding to status requests, or pausing or shutting down the service. Services
are defined in the registry under HKLM\SYSTEM\CurrentControlSet \Services. The resource kit
Registry Entries help file (Regentry.chm) documents the subkeys and values for services.

Keep in mind that services have three names: the process name you see running on the sys-
tem, the internal name in the registry, and the display name shown in the Services administra-
tive tool. (Not all services have a display name—if a service doesn’t have a display name, the
internal name is shown.) With Windows, services can also have a description field that fur-
ther details what the service does.

To map a service process to the services contained in that process, use the tlist /s command. Note
that there isn’t always one-to-one mapping between service process and running services, however,
because some services share a process with other services. In the registry, the type code indicates
whether the service runs in its own process or shares a process with other services in the image.

A number of Windows components are implemented as services, such as the Spooler, Event
Log, Task Scheduler, and various networking components.

Chapter 2: System Architecture 83
EXPERIMENT: Listing Installed Services
To list the installed services, select Administrative Tools from Control Panel, and then
select Services. You should see output like this:

To see the detailed properties about a service, right-click on a service and select Prop-
erties. For example, here are the properties for the Print Spooler service (highlighted
in the previous figure):

Notice that the Path To Executable field identifies the program that contains this ser-
vice. Remember that some services share a process with other services—mapping isn’t
always one to one.

84 Microsoft Windows Internals, Fourth Edition
EXPERIMENT: Viewing Service Details Inside Service Processes
Process Explorer highlights processes hosting one service or more. (You can configure this
by selecting the Configure Highlighting entry in the Options menu.) If you double-click
on a service-hosting process, you will see a Services tab that lists the services inside the
process: the name of the registry key that defines the service, the display name seen by the
administrator, and the description text for that service (if present). For example, listing the
services in a Svchost.exe process on Windows XP running under the System account
looks like this:

For more details on services, see Chapter 4.

Conclusion
In this chapter, we’ve taken a broad look at the overall system architecture of Windows. We’ve
examined the key components of Windows and seen how they interrelate. In the next chap-
ter, we’ll look in more detail at the core system mechanisms that these components are built
on, such as the object manager and synchronization.

Chapter 3

System Mechanisms

Microsoft Windows provides several base mechanisms that kernel-mode components such as
the executive, the kernel, and device drivers use. This chapter explains the following system
mechanisms and describes how they are used:

■ Trap dispatching, including interrupts, deferred procedure calls (DPCs), asynchronous
procedure calls (APCs), exception dispatching, and system service dispatching

■ The executive object manager

■ Synchronization, including spinlocks, kernel dispatcher objects, and how waits are
implemented

■ System worker threads

■ Miscellaneous mechanisms such as Windows global flags

■ Local procedure calls (LPCs)

■ Kernel Event Tracing

■ Wow64

Trap Dispatching
Interrupts and exceptions are operating system conditions that divert the processor to code out-
side the normal flow of control. Either hardware or software can detect them. The term trap
refers to a processor’s mechanism for capturing an executing thread when an exception or an
interrupt occurs and transferring control to a fixed location in the operating system. In Win-
dows, the processor transfers control to a trap handler, a function specific to a particular inter-
rupt or exception. Figure 3-1 illustrates some of the conditions that activate trap handlers.

The kernel distinguishes between interrupts and exceptions in the following way. An interrupt
is an asynchronous event (one that can occur at any time) that is unrelated to what the pro-
cessor is executing. Interrupts are generated primarily by I/O devices, processor clocks, or
timers, and they can be enabled (turned on) or disabled (turned off). An exception, in contrast,
is a synchronous condition that results from the execution of a particular instruction. Run-
ning a program a second time with the same data under the same conditions can reproduce
exceptions. Examples of exceptions include memory access violations, certain debugger
85

86 Microsoft Windows Internals, Fourth Edition
instructions, and divide-by-zero errors. The kernel also regards system service calls as excep-
tions (although technically they’re system traps).

Figure 3-1 Trap dispatching

Either hardware or software can generate exceptions and interrupts. For example, a bus error
exception is caused by a hardware problem, whereas a divide-by-zero exception is the result of
a software bug. Likewise, an I/O device can generate an interrupt, or the kernel itself can issue
a software interrupt (such as an APC or DPC, described later in this chapter).

When a hardware exception or interrupt is generated, the processor records enough machine
state on the kernel stack of the thread that’s interrupted so that it can return to that point in
the control flow and continue execution as if nothing had happened. If the thread was execut-
ing in user mode, Windows switches to the thread’s kernel-mode stack. Windows then cre-
ates a trap frame on the kernel stack of the interrupted thread into which it stores the
execution state of the thread. The trap frame is a subset of a thread’s complete context, and
you can view its definition by typing dt nt!_ktrap_frame in the kernel debugger. (Thread con-
text is described in Chapter 6.) The kernel handles software interrupts either as part of hard-
ware interrupt handling or synchronously when a thread invokes kernel functions related to
the software interrupt.

In most cases, the kernel installs front-end trap handling functions that perform general trap
handling tasks before and after transferring control to other functions that field the trap. For
example, if the condition was a device interrupt, a kernel hardware interrupt trap handler
transfers control to the interrupt service routine (ISR) that the device driver provided for the
interrupting device. If the condition was caused by a call to a system service, the general

Virtual memory
manager’s

pager

Exception
dispatcher

System
services

Interrupt
service
routines

Exception
handlers

Hardware exceptions
Software exceptions

Virtual address
exceptions

(Exception
frame)

System service call

Interrupt

Trap handlers

Chapter 3: System Mechanisms 87
system service trap handler transfers control to the specified system service function in the
executive. The kernel also installs trap handlers for traps that it doesn’t expect to see or
doesn’t handle. These trap handlers typically execute the system function KeBugCheckEx,
which halts the computer when the kernel detects problematic or incorrect behavior that, if
left unchecked, could result in data corruption. (For more information on bug checks, see
Chapter 14.) The following sections describe interrupt, exception, and system service dis-
patching in greater detail.

Interrupt Dispatching

Hardware-generated interrupts typically originate from I/O devices that must notify the pro-
cessor when they need service. Interrupt-driven devices allow the operating system to get the
maximum use out of the processor by overlapping central processing with I/O operations. A
thread starts an I/O transfer to or from a device and then can execute other useful work while
the device completes the transfer. When the device is finished, it interrupts the processor for
service. Pointing devices, printers, keyboards, disk drives, and network cards are generally
interrupt driven.

System software can also generate interrupts. For example, the kernel can issue a software
interrupt to initiate thread dispatching and to asynchronously break into the execution of a
thread. The kernel can also disable interrupts so that the processor isn’t interrupted, but it
does so only infrequently—at critical moments while it’s processing an interrupt or dispatch-
ing an exception, for example.

The kernel installs interrupt trap handlers to respond to device interrupts. Interrupt trap
handlers transfer control either to an external routine (the ISR) that handles the interrupt
or to an internal kernel routine that responds to the interrupt. Device drivers supply ISRs to
service device interrupts, and the kernel provides interrupt handling routines for other
types of interrupts.

In the following subsections, you’ll find out how the hardware notifies the processor of device
interrupts, the types of interrupts the kernel supports, the way device drivers interact with the
kernel (as a part of interrupt processing), and the software interrupts the kernel recognizes
(plus the kernel objects that are used to implement them).

Hardware Interrupt Processing

On the hardware platforms supported by Windows, external I/O interrupts come into one of
the lines on an interrupt controller. The controller in turn interrupts the processor on a single
line. Once the processor is interrupted, it queries the controller to get the interrupt request
(IRQ). The interrupt controller translates the IRQ to an interrupt number, uses this number
as an index into a structure called the interrupt dispatch table (IDT), and transfers control to
the appropriate interrupt dispatch routine. At system boot time, Windows fills in the IDT with
pointers to the kernel routines that handle each interrupt and exception.

88 Microsoft Windows Internals, Fourth Edition
EXPERIMENT: Viewing the IDT
You can view the contents of the IDT, including information on what trap handlers Win-
dows has assigned to interrupts (including exceptions and IRQs), using the !idt kernel
debugger command. The !idt command with no flags shows vectors that map to
addresses in modules other than Ntoskrnl.exe.

The following example shows what the output of the !idt command looks like:

kd> !idt

Dumping IDT:

30: 806b14c0 hal!HalpClockInterrupt

31: 8a39dc3c i8042prt!I8042KeyboardInterruptService (KINTERRUPT 8a39dc00)

34: 8a436dd4 serial!SerialCIsrSw (KINTERRUPT 8a436d98)

35: 8a44ed74 NDIS!ndisMIsr (KINTERRUPT 8a44ed38)

portcls!CInterruptSync::Release+0x10 (KINTERRUPT 899c44a0)

38: 806abe80 hal!HalpProfileInterrupt

39: 8a4a8abc ACPI!ACPIInterruptServiceRoutine (KINTERRUPT 8a4a8a80)

3b: 8a48d8c4 pcmcia!PcmciaInterrupt (KINTERRUPT 8a48d888)

ohci1394!OhciIsr (KINTERRUPT 8a41da18)

VIDEOPRT!pVideoPortInterrupt (KINTERRUPT 8a1bc2c0)

USBPORT!USBPORT_InterruptService (KINTERRUPT 8a2302b8)

USBPORT!USBPORT_InterruptService (KINTERRUPT 8a0b8008)

USBPORT!USBPORT_InterruptService (KINTERRUPT 8a170008)

USBPORT!USBPORT_InterruptService (KINTERRUPT 8a258380)

NDIS!ndisMIsr (KINTERRUPT 8a0e0430)

3c: 8a39d3ec i8042prt!I8042MouseInterruptService (KINTERRUPT 8a39d3b0)

3e: 8a47264c atapi!IdePortInterrupt (KINTERRUPT 8a472610)

3f: 8a489b3c atapi!IdePortInterrupt (KINTERRUPT 8a489b00)

On the system used to provide the output for this experiment, the keyboard device
driver’s (I8042prt.sys) keyboard ISR is at interrupt number 0x3C and several devices—
including the video adapter, PCMCIA bus, USB and IEEE 1394 ports, and network
adapter—share interrupt 0x3B.

Windows maps hardware IRQs to interrupt numbers in the IDT, and the system also uses the
IDT to configure trap handlers for exceptions. For example, the x86 and x64 exception num-
ber for a page fault (an exception that occurs when a thread attempts to access a page of vir-
tual memory that isn’t defined or present) is 0xe. Thus, entry 0xe in the IDT points to the
system’s page fault handler. Although the architectures supported by Windows allow up to
256 IDT entries, the number of IRQs a particular machine can support is determined by the
design of the interrupt controller the machine uses.

Chapter 3: System Mechanisms 89
Each processor has a separate IDT so that different processors can run different ISRs, if appro-
priate. For example, in a multiprocessor system, each processor receives the clock interrupt,
but only one processor updates the system clock in response to this interrupt. All the proces-
sors, however, use the interrupt to measure thread quantum and to initiate rescheduling when
a thread’s quantum ends. Similarly, some system configurations might require that a particu-
lar processor handle certain device interrupts.

x86 Interrupt Controllers

Most x86 systems rely on either the i8259A Programmable Interrupt Controller (PIC) or a
variant of the i82489 Advanced Programmable Interrupt Controller (APIC); the majority of
new computers include an APIC. The PIC standard originates with the original IBM PC. PICs
work only with uniprocessor systems and have 15 interrupt lines. APICs and SAPICs (dis-
cussed shortly) work with multiprocessor systems and have 256 interrupt lines. Intel and
other companies have defined the Multiprocessor Specification (MP Specification), a design
standard for x86 multiprocessor systems that centers on the use of APIC. To provide compat-
ibility with uniprocessor operating systems and boot code that starts a multiprocessor system
in uniprocessor mode, APICs support a PIC compatibility mode with 15 interrupts and deliv-
ery of interrupts to only the primary processor. Figure 3-2 depicts the APIC architecture. The
APIC actually consists of several components: an I/O APIC that receives interrupts from
devices, local APICs that receive interrupts from the I/O APIC on a private APIC bus and that
interrupt the CPU they are associated with, and an i8259A-compatible interrupt controller
that translates APIC input into PIC-equivalent signals. The I/O APIC is responsible for imple-
menting interrupt routing algorithms—which are software-selectable (the hardware abstrac-
tion layer, or HAL, makes the selection on Windows)—that both balance the device interrupt
load across processors and attempt to take advantage of locality, delivering device interrupts
to the same processor that has just fielded a previous interrupt of the same type.

Figure 3-2 x86 APIC architecture

CPU 1

Local
APIC

CPU 0

Local
APIC

i8259A-
equivalent

PIC

I/O
APIC

Device
interrupts

90 Microsoft Windows Internals, Fourth Edition
x64 Interrupt Controllers

Because the x64 architecture is compatible with x86 operating systems, x64 systems must
provide the same interrupt controllers as does the x86. A significant difference, however, is
that the x64 versions of Windows will not run on systems that do not have an APIC and they
use the APIC for interrupt control.

IA64 Interrupt Controllers

The IA64 architecture relies on the Streamlined Advanced Programmable Interrupt Controller
(SAPIC), which is an evolution of the APIC. A major difference between the APIC and SAPIC
architectures is that the I/O APICs on an APIC system deliver interrupts to local APICs over a
private APIC bus, whereas on a SAPIC system interrupts traverse the I/O and system bus for
faster delivery. Another difference is that interrupt routing and load balancing is handled by
the APIC bus on an APIC system, but a SAPIC system, which doesn’t have a private APIC bus,
requires that the support be programmed into the firmware. Even if load balancing and rout-
ing are present in the firmware, Windows does not take advantage of it; instead, it statically
assigns interrupts to processors in a round-robin manner.

EXPERIMENT: Viewing the PIC and APIC
You can view the configuration of the PIC on a uniprocessor and the APIC on a multi-
processor by using the !pic and !apic kernel debugger commands, respectively. (You
can’t use LiveKd for this experiment because LiveKd can’t access hardware.) Here’s the
output of the !pic command on a uniprocessor. (Note that the !pic command doesn’t
work if your system is using an APIC HAL.)

lkd> !pic

----- IRQ Number ----- 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

Physically in service:

Physically masked: . . . Y . . Y Y . . Y . . Y . .

Physically requested:

Level Triggered: Y . . . Y . Y

Here’s the output of the !apic command on a system running with the MPS HAL. The
“0:” prefix for the debugger prompt indicates that commands are running on processor
0, so this is the I/O APIC for processor 0:

lkd> !apic

Apic @ fffe0000 ID:0 (40010) LogDesc:01000000 DestFmt:ffffffff TPR 20

TimeCnt: 0bebc200clk SpurVec:3f FaultVec:e3 error:0

Ipi Cmd: 0004001f Vec:1F FixedDel Dest=Self edg high

Timer..: 000300fd Vec:FD FixedDel Dest=Self edg high masked

Linti0.: 0001003f Vec:3F FixedDel Dest=Self edg high masked

Linti1.: 000184ff Vec:FF NMI Dest=Self lvl high masked

TMR: 61, 82, 91-92, B1

IRR:

ISR:

Chapter 3: System Mechanisms 91
The following output is for the !ioapic command, which displays the configuration of the
I/O APIC, the interrupt controller component connected to devices:

0: kd> !ioapic

IoApic @ ffd02000 ID:8 (11) Arb:0

Inti00.: 000100ff Vec:FF FixedDel PhysDest:00 edg masked

Inti01.: 00000962 Vec:62 LowestDl Lg:03000000 edg

Inti02.: 000100ff Vec:FF FixedDel PhysDest:00 edg masked

Inti03.: 00000971 Vec:71 LowestDl Lg:03000000 edg

Inti04.: 000100ff Vec:FF FixedDel PhysDest:00 edg masked

Inti05.: 00000961 Vec:61 LowestDl Lg:03000000 edg

Inti06.: 00010982 Vec:82 LowestDl Lg:02000000 edg masked

Inti07.: 000100ff Vec:FF FixedDel PhysDest:00 edg masked

Inti08.: 000008d1 Vec:D1 FixedDel Lg:01000000 edg

Inti09.: 000100ff Vec:FF FixedDel PhysDest:00 edg masked

Inti0A.: 000100ff Vec:FF FixedDel PhysDest:00 edg masked

Inti0B.: 000100ff Vec:FF FixedDel PhysDest:00 edg masked

Inti0C.: 00000972 Vec:72 LowestDl Lg:03000000 edg

Inti0D.: 000100ff Vec:FF FixedDel PhysDest:00 edg masked

Inti0E.: 00000992 Vec:92 LowestDl Lg:03000000 edg

Inti0F.: 000100ff Vec:FF FixedDel PhysDest:00 edg masked

Inti10.: 000100ff Vec:FF FixedDel PhysDest:00 edg masked

Inti11.: 000100ff Vec:FF FixedDel PhysDest:00 edg masked

Inti12.: 000100ff Vec:FF FixedDel PhysDest:00 edg masked

Inti13.: 000100ff Vec:FF FixedDel PhysDest:00 edg masked

Inti14.: 0000a9a3 Vec:A3 LowestDl Lg:03000000 lvl

Inti15.: 0000a993 Vec:93 LowestDl Lg:03000000 lvl

Inti16.: 000100ff Vec:FF FixedDel PhysDest:00 edg masked

Inti17.: 000100ff Vec:FF FixedDel PhysDest:00 edg masked

Software Interrupt Request Levels (IRQLs)

Although interrupt controllers perform a level of interrupt prioritization, Windows imposes
its own interrupt priority scheme known as interrupt request levels (IRQLs). The kernel repre-
sents IRQLs internally as a number from 0 through 31 on x86 and from 0 to 15 on x64 and
IA64, with higher numbers representing higher-priority interrupts. Although the kernel
defines the standard set of IRQLs for software interrupts, the HAL maps hardware-interrupt
numbers to the IRQLs. Figure 3-3 shows IRQLs defined for the x86 architecture, and Figure
3-4 shows IRQLs for the x64 and IA64 architectures.

Note SYNCH_LEVEL, which multiprocessor versions of the kernel use to protect access to
per-processor processor control blocks (PRCB), is not shown in the charts because its value var-
ies across different versions of Windows. See Chapter 6 for a description of SYNCH_LEVEL and
its possible values.

92 Microsoft Windows Internals, Fourth Edition
Figure 3-3 x86 interrupt request levels (IRQLs)

Figure 3-4 x64 and IA64 interrupt request levels (IRQLs)

Interrupts are serviced in priority order, and a higher-priority interrupt preempts the servicing
of a lower-priority interrupt. When a high-priority interrupt occurs, the processor saves the
interrupted thread’s state and invokes the trap dispatchers associated with the interrupt. The
trap dispatcher raises the IRQL and calls the interrupt’s service routine. After the service rou-
tine executes, the interrupt dispatcher lowers the processor’s IRQL to where it was before the
interrupt occurred and then loads the saved machine state. The interrupted thread resumes
executing where it left off. When the kernel lowers the IRQL, lower-priority interrupts that
were masked might materialize. If this happens, the kernel repeats the process to handle the
new interrupts.

IRQL priority levels have a completely different meaning than thread-scheduling priorities
(which are described in Chapter 6). A scheduling priority is an attribute of a thread, whereas

High

Power fail

Inter-processor interrupt

Device n

Device 1

Clock

Profile

APC

Passive

DPC/dispatch

•
•

•

Software interrupts

Normal thread execution

Hardware interrupts

31

30

29

28

27

26

3

2

1

0

High/Profile

x64

Inter-processor interrupt/Power

Device n

Device 1

Clock

Synch (Srv 2003)

APC

Passive/Low

Dispatch/DPC

…

…

High/Profile/Power

IA64

Inter-processor interrupt

Device n

Correctable Machine Check

Device 1

Clock

Synch (MP only)

APC

Passive/Low

Dispatch/DPC & Synch (UP only)

15

14

13

12

11

3

4

2

1

0

Chapter 3: System Mechanisms 93
an IRQL is an attribute of an interrupt source, such as a keyboard or a mouse. In addition,
each processor has an IRQL setting that changes as operating system code executes.

Each processor’s IRQL setting determines which interrupts that processor can receive. IRQLs
are also used to synchronize access to kernel-mode data structures. (You’ll find out more
about synchronization later in this chapter.) As a kernel-mode thread runs, it raises or lowers
the processor’s IRQL either directly by calling KeRaiseIrql and KeLowerIrql or, more com-
monly, indirectly via calls to functions that acquire kernel synchronization objects. As Figure
3-5 illustrates, interrupts from a source with an IRQL above the current level interrupt the
processor, whereas interrupts from sources with IRQLs equal to or below the current level are
masked until an executing thread lowers the IRQL.

Figure 3-5 Masking interrupts

Because accessing a PIC is a relatively slow operation, HALs that use a PIC implement a per-
formance optimization, called lazy IRQL, that avoids PIC accesses. When the IRQL is raised,
the HAL notes the new IRQL internally instead of changing the interrupt mask. If a lower-pri-
ority interrupt subsequently occurs, the HAL sets the interrupt mask to the settings appropri-
ate for the first interrupt and postpones the lower-priority interrupt until the IRQL is lowered.
Thus, if no lower-priority interrupts occur while the IRQL is raised, the HAL doesn’t need to
modify the PIC.

A kernel-mode thread raises and lowers the IRQL of the processor on which it’s running,
depending on what it’s trying to do. For example, when an interrupt occurs, the trap handler
(or perhaps the processor) raises the processor’s IRQL to the assigned IRQL of the interrupt
source. This elevation masks all interrupts at and below that IRQL (on that processor only),
which ensures that the processor servicing the interrupt isn’t waylaid by an interrupt at the
same or a lower level. The masked interrupts are either handled by another processor or held

High

Power fail

Inter-processor interrupt

Device n

Device 1

Clock

Profile

APC

Passive

DPC/dispatch

•
•

•

Interrupts masked on
Processor B

IRQL setting

Processor B

IRQL = DPC/dispatch

IRQL = Clock

Interrupts masked on
Processor A

Processor A

94 Microsoft Windows Internals, Fourth Edition
back until the IRQL drops. Therefore, all components of the system, including the kernel and
device drivers, attempt to keep the IRQL at passive level (sometimes called low level). They do
this because device drivers can respond to hardware interrupts in a timelier manner if the
IRQL isn’t kept unnecessarily elevated for long periods.

Note An exception to the rule that raising the IRQL blocks interrupts of that level and lower
relates to APC_LEVEL interrupts. If a thread raises the IRQL to APC_LEVEL and then is resched-
uled because of a DISPATCH_LEVEL interrupt, the system might deliver an APC_LEVEL interrupt
to the newly scheduled thread. Thus, APC_LEVEL can be considered a thread-local rather than
processor-wide IRQL.

EXPERIMENT: Viewing the IRQL
If you are running the kernel debugger on Windows Server 2003, you can view a proces-
sor’s IRQL with the !irql debugger command:

kd> !irql

Debugger saved IRQL for processor 0x0 -- 0 (LOW_LEVEL)

Note that there is a field called IRQL in a data structure called the processor control region
(PCR) and its extension the processor control block (PRCB), which contain information
about the state of each processor in the system, such as the current IRQL, a pointer to
the hardware IDT, the currently running thread, and the next thread selected to run.
The kernel and the HAL use this information to perform architecture-specific and
machine-specific actions. Portions of the PCR and PRCB structures are defined publicly
in the Windows Device Driver Kit (DDK) header file Ntddk.h, so examine that file if you
want a complete definition of these structures.

You can view the contents of the PCR with the kernel debugger by using the !pcr com-
mand:

kd> !pcr

PCR Processor 0 @ffdff000

NtTib.ExceptionList: f8effc68

NtTib.StackBase: f8effdf0

NtTib.StackLimit: f8efd000

NtTib.SubSystemTib: 00000000

NtTib.Version: 00000000

NtTib.UserPointer: 00000000

NtTib.SelfTib: 7ffde000

Chapter 3: System Mechanisms 95
SelfPcr: ffdff000

Prcb: ffdff120

Irql: 00000000

IRR: 00000000

IDR: ffff28e8

InterruptMode: 00000000

IDT: 80036400

GDT: 80036000

TSS: 802b5000

CurrentThread: 81638020

NextThread: 00000000

IdleThread: 8046bdf0

Unfortunately, Windows does not maintain the Irql field on systems that do not use lazy
IRQL, so on most systems the field will always be 0.

Because changing a processor’s IRQL has such a significant effect on system operation, the
change can be made only in kernel mode—user-mode threads can’t change the processor’s
IRQL. This means that a processor’s IRQL is always at passive level when it’s executing user-
mode code. Only when the processor is executing kernel-mode code can the IRQL be higher.

Each interrupt level has a specific purpose. For example, the kernel issues an interprocessor
interrupt (IPI) to request that another processor perform an action, such as dispatching a par-
ticular thread for execution or updating its translation look-aside buffer cache. The system
clock generates an interrupt at regular intervals, and the kernel responds by updating the
clock and measuring thread execution time. If a hardware platform supports two clocks, the
kernel adds another clock interrupt level to measure performance. The HAL provides a number
of interrupt levels for use by interrupt-driven devices; the exact number varies with the proces-
sor and system configuration. The kernel uses software interrupts (described later in this chap-
ter) to initiate thread scheduling and to asynchronously break into a thread’s execution.

Mapping Interrupts to IRQLs IRQL levels aren’t the same as the interrupt requests (IRQs)
defined by interrupt controllers—the architectures on which Windows runs don’t implement
the concept of IRQLs in hardware. So how does Windows determine what IRQL to assign to
an interrupt? The answer lies in the HAL. In Windows, a type of device driver called a bus
driver determines the presence of devices on its bus (PCI, USB, and so on) and what inter-
rupts can be assigned to a device. The bus driver reports this information to the Plug and Play
manager, which decides, after taking into account the acceptable interrupt assignments for all
other devices, which interrupt will be assigned to each device. Then it calls the HAL function
HalpGetSystemInterruptVector, which maps interrupts to IRQLs.

96 Microsoft Windows Internals, Fourth Edition
The algorithm for assignment differs for the various HALs that Windows includes. On unipro-
cessor x86 systems, the HAL performs a straightforward translation: the IRQL of a given inter-
rupt vector is calculated by subtracting the interrupt vector from 27. Thus, if a device uses
interrupt vector 5, its ISR executes at IRQL 22. On an x86 multiprocessor system, the map-
ping isn’t as simple. APICs support over 200 interrupt vectors, so there aren’t enough IRQLs
for a one-to-one correspondence. The multiprocessor HAL therefore assigns IRQLs to inter-
rupt vectors in a round-robin manner, cycling through the device IRQL (DIRQL) range. As a
result, on an x86 multiprocessor system there’s no easy way for you to predict or to know
what IRQL Windows assigns to APIC IRQs. Finally, on x64 and IA64 systems, the HAL com-
putes the IRQL for a given IRQ by dividing the interrupt vector assigned to the IRQ by 16.

Predefined IRQLs Let’s take a closer look at the use of the predefined IRQLs, starting from
the highest level shown in Figure 3-5:

■ The kernel uses high level only when it’s halting the system in KeBugCheckEx and mask-
ing out all interrupts.

■ Power fail level originated in the original Microsoft Windows NT design documents,
which specified the behavior of system power failure code, but this IRQL has never been
used.

■ Inter-processor interrupt level is used to request another processor to perform an action,
such as queue a DISPATCH_LEVEL interrupt to schedule a particular thread for execu-
tion, updating the processor’s translation look-aside buffer (TLB) cache, system shut-
down, or system crash.

■ Clock level is used for the system’s clock, which the kernel uses to track the time of day
as well as to measure and allot CPU time to threads.

■ The system’s real-time clock uses profile level when kernel profiling, a performance mea-
surement mechanism, is enabled. When kernel profiling is active, the kernel’s profiling
trap handler records the address of the code that was executing when the interrupt
occurred. A table of address samples is constructed over time that tools can extract and
analyze. You can download Kernrate, a kernel profiling tool that you can use to config-
ure and view profiling-generated statistics, from http://www.microsoft.com/whdc/sys-
tem/sysperf/krview.mspx. See the Kernrate experiment for more information on using
this tool.

■ The device IRQLs are used to prioritize device interrupts. (See the previous section for
how hardware interrupt levels are mapped to IRQLs.)

■ DPC/dispatch-level and APC-level interrupts are software interrupts that the kernel and
device drivers generate. (DPCs and APCs are explained in more detail later in this chap-
ter.)

■ The lowest IRQL, passive level, isn’t really an interrupt level at all; it’s the setting at which
normal thread execution takes place and all interrupts are allowed to occur.

Chapter 3: System Mechanisms 97
EXPERIMENT: Using Kernel Profiler to Profile Execution
You can use the Kernel Profiler tool to enable the system profiling timer, collect samples
of the code that is executing when the timer fires, and display a summary showing the
frequency distribution across image files and functions. It can be used to track CPU
usage consumed by individual processes and/or time spent in kernel mode indepen-
dent of processes (for example, interrupt service routines). Kernel profiling is useful
when you want to obtain a breakdown of where the system is spending time.

In its simplest form, Kernrate samples where time has been spent in each kernel module
(for example, Ntoskrnl, drivers, and so on). For example, after installing the Krview
package referred to previously, try performing the following steps:

1. Open a command prompt.

2. Type cd c:\program files\krview\kernrates.

3. Type dir. (You will see kernrate images for each platform.)

4. Run the image that matches your platform (with no arguments or switches). For
example, Kernrate_i386_XP.exe is the image for Windows XP running on an x86
system.

5. While Kernrate is running, go perform some other activity on the system. For exam-
ple, run Windows Media Player and play some music, run a graphics-intensive game,
or perform network activity such as doing a directory of a remote network share.

6. Press Ctrl+C to stop Kernrate. This causes Kernrate to display the statistics from
the sampling period.

In the sample partial output from Kernrate, Windows Media Player was running, play-
ing a track from a CD.

C:\Program Files\KrView\Kernrates>Kernrate_i386_XP.exe

/==============================\

< KERNRATE LOG >

\==============================/

Date: 2004/05/13 Time: 9:48:28

Machine Name: BIGDAVID

Number of Processors: 1

PROCESSOR_ARCHITECTURE: x86

PROCESSOR_LEVEL: 6

Kernrate User-Specified Command Line:

Kernrate_i386_XP.exe

***> Press ctrl-c to finish collecting profile data

===> Finished Collecting Data, Starting to Process Results

------------Overall Summary:--------------

P0 K 0:00:03.234 (11.7%) U 0:00:08.352 (30.2%) I 0:00:16.093 (58.1%)

DPC 0:00:01.772 (6.4%) Interrupt 0:00:00.350 (1.3%)

98 Microsoft Windows Internals, Fourth Edition
Interrupts= 52899, Interrupt Rate= 1911/

sec.Time 7315 hits, 19531 events per hit --------

Module Hits msec %Total Events/Sec

gv3 4735 27679 64 % 3341135

smwdm 872 27679 11 % 615305

win32k 764 27679 10 % 539097

ntoskrnl 739 27679 10 % 521457

hal 124 27679 1 % 87497

The overall summary shows that the system spent 11.7 percent of the time in kernel
mode, 30.2 percent in user mode, 58.1 percent idle, 6.4 percent at DPC level, and 1.3
percent at interrupt level. The module with the highest hit rate was GV3.SYS, the pro-
cessor driver for the Pentium M Geyserville family. It is used for performance collection,
which is why it is first. The module with the second highest hit rate was Smwdm.sys, the
audio driver for the sound card on the machine used for the test. This makes sense
because the major activity going on in the system was Windows Media Player sending
sound I/O to the sound driver.

If you have symbols available, you can zoom in on individual modules and see the time
spent by function name. For example, profiling the system while dragging a window
around the screen rapidly resulted in the following (partial) output:

C:\Program Files\KrView\Kernrates>Kernrate_i386_XP.exe -z ntoskrnl -z win32k

/==============================\

< KERNRATE LOG >

\==============================/

Date: 2004/05/13 Time: 10:26:55

Time 4087 hits, 19531 events per hit --------

Module Hits msec %Total Events/Sec

win32k 1649 10424 40 % 3089660

ati2dvag 1269 10424 31 % 2377670

ntoskrnl 794 10424 19 % 1487683

gv3 162 10424 3 % 303532

----- Zoomed module win32k.sys (Bucket size = 16 bytes, Rounding Down) -------

Module Hits msec %Total Events/Sec

EngPaint 328 10424 19 % 614559

EngLpkInstalled 302 10424 18 % 565844

----- Zoomed module ntoskrnl.exe (Bucket size = 16 bytes, Rounding Down) -----

Module Hits msec %Total Events/Sec

KiDispatchInterrupt 243 10424 26 % 455298

ZwYieldExecution 50 10424 5 % 93682

InterlockedDecrement 39 10424 4 % 73072

The module with the highest hit rate was Win32k.sys, the windowing system driver.
Second on the list was the video driver. These results make sense because the main
activity in the system was drawing on the screen. Note in the zoomed display for
Win32k.sys, the function with the highest hit was EngPaint, the main GDI function to
paint on the screen.

Chapter 3: System Mechanisms 99
One important restriction on code running at DPC/dispatch level or above is that it can’t wait
for an object if doing so would necessitate the scheduler to select another thread to execute,
which is an illegal operation because the scheduler synchronizes its data structures at DPC/
dispatch level and cannot therefore be invoked to perform a reschedule. Another restriction is
that only nonpaged memory can be accessed at IRQL DPC/dispatch level or higher. This rule
is actually a side-effect of the first restriction because attempting to access memory that isn’t
resident results in a page fault. When a page fault occurs, the memory manager initiates a disk
I/O and then needs to wait for the file system driver to read the page in from disk. This wait
would in turn require the scheduler to perform a context switch (perhaps to the idle thread if
no user thread is waiting to run), thus violating the rule that the scheduler can’t be invoked
(because the IRQL is still DPC/dispatch level or higher at the time of the disk read). If either
of these two restrictions is violated, the system crashes with an
IRQL_NOT_LESS_OR_EQUAL crash code. (See Chapter 4 for a thorough discussion of sys-
tem crashes.) Violating these restrictions is a common bug in device drivers. The Windows
Driver Verifier, explained in the section “Driver Verifier” in Chapter 7, has an option you can
set to assist in finding this particular type of bug.

Interrupt Objects The kernel provides a portable mechanism—a kernel control object
called an interrupt object—that allows device drivers to register ISRs for their devices. An inter-
rupt object contains all the information the kernel needs to associate a device ISR with a par-
ticular level of interrupt, including the address of the ISR, the IRQL at which the device
interrupts, and the entry in the kernel’s IDT with which the ISR should be associated. When
an interrupt object is initialized, a few instructions of assembly language code, called the dis-
patch code, are copied from an interrupt handling template, KiInterruptTemplate, and stored
in the object. When an interrupt occurs, this code is executed.

This interrupt-object resident code calls the real interrupt dispatcher, which is typically either
the kernel’s KiInterruptDispatch or KiChainedDispatch routine, passing it a pointer to the inter-
rupt object. KiInterruptDispatch is the routine used for interrupt vectors for which only one
interrupt object is registered, and KiChainedDispatch is for vectors shared among multiple
interrupt objects. The interrupt object contains information this second dispatcher routine
needs to locate and properly call the ISR the device driver provides. The interrupt object also
stores the IRQL associated with the interrupt so that KiInterruptDispatch or KiChainedDis-
patch can raise the IRQL to the correct level before calling the ISR and then lower the IRQL
after the ISR has returned. This two-step process is required because there’s no way to pass a
pointer to the interrupt object (or any other argument for that matter) on the initial dispatch
because the initial dispatch is done by hardware. On a multiprocessor system, the kernel allo-
cates and initializes an interrupt object for each CPU, enabling the local APIC on that CPU to
accept the particular interrupt. Figure 3-6 shows typical interrupt control flow for interrupts
associated with interrupt objects.

100 Microsoft Windows Internals, Fourth Edition
Figure 3-6 Typical interrupt control flow

EXPERIMENT: Examining Interrupt Internals
Using the kernel debugger, you can view details of an interrupt object, including its
IRQL, ISR address, and custom interrupt dispatching code. First, execute the !idt com-
mand and locate the entry that includes a reference to I8042KeyboardInterruptService,
the ISR routine for the PS2 keyboard device:

31: 8a39dc3c i8042prt!I8042KeyboardInterruptService (KINTERRUPT 8a39dc00)

To view the contents of the interrupt object associated with the interrupt, execute dt
nt!_kinterrupt with the address following KINTERRUPT:

kd> dt nt!_kinterrupt 8a39dc00

nt!_KINTERRUPT

+0x000 Type : 22

+0x002 Size : 484

+0x004 InterruptListEntry : _LIST_ENTRY [0x8a39dc04 - 0x8a39dc04]

+0x00c ServiceRoutine : 0xba7e74a2 i8042prt!I8042KeyboardInterruptService+0

+0x010 ServiceContext : 0x8a067898

+0x014 SpinLock : 0

+0x018 TickCount : 0xffffffff

+0x01c ActualLock : 0x8a067958 -> 0

+0x020 DispatchAddress : 0x80531140 nt!KiInterruptDispatch+0

+0x024 Vector : 0x31

+0x028 Irql : 0x1a ’’

+0x029 SynchronizeIrql : 0x1a ’’

+0x02a FloatingSave : 0 ’’

JP 38NF

00938

Peripheral Device
Controller

CPU Interrupt
Controller

CPU Interrupt
Dispatch Table

n

3
2
0

Raise IRQL

Grab Spinlock

Drop Spinlock

Lower IRQL

ISR Address

Spinlock

Dispatch
Code

Interrupt
Object

KiInterruptDispatch Driver ISR

Read from device

Acknowledge-
Interrupt

Request DPC

Chapter 3: System Mechanisms 101
+0x02b Connected : 0x1 ’’

+0x02c Number : 0 ’’

+0x02d ShareVector : 0 ’’

+0x030 Mode : 1 (Latched)

+0x034 ServiceCount : 0

+0x038 DispatchCount : 0xffffffff

+0x03c DispatchCode : [106] 0x56535554

In this example, the IRQL Windows assigned to the interrupt is 0x1a (which is 26 in
decimal). Because this output is from a uniprocessor x86 system, we calculate that the
IRQ is 1, because IRQLs on x86 uniprocessors are calculated by subtracting the IRQ
from 27. We can verify this by opening the Device Manager (on the Hardware tab in the
System applet in the Control Panel), locating the PS/2 keyboard device, and viewing its
resource assignments, as shown in the following figure.

On a multiprocessor x86, the IRQ will be essentially randomly assigned, and on an x64
or IA64 system you will see that the IRQ is the interrupt vector number (0x31—49 deci-
mal—in this example) divided by 16.

The ISR’s address for the interrupt object is stored in the ServiceRoutine field (which is
what !idt displays in its output), and the interrupt code that actually executes when an
interrupt occurs is stored in the DispatchCode array at the end of the interrupt object.
The interrupt code stored there is programmed to build the trap frame on the stack and
then call the function stored in the DispatchAddress field (KiInterruptDispatch in the
example), passing it a pointer to the interrupt object.

102 Microsoft Windows Internals, Fourth Edition
Windows and Real-Time Processing
Deadline requirements, either hard or soft, characterize real-time environments. Hard
real-time systems (for example, a nuclear power plant control system) have deadlines
that the system must meet to avoid catastrophic failures such as loss of equipment or
life. Soft real-time systems (for example, a car’s fuel-economy optimization system) have
deadlines that the system can miss, but timeliness is still a desirable trait. In real-time
systems, computers have sensor input devices and control output devices. The designer
of a real-time computer system must know worst-case delays between the time an input
device generates an interrupt and the time the device’s driver can control the output
device to respond. This worst-case analysis must take into account the delays the oper-
ating system introduces as well as the delays the application and device drivers impose.

Because Windows doesn’t prioritize device IRQs in any controllable way and user-level
applications execute only when a processor’s IRQL is at passive level, Windows isn’t
always suitable as a real-time operating system. The system’s devices and device driv-
ers—not Windows—ultimately determine the worst-case delay. This factor becomes a
problem when the real-time system’s designer uses off-the-shelf hardware. The designer
can have difficulty determining how long every off-the-shelf device’s ISR or DPC might
take in the worst case. Even after testing, the designer can’t guarantee that a special case
in a live system won’t cause the system to miss an important deadline. Furthermore, the
sum of all the delays a system’s DPCs and ISRs can introduce usually far exceeds the tol-
erance of a time-sensitive system.

Although many types of embedded systems (for example, printers and automotive com-
puters) have real-time requirements, Windows XP Embedded doesn’t have real-time
characteristics. It is simply a version of Windows XP that makes it possible, using system
designer technology that Microsoft licensed from VenturCom, to produce small-foot-
print versions of Windows XP suitable for running on devices with limited resources.
For example, a device that has no networking capability would omit all the Windows XP
components related to networking, including network management tools and adapter
and protocol stack device drivers.

Still, there are third-party vendors that supply real-time kernels for Windows. The
approach these vendors take is to embed their real-time kernel in a custom HAL and to
have Windows run as a task in the real-time operating system. The task running Win-
dows serves as the user interface to the system and has a lower priority than the tasks
responsible for managing the device. See VenturCom’s Web site, www.venturcom.com, for
an example of a third-party real-time kernel extension for Windows.

Associating an ISR with a particular level of interrupt is called connecting an interrupt object,
and dissociating an ISR from an IDT entry is called disconnecting an interrupt object. These

Chapter 3: System Mechanisms 103
operations, accomplished by calling the kernel functions IoConnectInterrupt and IoDiscon-
nectInterrupt, allow a device driver to “turn on” an ISR when the driver is loaded into the sys-
tem and to “turn off” the ISR if the driver is unloaded.

Using the interrupt object to register an ISR prevents device drivers from fiddling directly
with interrupt hardware (which differs among processor architectures) and from needing to
know any details about the IDT. This kernel feature aids in creating portable device drivers
because it eliminates the need to code in assembly language or to reflect processor differences
in device drivers.

Interrupt objects provide other benefits as well. By using the interrupt object, the kernel
can synchronize the execution of the ISR with other parts of a device driver that might share
data with the ISR. (See Chapter 9 for more information about how device drivers respond to
interrupts.)

Furthermore, interrupt objects allow the kernel to easily call more than one ISR for any inter-
rupt level. If multiple device drivers create interrupt objects and connect them to the same
IDT entry, the interrupt dispatcher calls each routine when an interrupt occurs at the speci-
fied interrupt line. This capability allows the kernel to easily support “daisy-chain” configura-
tions, in which several devices share the same interrupt line. The chain breaks when one of
the ISRs claims ownership for the interrupt by returning a status to the interrupt dispatcher.
If multiple devices sharing the same interrupt require service at the same time, devices not
acknowledged by their ISRs will interrupt the system again once the interrupt dispatcher has
lowered the IRQL. Chaining is permitted only if all the device drivers wanting to use the same
interrupt indicate to the kernel that they can share the interrupt; if they can’t, the Plug and
Play manager reorganizes their interrupt assignments to ensure that it honors the sharing
requirements of each. If the interrupt vector is shared, the interrupt object invokes KiChained-
Dispatch, which will invoke the ISRs of each registered interrupt object in turn until one of
them claims the interrupt or all have been executed. In the earlier sample !idt output, vector
0x3b is connected to several chained interrupt objects.

Software Interrupts

Although hardware generates most interrupts, the Windows kernel also generates software
interrupts for a variety of tasks, including these:

■ Initiating thread dispatching

■ Non-time-critical interrupt processing

■ Handling timer expiration

■ Asynchronously executing a procedure in the context of a particular thread

■ Supporting asynchronous I/O operations

These tasks are described in the following subsections.

104 Microsoft Windows Internals, Fourth Edition
Dispatch or Deferred Procedure Call (DPC) Interrupts When a thread can no longer con-
tinue executing, perhaps because it has terminated or because it voluntarily enters a wait state,
the kernel calls the dispatcher directly to effect an immediate context switch. Sometimes, how-
ever, the kernel detects that rescheduling should occur when it is deep within many layers of
code. In this situation, the kernel requests dispatching but defers its occurrence until it com-
pletes its current activity. Using a DPC software interrupt is a convenient way to achieve this
delay.

The kernel always raises the processor’s IRQL to DPC/dispatch level or above when it needs
to synchronize access to shared kernel structures. This disables additional software interrupts
and thread dispatching. When the kernel detects that dispatching should occur, it requests a
DPC/dispatch-level interrupt; but because the IRQL is at or above that level, the processor
holds the interrupt in check. When the kernel completes its current activity, it sees that it’s
going to lower the IRQL below DPC/dispatch level and checks to see whether any dispatch
interrupts are pending. If there are, the IRQL drops to DPC/dispatch level and the dispatch
interrupts are processed. Activating the thread dispatcher by using a software interrupt is a
way to defer dispatching until conditions are right. However, Windows uses software inter-
rupts to defer other types of processing as well.

In addition to thread dispatching, the kernel also processes deferred procedure calls (DPCs)
at this IRQL. A DPC is a function that performs a system task—a task that is less time-critical
than the current one. The functions are called deferred because they might not execute imme-
diately.

DPCs provide the operating system with the capability to generate an interrupt and execute a
system function in kernel mode. The kernel uses DPCs to process timer expiration (and
release threads waiting for the timers) and to reschedule the processor after a thread’s quan-
tum expires. Device drivers use DPCs to complete I/O requests. To provide timely service for
hardware interrupts, Windows—with the cooperation of device drivers—attempts to keep the
IRQL below device IRQL levels. One way that this goal is achieved is for device driver ISRs to
perform the minimal work necessary to acknowledge their device, save volatile interrupt state,
and defer data transfer or other less time-critical interrupt processing activity for execution in
a DPC at DPC/dispatch IRQL. (See Chapter 9 for more information on DPCs and the I/O sys-
tem.)

A DPC is represented by a DPC object, a kernel control object that is not visible to user-mode
programs but is visible to device drivers and other system code. The most important piece of
information the DPC object contains is the address of the system function that the kernel will
call when it processes the DPC interrupt. DPC routines that are waiting to execute are stored
in kernel-managed queues, one per processor, called DPC queues. To request a DPC, system
code calls the kernel to initialize a DPC object and then places it in a DPC queue.

By default, the kernel places DPC objects at the end of the DPC queue of the processor on
which the DPC was requested (typically the processor on which the ISR executed). A device

Chapter 3: System Mechanisms 105
driver can override this behavior, however, by specifying a DPC priority (low, medium, or
high, where medium is the default) and by targeting the DPC at a particular processor. A DPC
aimed at a specific CPU is known as a targeted DPC. If the DPC has a low or medium priority,
the kernel places the DPC object at the end of the queue; if the DPC has a high priority, the
kernel inserts the DPC object at the front of the queue.

When the processor’s IRQL is about to drop from an IRQL of DPC/dispatch level or higher to
a lower IRQL (APC or passive level), the kernel processes DPCs. Windows ensures that the
IRQL remains at DPC/dispatch level and pulls DPC objects off the current processor’s queue
until the queue is empty (that is, the kernel “drains” the queue), calling each DPC function in
turn. Only when the queue is empty will the kernel let the IRQL drop below DPC/dispatch
level and let regular thread execution continue. DPC processing is depicted in Figure 3-7.

Figure 3-7 Delivering a DPC

DPC priorities can affect system behavior another way. The kernel usually initiates DPC queue
draining with a DPC/dispatch-level interrupt. The kernel generates such an interrupt only if
the DPC is directed at the processor the ISR is requested on and the DPC has a high or
medium priority. If the DPC has a low priority, the kernel requests the interrupt only if the
number of outstanding DPC requests for the processor rises above a threshold or if the num-
ber of DPCs requested on the processor within a time window is low. If a DPC is targeted at a
CPU different from the one on which the ISR is running and the DPC’s priority is high, the
kernel immediately signals the target CPU (by sending it a dispatch IPI) to drain its DPC
queue. If the priority is medium or low, the number of DPCs queued on the target processor
must exceed a threshold for the kernel to trigger a DPC/dispatch interrupt. The system idle
thread also drains the DPC queue for the processor it runs on. Although DPC targeting and

The dispatcher executes each DPC routine
in the DPC queue, emptying the queue as
it proceeds. If required, the dispatcher also
reschedules the processor.

4

3

1

2

After the DPC interrupt,
control transfers to the
(thread) dispatcher.

When the IRQL drops below
DPC/dispatch level, a DPC
interrupt occurs.

A timer expires, and the kernel
queues a DPC that will release
any threads waiting on the
timer. The kernel then
requests a software interrupt.

Dispatcher

DPCDPC

DPC

DPC queue

DPC/dispatch

APC

Passive

Power failure

High

IRQL setting
 table

•
•

•

106 Microsoft Windows Internals, Fourth Edition
priority levels are flexible, device drivers rarely need to change the default behavior of their
DPC objects. Table 3-1 summarizes the situations that initiate DPC queue draining.

Because user-mode threads execute at low IRQL, the chances are good that a DPC will inter-
rupt the execution of an ordinary user’s thread. DPC routines execute without regard to what
thread is running, meaning that when a DPC routine runs, it can’t assume what process
address space is currently mapped. DPC routines can call kernel functions, but they can’t call
system services, generate page faults, or create or wait for dispatcher objects (explained later
in this chapter). They can, however, access nonpaged system memory addresses, because sys-
tem address space is always mapped regardless of what the current process is.

DPCs are provided primarily for device drivers, but the kernel uses them too. The kernel most
frequently uses a DPC to handle quantum expiration. At every tick of the system clock, an
interrupt occurs at clock IRQL. The clock interrupt handler (running at clock IRQL) updates
the system time and then decrements a counter that tracks how long the current thread has
run. When the counter reaches 0, the thread’s time quantum has expired and the kernel
might need to reschedule the processor, a lower-priority task that should be done at DPC/dis-
patch IRQL. The clock interrupt handler queues a DPC to initiate thread dispatching and then
finishes its work and lowers the processor’s IRQL. Because the DPC interrupt has a lower pri-
ority than do device interrupts, any pending device interrupts that surface before the clock
interrupt completes are handled before the DPC interrupt occurs.

EXPERIMENT: Monitoring Interrupt and DPC Activity
You can use Process Explorer to monitor interrupt and DPC activity by adding the
Context Switch Delta column and watching the Interrupt and DPC processes. These
are not real processes, but they are shown as processes for convenience and therefore
do not incur context switches. Process Explorer’s context switch count for these
pseudo processes reflects the number of occurrences of each within the previous
refresh interval. You can stimulate interrupt and DPC activity by moving the mouse
quickly around the screen.

Table 3-1 DPC Interrupt Generation Rules

DPC Priority DPC Targeted at ISR’s Processor DPC Targeted at Another Processor

Low DPC queue length exceeds maxi-
mum DPC queue length or DPC
request rate is less than minimum
DPC request rate

DPC queue length exceeds maximum
DPC queue length or System is idle

Medium Always DPC queue length exceeds maximum
DPC queue length or System is idle

High Always Always

Chapter 3: System Mechanisms 107
You can also trace the execution of specific interrupt service routines and deferred pro-
cedure calls with the built-in event tracing support (described later in this chapter) in
Windows XP Service Pack 2 and Windows Server 2003 Service Pack 1 and later.

1. Start capturing events by typing the following command:

tracelog -start -f kernel.etl -b 64 -UsePerfCounter -

eflag 8 0x307 0x4084 0 0 0 0 0 0

2. Stop capturing events by typing:

tracelog -stop to stop logging.

3. Generate reports for the event capture by typing:

tracerpt kernel.etl -df -o -report

This will generate two files: workload.txt and dumpfile.csv.

4. Open “workload.txt” and you will see summaries of the time spent in ISRs and
DPCs by each driver type.

5. Open the file “dumpfile.csv” created in step 4; search for lines with “DPC” or “ISR”
in the second value. For example, the following three lines from a dumpfile.csv
generated using the above commands show a timer DPC, a DPC, and an ISR:

PerfInfo, TimerDPC, 0xFFFFFFFF, 127383953645422825, 0,

0, 127383953645421500, 0xFB03A385, 0, 0

PerfInfo, DPC, 0xFFFFFFFF, 127383953645424040, 0,

0, 127383953645421394, 0x804DC87D, 0, 0

PerfInfo, ISR, 0xFFFFFFFF, 127383953645470903, 0,

0, 127383953645468696, 0xFB48D5E0, 0, 0, 0

Doing an “ln” command in the kernel debugger on the start address in each event
record (the eighth value on each line) shows the name of the function that executed the
DPC or ISR:

lkd> ln 0xFB03A385

(fb03a385) rdbss!RxTimerDispatch | (fb03a41e) rdbss!RxpWorkerThreadDispatcher

lkd> ln 0x804DC87D

(804dc87d) nt!KiTimerExpiration | (804dc93b) nt!KeSetTimerEx

lkd> ln 0xFB48D5E0

(fb48d5e0) atapi!IdePortInterrupt | (fb48d622) atapi!IdeCheckEmptyChannel

The first is a DPC for a timer expiration for a timer queued by the file system redirector
client driver. The second is a DPC for a generic timer expiration. The third address is the
address of the ISR for the ATAPI port driver. For more information, see http://
www.microsoft.com/whdc/driver/perform/mmdrv.mspx.

108 Microsoft Windows Internals, Fourth Edition
Asynchronous Procedure Call (APC) Interrupts Asynchronous procedure calls (APCs)
provide a way for user programs and system code to execute in the context of a particular user
thread (and hence a particular process address space). Because APCs are queued to execute in
the context of a particular thread and run at an IRQL less than DPC/dispatch level, they don’t
operate under the same restrictions as a DPC. An APC routine can acquire resources (objects),
wait for object handles, incur page faults, and call system services.

APCs are described by a kernel control object, called an APC object. APCs waiting to execute
reside in a kernel-managed APC queue. Unlike the DPC queue, which is systemwide, the APC
queue is thread-specific—each thread has its own APC queue. When asked to queue an APC,
the kernel inserts it into the queue belonging to the thread that will execute the APC routine.
The kernel, in turn, requests a software interrupt at APC level, and when the thread eventually
begins running, it executes the APC.

There are two kinds of APCs: kernel mode and user mode. Kernel-mode APCs don’t require
“permission” from a target thread to run in that thread’s context, while user-mode APCs do.
Kernel-mode APCs interrupt a thread and execute a procedure without the thread’s interven-
tion or consent. There are also two types of kernel-mode APCs: normal and special. A thread
can disable both types by raising the IRQL to APC_LEVEL or by calling KeEnterGuardedRe-
gion, which was introduced in Windows Server 2003. KeEnterGuardedRegionThread disables
APC delivery by setting the SpecialApcDisable field in the calling thread’s KTHREAD struc-
ture (described further in Chapter 6). A thread can disable normal APCs only by calling KeEn-
terCriticalRegion, which sets the KernelApcDisable field in the thread’s KTHREAD structure.

The executive uses kernel-mode APCs to perform operating system work that must be com-
pleted within the address space (in the context) of a particular thread. It can use special ker-
nel-mode APCs to direct a thread to stop executing an interruptible system service, for
example, or to record the results of an asynchronous I/O operation in a thread’s address
space. Environment subsystems use special kernel-mode APCs to make a thread suspend or
terminate itself or to get or set its user-mode execution context. The POSIX subsystem uses
kernel-mode APCs to emulate the delivery of POSIX signals to POSIX processes.

Device drivers also use kernel-mode APCs. For example, if an I/O operation is initiated and a
thread goes into a wait state, another thread in another process can be scheduled to run.
When the device finishes transferring data, the I/O system must somehow get back into the
context of the thread that initiated the I/O so that it can copy the results of the I/O operation
to the buffer in the address space of the process containing that thread. The I/O system uses
a special kernel-mode APC to perform this action. (The use of APCs in the I/O system is dis-
cussed in more detail in Chapter 9.)

Chapter 3: System Mechanisms 109
Several Windows APIs, such as ReadFileEx, WriteFileEx, and QueueUserAPC, use user-mode
APCs. For example, the ReadFileEx and WriteFileEx functions allow the caller to specify a com-
pletion routine to be called when the I/O operation finishes. The I/O completion is imple-
mented by queueing an APC to the thread that issued the I/O. However, the callback to the
completion routine doesn’t necessarily take place when the APC is queued because user-mode
APCs are delivered to a thread only when it’s in an alertable wait state. A thread can enter a wait
state either by waiting for an object handle and specifying that its wait is alertable (with the
Windows WaitForMultipleObjectsEx function) or by testing directly whether it has a pending
APC (using SleepEx). In both cases, if a user-mode APC is pending, the kernel interrupts
(alerts) the thread, transfers control to the APC routine, and resumes the thread’s execution
when the APC routine completes. Unlike kernel-mode APCs, which execute at APC level, user-
mode APCs execute at passive level.

APC delivery can reorder the wait queues—the lists of which threads are waiting for what, and
in what order they are waiting. (Wait resolution is described in the section “Low-IRQL Syn-
chronization” later in this chapter.) If the thread is in a wait state when an APC is delivered,
after the APC routine completes, the wait is reissued or reexecuted. If the wait still isn’t
resolved, the thread returns to the wait state, but now it will be at the end of the list of objects
it’s waiting for. For example, because APCs are used to suspend a thread from execution, if the
thread is waiting for any objects, its wait will be removed until the thread is resumed, after
which that thread will be at the end of the list of threads waiting to access the objects it was
waiting for.

Exception Dispatching

In contrast to interrupts, which can occur at any time, exceptions are conditions that result
directly from the execution of the program that is running. Windows introduced a facility
known as structured exception handling, which allows applications to gain control when excep-
tions occur. The application can then fix the condition and return to the place the exception
occurred, unwind the stack (thus terminating execution of the subroutine that raised the
exception), or declare back to the system that the exception isn’t recognized and the system
should continue searching for an exception handler that might process the exception. This
section assumes you’re familiar with the basic concepts behind Windows structured excep-
tion handling—if you’re not, you should read the overview in the Windows API reference doc-
umentation on the Platform SDK or chapters 23 through 25 in Jeffrey Richter’s book
Programming Applications for Microsoft Windows (Fourth Edition, Microsoft Press, 2000) before
proceeding. Keep in mind that although exception handling is made accessible through lan-
guage extensions (for example, the __try construct in Microsoft Visual C++), it is a system
mechanism and hence isn’t language-specific. Other examples of consumers of Windows
exception handling include C++ and Java exceptions.

110 Microsoft Windows Internals, Fourth Edition
On the x86, all exceptions have predefined interrupt numbers that directly correspond to the
entry in the IDT that points to the trap handler for a particular exception. Table 3-2 shows
x86-defined exceptions and their assigned interrupt numbers. Because the first entries of the
IDT are used for exceptions, hardware interrupts are assigned entries later in the table, as
mentioned earlier.

All exceptions, except those simple enough to be resolved by the trap handler, are serviced by
a kernel module called the exception dispatcher. The exception dispatcher’s job is to find an
exception handler that can “dispose of” the exception. Examples of architecture-independent
exceptions that the kernel defines include memory access violations, integer divide-by-zero,
integer overflow, floating-point exceptions, and debugger breakpoints. For a complete list of
architecture-independent exceptions, consult the Windows API reference documentation.

The kernel traps and handles some of these exceptions transparently to user programs. For
example, encountering a breakpoint while executing a program being debugged generates an
exception, which the kernel handles by calling the debugger. The kernel handles certain other
exceptions by returning an unsuccessful status code to the caller.

A few exceptions are allowed to filter back, untouched, to user mode. For example, a memory
access violation or an arithmetic overflow generates an exception that the operating system
doesn’t handle. An environment subsystem can establish frame-based exception handlers to

Table 3-2 x86 Exceptions and Their Interrupt Numbers

Interrupt Number Exception

0 Divide Error

1 DEBUG TRAP

2 NMI/NPX Error

3 Breakpoint

4 Overflow

5 BOUND/Print Screen

6 Invalid Opcode

7 NPX Not Available

8 Double Exception

9 NPX Segment Overrun

A Invalid Task State Segment (TSS)

B Segment Not Present

C Stack Fault

D General Protection

E Page Fault

F Intel Reserved

10 Floating Point

11 Alignment Check

Chapter 3: System Mechanisms 111
deal with these exceptions. The term frame-based refers to an exception handler’s association
with a particular procedure activation. When a procedure is invoked, a stack frame represent-
ing that activation of the procedure is pushed onto the stack. A stack frame can have one or
more exception handlers associated with it, each of which protects a particular block of code
in the source program. When an exception occurs, the kernel searches for an exception han-
dler associated with the current stack frame. If none exists, the kernel searches for an excep-
tion handler associated with the previous stack frame, and so on, until it finds a frame-based
exception handler. If no exception handler is found, the kernel calls its own default exception
handlers.

When an exception occurs, whether it is explicitly raised by software or implicitly raised by
hardware, a chain of events begins in the kernel. The CPU hardware transfers control to the
kernel trap handler, which creates a trap frame (as it does when an interrupt occurs). The trap
frame allows the system to resume where it left off if the exception is resolved. The trap han-
dler also creates an exception record that contains the reason for the exception and other per-
tinent information.

If the exception occurred in kernel mode, the exception dispatcher simply calls a routine to
locate a frame-based exception handler that will handle the exception. Because unhandled
kernel-mode exceptions are considered fatal operating system errors, you can assume that the
dispatcher always finds an exception handler.

If the exception occurred in user mode, the exception dispatcher does something more elab-
orate. As you’ll see in Chapter 6, the Windows subsystem has a debugger port and an excep-
tion port to receive notification of user-mode exceptions in Windows processes. The kernel
uses these in its default exception handling, as illustrated in Figure 3-8.

Figure 3-8 Dispatching an exception

Trap
handler

Exception
record

Exception
dispatcher

Debugger
port

Debugger
(first chance)

Frame-based
handlers

Debugger
port

Debugger
(second chance)

Exception
port

Environment
subsystem

Kernel default
handler

Function call

LPC

112 Microsoft Windows Internals, Fourth Edition
Debugger breakpoints are common sources of exceptions. Therefore, the first action the
exception dispatcher takes is to see whether the process that incurred the exception has an
associated debugger process. If it does and the system is Windows 2000, the exception dis-
patcher sends the first-chance debug message via an LPC to the debugger port associated with
the process that incurred the exception. The LPC message is sent to the session manager pro-
cess, which then dispatches it to the appropriate debugger process. On Windows XP and Win-
dows Server 2003, the exception dispatcher sends a debugger object message to the debug
object associated with the process (which internally the system refers to as a port).

If the process has no debugger process attached, or if the debugger doesn’t handle the excep-
tion, the exception dispatcher switches into user mode, copies the trap frame to the user stack
formatted as a CONTEXT data structure (documented in the Platform SDK), and calls a rou-
tine to find a frame-based exception handler. If none is found, or if none handles the excep-
tion, the exception dispatcher switches back into kernel mode and calls the debugger again to
allow the user to do more debugging. (This is called the second-chance notification.)

If the debugger isn’t running and no frame-based handlers are found, the kernel sends a mes-
sage to the exception port associated with the thread’s process. This exception port, if one
exists, was registered by the environment subsystem that controls this thread. The exception
port gives the environment subsystem, which presumably is listening at the port, the oppor-
tunity to translate the exception into an environment-specific signal or exception. CSRSS (Cli-
ent/Server Run-Time Subsystem) simply presents a message box notifying the user of the fault
and terminates the process, and when POSIX gets a message from the kernel that one of its
threads generated an exception, the POSIX subsystem sends a POSIX-style signal to the
thread that caused the exception. However, if the kernel progresses this far in processing the
exception and the subsystem doesn’t handle the exception, the kernel executes a default
exception handler that simply terminates the process whose thread caused the exception.

Unhandled Exceptions

All Windows threads have an exception handler declared at the top of the stack that processes
unhandled exceptions. This exception handler is declared in the internal Windows start-of-
process or start-of-thread function. The start-of-process function runs when the first thread in a
process begins execution. It calls the main entry point in the image. The start-of-thread func-
tion runs when a user creates additional threads. It calls the user-supplied thread start routine
specified in the CreateThread call.

Chapter 3: System Mechanisms 113
EXPERIMENT: Viewing the Real User Start Address for Windows
Threads
The fact that each Windows thread begins execution in a system-supplied function (and
not the user-supplied function) explains why the start address for thread 0 is the same
for every Windows process in the system (and why the start addresses for secondary
threads are also the same). The start address for thread 0 in Windows processes is the
Windows start-of-process function; the start address for any other threads would be the
Windows start-of-thread function. To see the user-supplied function address, use the
Tlist utility in the Windows Support Tools. Type tlist process-name or tlist process-id
to get the detailed process output that includes this information. For example, compare
the thread start addresses for the Windows Explorer process as reported by Pstat (in the
Platform SDK) and Tlist:

C:\> pstat

§

pid:3f8 pri: 8 Hnd: 329 Pf: 80043 Ws: 4620K explorer.exe

tid pri Ctx Swtch StrtAddr User Time Kernel Time State

7c 9 16442 77E878C1 0:00:01.241 0:00:01.251 Wait:UserRequest

42c 11 157888 77E92C50 0:00:07.110 0:00:34.309 Wait:UserRequest

44c 8 6357 77E92C50 0:00:00.070 0:00:00.140 Wait:UserRequest

1cc 8 3318 77E92C50 0:00:00.030 0:00:00.070 Wait:DelayExecution

§

C:\> tlist explorer

1016 explorer.exe Program Manager

CWD: C:\

CmdLine: Explorer.exe

VirtualSize: 25348 KB PeakVirtualSize: 31052 KB

WorkingSetSize: 1804 KB PeakWorkingSetSize: 3276 KB

NumberOfThreads: 4

149 Win32StartAddr:0x01009dbd LastErr:0x0000007e State:Waiting

86 Win32StartAddr:0x77c5d4a5 LastErr:0x00000000 State:Waiting

62 Win32StartAddr:0x00000977 LastErr:0x00000000 State:Waiting

179 Win32StartAddr:0x0100d8d4 LastErr:0x00000002 State:Waiting

The start address of thread 0 reported by Pstat is the internal Windows start-of-process
function; the start addresses for threads 1 through 3 are the internal Windows start-of-
thread functions. Tlist, on the other hand, shows the user-supplied Windows start
address (the user function called by the internal Windows start function).

114 Microsoft Windows Internals, Fourth Edition
Because most threads in Windows processes start at one of the system-supplied wrap-
per functions, Process Explorer, when displaying the start address of threads in a pro-
cess, skips the initial call frame that represents the wrapper function and instead shows
the second frame on the stack. For example, notice the thread start address of a process
running Notepad.exe:

Process Explorer does display the complete call hierarchy when it displays the call stack.
Notice the following results when the Stack button is clicked:

Line 12 in the preceding figure is the first frame on the stack—the start of the process
wrapper. The second frame (line 11) is the main entry point into Notepad.exe.

Chapter 3: System Mechanisms 115
The generic code for these internal start functions is shown here:

void Win32StartOfProcess(

LPTHREAD_START_ROUTINE lpStartAddr,

LPVOID lpvThreadParm){

__try {

DWORD dwThreadExitCode = lpStartAddr(lpvThreadParm);

ExitThread(dwThreadExitCode);

} __except(UnhandledExceptionFilter(

GetExceptionInformation())) {

ExitProcess(GetExceptionCode());

}

}

Notice that the Windows unhandled exception filter is called if the thread has an exception
that it doesn’t handle. The purpose of this function is to provide the system-defined behavior
for what to do when an exception is not handled, which is based on the contents of the
HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\AeDebug registry key. There
are two important values: Auto and Debugger. Auto tells the unhandled exception filter
whether to automatically run the debugger or ask the user what to do. By default, it is set to 1,
which means that it will launch the debugger automatically. However, installing development
tools such as Visual Studio changes this to 0. The Debugger value is a string that points to the
path of the debugger executable to run in the case of an unhandled exception.

The default debugger is \Windows\System32\Drwtsn32.exe (Dr. Watson), which isn’t really
a debugger but rather a postmortem tool that captures the state of the application “crash” and
records it in a log file (Drwtsn32.log) and a process crash dump file (User.dmp), both found
by default in the \Documents And Settings\All Users\Documents\DrWatson folder. To see
(or modify) the configuration for Dr. Watson, run it interactively—it displays a window with
the current settings, as shown in Figure 3-9.

Figure 3-9 Windows 2000 Dr. Watson default settings

116 Microsoft Windows Internals, Fourth Edition
The log file contains basic information such as the exception code, the name of the image that
failed, a list of loaded DLLs, and a stack and instruction trace for the thread that incurred the
exception. For a detailed description of the contents of the log file, run Dr. Watson and click
the Help button shown in Figure 3-9.

The crash dump file contains the private pages in the process at the time of the exception.
(The file doesn’t include code pages from EXEs or DLLs.) This file can be opened by WinDbg,
the Windows debugger that comes with the Debugging Tools package, or by Visual Studio
2003 and later. Because the User.dmp file is overwritten each time a process crashes, unless
you rename or copy the file after each process crash, you’ll have only the latest one on your
system.

On Windows 2000 Professional systems, visual notification is turned on by default. The mes-
sage box shown in Figure 3-10 is displayed by Dr. Watson after it generates the crash dump
and records information in its log file.

Figure 3-10 Windows 2000 Dr. Watson error message

The Dr. Watson process remains until the message box is dismissed, which is why on Win-
dows 2000 Server systems visual notification is turned off by default. This default is used
because if a server application fails, there is usually nobody at the console to see it and dismiss
the message box. Instead, server applications should log errors to the Windows event log.

On Windows 2000, if the Auto value is set to zero, the message box shown in Figure 3-11 is
displayed.

Figure 3-11 Windows 2000 Unhandled exception message

If the OK button is clicked, the process exits. If Cancel is clicked, the system defined debugger
process (specified by the Debugger’s value in the registry path referred to earlier) is launched.

Chapter 3: System Mechanisms 117
EXPERIMENT: Unhandled Exceptions
To see a sample Dr. Watson log file, download and run the program Accvio.exe, which
you can download from www.sysinternals.com/windowsinternals.shtml. This program
generates a memory access violation by attempting to write to address 0, which is always
an invalid address in Windows processes. (See Table 7-6 in Chapter 7.)

1. Run the Registry Editor, and locate HKLM\SOFTWARE\ Microsoft\Windows
NT\CurrentVersion\AeDebug.

2. If the Debugger value is “drwtsn32 -p %ld -e %ld –g”, your system is set up to run
Dr. Watson as the default debugger. Proceed to step 4.

3. If the value of Debugger was not set up to run Drwtsn32.exe, you can still test
Dr. Watson by temporarily installing it and then restoring your previous debug-
ger settings:

a. Save the current value somewhere (for example, in a Notepad file or in the
current paste buffer).

b. Select Run from the taskbar Start menu, and then type drwtsn32 –i. (This
initializes the Debugger field to run Dr. Watson.)

3. Run the test program Accvio.exe.

4. You should see one of the message boxes described earlier (depending on which
version of Windows you are running).

5. If you have the default Dr. Watson settings, you should now be able to examine the
log file and dump file in the dump file directory. To see the configuration settings
for Dr. Watson, run drwtsn32 with no additional arguments. (Select Run from the
Start menu, and then type drwtsn32.)

6. Alternatively, in the list of Application Errors displayed by Dr. Watson, click on the
last entry and then click the View button—the portion of the Dr. Watson log file
containing the details of the access violation from Accvio.exe will be displayed.
(For details on the log file format, open the help in Dr. Watson and select Dr. Wat-
son Log File Overview.)

7. If the original value of Debugger wasn’t the default Dr. Watson settings, restore the
saved value from step 1.

As another experiment, try changing the value of Debugger to another program, such as
Notepad.exe (Notepad editor) or Sol.exe (Solitaire). Rerun Accvio.exe, and notice that
whatever program is specified in the Debugger value is run—that is, there’s no validation
that the program defined in Debugger is actually a debugger. Make sure you restore your
registry settings. (As noted in step 3b, to reset to the system default Dr. Watson settings,
type drwtsn32 –i in the Run dialog box or at a command prompt.)

118 Microsoft Windows Internals, Fourth Edition
Windows Error Reporting

Windows XP and Windows Server 2003 have a new, more sophisticated error-reporting
mechanism called Windows Error Reporting that automates the submission of both user-
mode process crashes as well as kernel-mode system crashes. (For a description of how this
applies to system crashes, see Chapter 14).

Windows Error Reporting can be configured by going to My Computer, selecting Properties,
Advanced, and then Error Reporting (which brings up the dialog box shown in Figure 3-12)
or by local or domain group policy settings under System, Error Reporting. These settings are
stored in the registry under the key HKLM\Software\Microsoft\PCHealth\ErrorReporting.

Figure 3-12 Error Reporting Configuration dialog box

When an unhandled exception is caught by the unhandled exception filter (described in the
previous section), an initial check is made to see whether or not to initiate Windows Error
Reporting. If the registry value HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVer-
sion\AeDebug\Auto is set to zero or the Debugger string contains the text “Drwtsn32”, the
unhandled exception filter loads \Windows\System32\Faultrep.dll into the failing process
and calls its ReportFault function. ReportFault then checks the error-reporting configuration
stored under HKLM\Software\Microsoft\PCHealth\ErrorReporting to see whether this pro-
cess crash should be reported, and if so, how. In the normal case, ReportFault creates a process
running \Windows\System32\Dwwin.exe, which displays a message box announcing the pro-
cess crash along with an option to submit the error report to Microsoft as seen in Figure 3-13.

Chapter 3: System Mechanisms 119
Figure 3-13 Windows Error Reporting dialog box

If the Send Error Report button is clicked, the error report (a minidump and a text file with
details on the DLL version numbers loaded in the process) is sent to Microsoft’s online crash
analysis server, Watson.Microsoft.com. (Unlike kernel mode system crashes, in this situation
there is no way to find out whether a solution is available at the time of the report submission.)
Then the unhandled exception filter creates a process to run the system-defined debugger (nor-
mally Drwtsn32.exe), which by default creates its own dump file and log entry. Unlike Windows
2000, the dump file is a minidump, not a full dump. So, in the case where a full process memory
dump is needed to debug a failing application, you can change the configuration of Dr. Watson
by running it with no command-line arguments as described in the previous section.

In environments where systems are not connected to the Internet or where the administrator
wants to control which error reports are submitted to Microsoft, the destination for the error
report can be configured to be an internal file server. Microsoft provides to qualified custom-
ers a tool set called Corporate Error Reporting that understands the directory structure cre-
ated by Windows Error Reporting and provides the administrator with the option to take
selective error reports and submit them to Microsoft. (For more information, see http://
www.microsoft.com/resources/satech/cer.)

System Service Dispatching

As Figure 3-1 illustrated, the kernel’s trap handlers dispatch interrupts, exceptions, and sys-
tem service calls. In the preceding sections, you’ve seen how interrupt and exception handling
work; in this section, you’ll learn about system services. A system service dispatch is triggered
as a result of executing an instruction assigned to system service dispatching. The instruction
that Windows uses for system service dispatching depends on the processor on which it’s exe-
cuting.

32-Bit System Service Dispatching

On x86 processors prior to the Pentium II, Windows uses the int 0x2e instruction (46) deci-
mal, which results in a trap. Windows fills in entry 46 in the IDT to point to the system service

120 Microsoft Windows Internals, Fourth Edition
dispatcher. (Refer to Table 3-1.) The trap causes the executing thread to transition into kernel
mode and enter the system service dispatcher. A numeric argument passed in the EAX proces-
sor register indicates the system service number being requested. The EBX register points to
the list of parameters the caller passes to the system service.

On x86 Pentium II processors and higher, Windows uses the special sysenter instruction,
which Intel defined specifically for fast system service dispatches. To support the instruction,
Windows stores at boot time the address of the kernel’s system service dispatcher routine in
a register associated with the instruction. The execution of the instruction causes the change
to kernel-mode and execution of the system service dispatcher. The system service number is
passed in the EAX processor register, and the EDX register points to the list of caller argu-
ments. To return to user-mode, the system service dispatcher usually executes the sysexit
instruction. (In some cases, like when the single-step flag is enabled on the processor, the sys-
tem service dispatcher uses the iretd instruction instead.)

On K6 and higher 32-bit AMD processors, Windows uses the special syscall instruction, which
functions similar to the x86 sysenter instruction, with Windows configuring a syscall-associ-
ated processor register with the address of the kernel’s system service dispatcher. The system
call number is passed in the EAX register, and the stack stores the caller arguments. After com-
pleting the dispatch, the kernel executes the sysret instruction.

At boot time, Windows detects the type of processor on which it’s executing and sets up the
appropriate system call code to be used. The system service code for NtReadFile in user mode
looks like this:

ntdll!NtReadFile:

77f5bfa8 b8b7000000 mov eax,0xb7

77f5bfad ba0003fe7f mov edx,0x7ffe0300

77f5bfb2 ffd2 call edx

77f5bfb4 c22400 ret 0x24

The system service number is 0xb7 (183 in decimal) and the call instruction executes the sys-
tem service dispatch code set up by the kernel, which in this example is at address
0x7ffe0300. Because this was taken from a Pentium M, it uses sysenter:

SharedUserData!SystemCallStub:

7ffe0300 8bd4 mov edx,esp

7ffe0302 0f34 sysenter

7ffe0304 c3 ret

64-Bit System Service Dispatching

On the x64 architecture, Windows uses the syscall instruction, which functions like the AMD
K6’s syscall instruction, for system service dispatching, passing the system call number in the
EAX register, the first four parameters in registers, and any parameters beyond those four on
the stack:

Chapter 3: System Mechanisms 121
ntdll!NtReadFile:

00000000`77f9fc60 4c8bd1 mov r10,rcx

00000000`77f9fc63 b8bf000000 mov eax,0xbf

00000000`77f9fc68 0f05 syscall

00000000`77f9fc6a c3 ret

On the IA64 architecture, Windows uses the epc (Enter Privileged Mode) instruction. The first
eight system call arguments are passed in registers, and the rest are passed on the stack.

Kernel-Mode System Service Dispatching

As Figure 3-14 illustrates, the kernel uses this argument to locate the system service informa-
tion in the system service dispatch table. This table is similar to the interrupt dispatch table
described earlier in the chapter except that each entry contains a pointer to a system service
rather than to an interrupt handling routine.

Note System service numbers can change between service packs—Microsoft occasionally
adds or removes system services, and the system service numbers are generated automatically
as part of a kernel compile.

Figure 3-14 System service exceptions

The system service dispatcher, KiSystemService, copies the caller’s arguments from the thread’s
user-mode stack to its kernel-mode stack (so that the user can’t change the arguments as the
kernel is accessing them), and then executes the system service. If the arguments passed to a
system service point to buffers in user space, these buffers must be probed for accessibility
before kernel-mode code can copy data to or from them.

As you’ll see in Chapter 6, each thread has a pointer to its system service table. Windows has
two built-in system service tables, but up to four are supported. The system service dispatcher
determines which table contains the requested service by interpreting a 2-bit field in the 32-

System
service call

System
service

dispatcher System service 2

System service
dispatch table

Kernel mode

User mode

0

1

2

3

n

•
•

•

122 Microsoft Windows Internals, Fourth Edition
bit system service number as a table index. The low 12 bits of the system service number serve
as the index into the table specified by the table index. The fields are shown in Figure 3-15.

Figure 3-15 System service number to system service translation

Service Descriptor Tables

A primary default array table, KeServiceDescriptorTable, defines the core executive system ser-
vices implemented in Ntosrknl.exe. The other table array, KeServiceDescriptorTableShadow,
includes the Windows USER and GDI services implemented in the kernel-mode part of the
Windows subsystem, Win32k.sys. The first time a Windows thread calls a Windows USER or
GDI service, the address of the thread’s system service table is changed to point to a table that
includes the Windows USER and GDI services. The KeAddSystemServiceTable function allows
Win32k.sys and other device drivers to add system service tables. If you install Internet Infor-
mation Services (IIS) on Windows 2000, its support driver (Spud.sys) upon loading defines
an additional service table, leaving only one left for definition by third parties. With the excep-
tion of the Win32k.sys service table, a service table added with KeAddSystemServiceTable is
copied into both the KeServiceDescriptorTable array and the KeServiceDescriptorTableShadow
array. Windows supports the addition of only two system service tables beyond the core and
Win32 tables.

Table Index

Index into table System service number

31 13 11 0

0

1

2

3

0

1

2

3

Native API

Unused

IIS Spud Driver

Native API

Win32k.sys API

IIS Spud Driver

KeServiceDescriptorTable KeServiceDescriptorTableShadow

Chapter 3: System Mechanisms 123
Note Windows Server 2003 service pack 1 and higher does not support adding additional
system service tables beyond that added by Win32k.sys, so adding system service tables is not
a way to extend the functionality of those systems.

The system service dispatch instructions for Windows executive services exist in the system
library Ntdll.dll. Subsystem DLLs call functions in Ntdll to implement their documented
functions. The exception is Windows USER and GDI functions, in which the system service
dispatch instructions are implemented directly in User32.dll and Gdi32.dll—there is no
Ntdll.dll involved. These two cases are shown in Figure 3-16.

Figure 3-16 System service dispatching

As shown in Figure 3-16, the Windows WriteFile function in Kernel32.dll calls the NtWriteFile
function in Ntdll.dll, which in turn executes the appropriate instruction to cause a system ser-
vice trap, passing the system service number representing NtWriteFile. The system service dis-
patcher (function KiSystemService in Ntoskrnl.exe) then calls the real NtWriteFile to process

Windows kernel APIs
Windows USER and

GDI APIs

Windows
application

WriteFile in
Kernel32.dll

NtWriteFile in
Ntdll.dll

Windows-
specific

Used by all
subsystems

Gdi32.dll
or User32.dll

Application

Windows-
specific

KiSystemService
in Ntoskrnl.exe

NtWriteFile in
Ntoskrnl.exe

Service entry point
in Win32k.sys

KiSystemService in
Ntoskrnl.exe

Software interruptSoftware interrupt

User mode

Kernel mode

Call USER or
GDI service(...)

Int 2E
Return to caller

Call Windows
routine

Dismiss interrupt

Do the operation
Return to caller

Call WriteFile(...)

Call NtWriteFile
Return to caller

Int 2E
Return to caller

Call NtWriteFile
Dismiss interrupt

Do the operation
Return to caller

124 Microsoft Windows Internals, Fourth Edition
the I/O request. For Windows USER and GDI functions, the system service dispatch calls
functions in the loadable kernel-mode part of the Windows subsystem, Win32k.sys.

EXPERIMENT: Viewing System Service Activity
You can monitor system service activity by watching the System Calls/Sec performance
counter in the System object. Run the Performance tool, and in chart view, click the Add
button to add a counter to the chart; select the System object, select the System Calls/
Sec counter, and then click the Add button to add the counter to the chart.

Object Manager
As mentioned in Chapter 2, Windows implements an object model to provide consistent and
secure access to the various internal services implemented in the executive. This section
describes the Windows object manager, the executive component responsible for creating,
deleting, protecting, and tracking objects. The object manager centralizes resource control
operations that otherwise would be scattered throughout the operating system. It was
designed to meet the goals listed on later in the chapter.

EXPERIMENT: Exploring the Object Manager
Throughout this section, you’ll find experiments that show you how to peer into the
object manager database. These experiments use the following tools, which you should
become familiar with if you aren’t already:

■ Winobj (available from www.sysinternals.com) displays the internal object man-
ager’s namespace. There is also a version of Winobj in the Platform SDK (in \Pro-
gram Files\Microsoft Platform SDK\Bin\Winnt\Winobj.exe), but the Winobj
from www.sysinternals.com displays more accurate information about objects (such
as the reference count, the number of open handles, security descriptors, and so
forth).

■ Process Explorer and Handle from www.sysinternals.com (introduced in
Chapter 1) displays the open handles for a process.

■ Oh.exe (available in Windows resource kits) displays the open handles for a pro-
cess, but it requires a global flag to be set in order to operate.

■ The Openfiles /query command (in Windows XP and Windows Server 2003) dis-
plays the open handles for a process, but it requires a global flag to be set in order
to operate.

■ The kernel debugger !handle command displays the open handles for a process.

Chapter 3: System Mechanisms 125
The object viewer provides a way to traverse the namespace that the object manager
maintains. (As we’ll explain later, not all objects have names.) Try running the WinObj
object manager utility from www.sysinternals.com and examining the layout, shown here:

As noted previously, both the OH utility and the Openfiles /query command require that
a Windows global flag called maintain objects list be enabled. (See the “Windows Global
Flags” section later in this chapter for more details about global flags.) OH will set the
flag if it is not set. If you type Openfiles /Local, it will tell you whether the flag is
enabled. You can enable it with the Openfiles /Local ON command. In either case, you
must reboot the system for the setting to take effect. Neither Process Explorer nor Han-
dle from www.sysinternals.com require object tracking to be turned on because they use
a device driver to obtain the information.

The object manager was designed to meet the following goals:

■ Provide a common, uniform mechanism for using system resources

■ Isolate object protection to one location in the operating system so that C2 security com-
pliance can be achieved

■ Provide a mechanism to charge processes for their use of objects so that limits can be
placed on the usage of system resources

■ Establish an object-naming scheme that can readily incorporate existing objects, such as
the devices, files, and directories of a file system, or other independent collections of
objects

126 Microsoft Windows Internals, Fourth Edition
■ Support the requirements of various operating system environments, such as the ability
of a process to inherit resources from a parent process (needed by Windows and POSIX)
and the ability to create case-sensitive filenames (needed by POSIX)

■ Establish uniform rules for object retention (that is, for keeping an object available until
all processes have finished using it)

Internally, Windows has two kinds of objects: executive objects and kernel objects. Executive
objects are objects implemented by various components of the executive (such as the process
manager, memory manager, I/O subsystem, and so on). Kernel objects are a more primitive
set of objects implemented by the Windows kernel. These objects are not visible to user-mode
code but are created and used only within the executive. Kernel objects provide fundamental
capabilities, such as synchronization, on which executive objects are built. Thus, many execu-
tive objects contain (encapsulate) one or more kernel objects, as shown in Figure 3-17.

Details about the structure of kernel objects and how they are used to implement synchroni-
zation are given later in this chapter. In the remainder of this section, we’ll focus on how the
object manager works and on the structure of executive objects, handles, and handle tables.
Here we’ll just briefly describe how objects are involved in implementing Windows security
access checking; we’ll cover this topic thoroughly in Chapter 8.

Figure 3-17 Executive objects that contain kernel objects

Executive Objects

Each Windows environment subsystem projects to its applications a different image of the
operating system. The executive objects and object services are primitives that the environ-
ment subsystems use to construct their own versions of objects and other resources.

Kernel object

Name
HandleCount
ReferenceCount
Type

Executive objectOwned by the
executive

Owned by the
kernel

Owned by the
object manager

Chapter 3: System Mechanisms 127
Executive objects are typically created either by an environment subsystem on behalf of a user
application or by various components of the operating system as part of their normal operation.
For example, to create a file, a Windows application calls the Windows CreateFile function, imple-
mented in the Windows subsystem DLL Kernel32.dll. After some validation and initialization,
CreateFile in turn calls the native Windows service NtCreateFile to create an executive file object.

The set of objects an environment subsystem supplies to its applications might be larger or
smaller than the set the executive provides. The Windows subsystem uses executive objects to
export its own set of objects, many of which correspond directly to executive objects. For
example, the Windows mutexes and semaphores are directly based on executive objects
(which are in turn based on corresponding kernel objects). In addition, the Windows sub-
system supplies named pipes and mailslots, resources that are based on executive file objects.
Some subsystems, such as POSIX, don’t support objects as objects at all. The POSIX sub-
system uses executive objects and services as the basis for presenting POSIX-style processes,
pipes, and other resources to its applications.

Table 3-3 lists the primary objects the executive provides and briefly describes what they rep-
resent. You can find further details on executive objects in the chapters that describe the
related executive components (or in the case of executive objects directly exported to Win-
dows, in the Windows API reference documentation).

Note The executive implements a total of 27 object types in Windows 2000 and 29 on Win-
dows XP and Windows Server 2003. (These newer Windows versions add the DebugObject and
KeyedEvent objects.) Many of these objects are for use only by the executive component that
defines them and are not directly accessible by Windows APIs. Examples of these objects
include Driver, Device, and EventPair.

Table 3-3 Executive Objects Exposed to the Windows API

Object Type Represents

Symbolic link A mechanism for referring to an object name indirectly.

Process The virtual address space and control information necessary for the execution
of a set of thread objects.

Thread An executable entity within a process.

Job A collection of processes manageable as a single entity through the job.

Section A region of shared memory (known as a file mapping object in Windows).

File An instance of an opened file or an I/O device.

Access token The security profile (security ID, user rights, and so on) of a process or a thread.

Event An object with a persistent state (signaled or not signaled) that can be used for
synchronization or notification.

Semaphore A counter that provides a resource gate by allowing some maximum number of
threads to access the resources protected by the semaphore.

Mutex* A synchronization mechanism used to serialize access to a resource.

Timer A mechanism to notify a thread when a fixed period of time elapses.

128 Microsoft Windows Internals, Fourth Edition
Note Externally in the Windows API, mutants are called mutexes. Internally, the kernel
object that underlies mutexes is called a mutant.

Object Structure

As shown in Figure 3-18, each object has an object header and an object body. The object man-
ager controls the object headers, and the owning executive components control the object
bodies of the object types they create. In addition, each object header points to the list of pro-
cesses that have the object open and to a special object called the type object that contains
information common to each instance of the object.

Figure 3-18 Structure of an object

IoCompletion A method for threads to enqueue and dequeue notifications of the completion
of I/O operations (known as an I/O completion port in the Windows API).

Key A mechanism to refer to data in the registry. Although keys appear in the
object manager namespace, they are managed by the configuration manager,
in a way similar to that in which file objects are managed by file system drivers.
Zero or more key values are associated with a key object; key values contain
data about the key.

WindowStation An object that contains a clipboard, a set of global atoms, and a group of desk-
top objects.

Desktop An object contained within a window station. A desktop has a logical display
surface and contains windows, menus, and hooks.

Table 3-3 Executive Objects Exposed to the Windows API

Object Type Represents

Object name
Object directory
Security descriptor
Quota charges
Open handle count
Open handles list
Object type
Reference count

Process
1

Process
2

Process
3

Type name
Pool type
Default quota charges
Access types
Generic access rights mapping
Synchronizable? (Y/N)
Methods:

Open, close, delete,
parse, security,
query name

Object header

Object body

Type object

Object-specific data

Chapter 3: System Mechanisms 129
Object Headers and Bodies

The object manager uses the data stored in an object’s header to manage objects without
regard to their type. Table 3-4 briefly describes the object header attributes.

In addition to an object header, each object has an object body whose format and contents are
unique to its object type; all objects of the same type share the same object body format. By
creating an object type and supplying services for it, an executive component can control the
manipulation of data in all object bodies of that type.

The object manager provides a small set of generic services that operate on the attributes
stored in an object’s header and can be used on objects of any type (although some generic
services don’t make sense for certain objects). These generic services, some of which the Win-
dows subsystem makes available to Windows applications, are listed in Table 3-5.

Although these generic object services are supported for all object types, each object has its
own create, open, and query services. For example, the I/O system implements a create file
service for its file objects, and the process manager implements a create process service for its
process objects. Although a single create object service could have been implemented, such a
routine would have been quite complicated, because the set of parameters required to initial-
ize a file object, for example, differs markedly from that required to initialize a process object.
Also, the object manager would have incurred additional processing overhead each time a
thread called an object service to determine the type of object the handle referred to and to
call the appropriate version of the service. For these reasons and others, the create, open, and
query services are implemented separately for each object type.

Table 3-4 Standard Object Header Attributes

Attribute Purpose

Object name Makes an object visible to other processes for sharing

Object directory Provides a hierarchical structure in which to store object names

Security descriptor Determines who can use the object and what they can do with it (Note: it
might be null for objects without a name.)

Quota charges Lists the resource charges levied against a process when it opens a handle
to the object

Open handle count Counts the number of times a handle has been opened to the object

Open handles list Points to the list of processes that have opened handles to the object (not
present for all objects)

Object type Points to a type object that contains attributes common to objects of this
type

Reference count Counts the number of times a kernel-mode component has referenced
the address of the object

130 Microsoft Windows Internals, Fourth Edition
Type Objects

Object headers contain data that is common to all objects but that can take on different values
for each instance of an object. For example, each object has a unique name and can have a
unique security descriptor. However, objects also contain some data that remains constant for
all objects of a particular type. For example, you can select from a set of access rights specific
to a type of object when you open a handle to objects of that type. The executive supplies ter-
minate and suspend access (among others) for thread objects and read, write, append, and
delete access (among others) for file objects. Another example of an object-type-specific
attribute is synchronization, which is described shortly.

To conserve memory, the object manager stores these static, object-type-specific attributes
once when creating a new object type. It uses an object of its own, a type object, to record this
data. As Figure 3-19 illustrates, if the object-tracking debug flag (described in the “Windows
Global Flags” section later in this chapter) is set, a type object also links together all objects of
the same type (in this case the Process type), allowing the object manager to find and enumer-
ate them, if necessary.

Figure 3-19 Process objects and the process type object

Table 3-5 Generic Object Services

Service Purpose

Close Closes a handle to an object

Duplicate Shares an object by duplicating a handle and giving it to another
process

Query object Gets information about an object’s standard attributes

Query security Gets an object’s security descriptor

Set security Changes the protection on an object

Wait for a single object Synchronizes a thread’s execution with one object

Wait for multiple objects Synchronizes a thread’s execution with multiple objects

Process
type

object

Process
Object 1

Process
Object 2

Process
Object 3

Process
Object 4

Chapter 3: System Mechanisms 131
EXPERIMENT: Viewing Object Headers and Type Objects
You can see the list of type objects declared to the object manager with the Winobj tool
from www.sysinternals.com. After running Winobj, open the \ObjectTypes directory, as
shown here:

You can look at the process object type data structure in the kernel debugger by first
identifying a process object with the !process command:

kd> !process 0 0

**** NT ACTIVE PROCESS DUMP ****

PROCESS 8a4ce668 SessionId: none Cid: 0004 Peb: 00000000 ParentCid: 0000

DirBase: 00039000 ObjectTable: e1001c88 HandleCount: 474.

Image: System

Then execute the !object command with the process object address as the argument:

kd> !object 8a4ce668

Object: 8a4ce668 Type: (8a4ceca0) Process

ObjectHeader: 8a4ce650

HandleCount: 2 PointerCount: 89

Notice that the object header starts 0x18 (24 decimal) bytes prior to the start of the
object body. You can view the object header with this command:

kd> dt _object_header 8a4ce650

nt!_OBJECT_HEADER

+0x000 PointerCount : 79

+0x004 HandleCount : 2

+0x004 NextToFree : 0x00000002

+0x008 Type : 0x8a4ceca0

+0x00c NameInfoOffset : 0 ’’

+0x00d HandleInfoOffset : 0 ’’

+0x00e QuotaInfoOffset : 0 ’’

132 Microsoft Windows Internals, Fourth Edition
+0x00f Flags : 0x22 ’"‘

+0x010 ObjectCreateInfo : 0x80545620

+0x010 QuotaBlockCharged : 0x80545620

+0x014 SecurityDescriptor : 0xe10001dc

+0x018 Body : _QUAD

Now look at the object type data structure by obtaining its address from the Type field
of the object header data structure:

kd> dt _object_type 8a4ceca0

ntdll!_OBJECT_TYPE

+0x000 Mutex : _ERESOURCE

+0x038 TypeList : _LIST_ENTRY [0x8a4cecd8 - 0x8a4cecd8]

+0x040 Name : _UNICODE_STRING “Process"

+0x048 DefaultObject : (null)

+0x04c Index : 5

+0x050 TotalNumberOfObjects : 0x30

+0x054 TotalNumberOfHandles : 0x1b4

+0x058 HighWaterNumberOfObjects : 0x3f

+0x05c HighWaterNumberOfHandles : 0x1b8

+0x060 TypeInfo : _OBJECT_TYPE_INITIALIZER

+0x0ac Key : 0x636f7250

+0x0b0 ObjectLocks : [4] _ERESOURCE

The output shows that the object type structure includes the name of the object type,
tracks the total number of active objects of that type, and tracks the peak number of
handles and objects of that type. The TypeInfo field stores the pointer to the data struc-
ture that stores attributes common to all objects of the object type as well as pointers to
the object type’s methods:

kd> dt _object_type_initializer 8a4ceca0+60

ntdll!_OBJECT_TYPE_INITIALIZER

+0x000 Length : 0x4c

+0x002 UseDefaultObject : 0 ’’

+0x003 CaseInsensitive : 0 ’’

+0x004 InvalidAttributes : 0xb0

+0x008 GenericMapping : _GENERIC_MAPPING

+0x018 ValidAccessMask : 0x1f0fff

+0x01c SecurityRequired : 0x1 ’’

+0x01d MaintainHandleCount : 0 ’’

+0x01e MaintainTypeList : 0 ’’

+0x020 PoolType : 0 (NonPagedPool)

+0x024 DefaultPagedPoolCharge : 0x1000

+0x028 DefaultNonPagedPoolCharge : 0x288

+0x02c DumpProcedure : (null)

+0x030 OpenProcedure : (null)

+0x034 CloseProcedure : (null)

+0x038 DeleteProcedure : 0x805abe6e nt!PspProcessDelete+0

+0x03c ParseProcedure : (null)

+0x040 SecurityProcedure : 0x805cf682 nt!SeDefaultObjectMethod+0

+0x044 QueryNameProcedure : (null)

+0x048 OkayToCloseProcedure : (null)

Chapter 3: System Mechanisms 133
Type objects can’t be manipulated from user mode because the object manager supplies no
services for them. However, some of the attributes they define are visible through certain
native services and through Windows API routines. The attributes stored in the type objects
are described in Table 3-6.

Synchronization, one of the attributes visible to Windows applications, refers to a thread’s
ability to synchronize its execution by waiting for an object to change from one state to
another. A thread can synchronize with executive job, process, thread, file, event, semaphore,
mutex, and timer objects. Other executive objects don’t support synchronization. An object’s
ability to support synchronization is based on whether the object contains an embedded dis-
patcher object, a kernel object that is covered in the section “Low-IRQL Synchronization” later
in this chapter.

Object Methods

The last attribute in Table 3-6, methods, comprises a set of internal routines that are similar to
C++ constructors and destructors—that is, routines that are automatically called when an
object is created or destroyed. The object manager extends this idea by calling an object
method in other situations as well, such as when someone opens or closes a handle to an
object or when someone attempts to change the protection on an object. Some object types
specify methods, whereas others don’t, depending on how the object type is to be used.

When an executive component creates a new object type, it can register one or more methods
with the object manager. Thereafter, the object manager calls the methods at well-defined
points in the lifetime of objects of that type, usually when an object is created, deleted, or mod-
ified in some way. The methods that the object manager supports are listed in Table 3-7.

Table 3-6 Type Object Attributes

Attribute Purpose

Type name The name for objects of this type (“process,” “event,” “port,”
and so on)

Pool type Indicates whether objects of this type should be allocated from
paged or nonpaged memory

Default quota charges Default paged and nonpaged pool values to charge to process
quotas

Access types The types of access a thread can request when opening a han-
dle to an object of this type (“read,” “write,” “terminate,” “sus-
pend,” and so on)

Generic access rights mapping A mapping between the four generic access rights (read, write,
execute, and all) to the type-specific access rights

Synchronization Indicates whether a thread can wait for objects of this type

Methods One or more routines that the object manager calls automati-
cally at certain points in an object’s lifetime

134 Microsoft Windows Internals, Fourth Edition
The object manager calls the open method whenever it creates a handle to an object, which it
does when an object is created or opened. However, only one object type, the Windowstation,
defines an open method. The Windowstation object type requires an open method so that
Win32k.sys can share a piece of memory with the process that serves as a desktop-related
memory pool.

An example of the use of a close method occurs in the I/O system. The I/O manager registers
a close method for the file object type, and the object manager calls the close method each
time it closes a file object handle. This close method checks whether the process that is clos-
ing the file handle owns any outstanding locks on the file and, if so, removes them. Checking
for file locks isn’t something the object manager itself could or should do.

The object manager calls a delete method, if one is registered, before it deletes a temporary
object from memory. The memory manager, for example, registers a delete method for the sec-
tion object type that frees the physical pages being used by the section. It also verifies that any
internal data structures the memory manager has allocated for a section are deleted before the
section object is deleted. Once again, the object manager can’t do this work because it knows
nothing about the internal workings of the memory manager. Delete methods for other types
of objects perform similar functions.

The parse method (and similarly, the query name method) allows the object manager to relin-
quish control of finding an object to a secondary object manager if it finds an object that exists
outside the object manager namespace. When the object manager looks up an object name, it
suspends its search when it encounters an object in the path that has an associated parse
method. The object manager calls the parse method, passing to it the remainder of the object
name it is looking for. There are two namespaces in Windows in addition to the object man-
ager’s: the registry namespace, which the configuration manager implements, and the file sys-
tem namespace, which the I/O manager implements with the aid of file system drivers. (See
Chapter 5 for more information on the configuration manager and Chapter 9 for more about
the I/O manager and file system drivers.)

Table 3-7 Object Methods

Method When Method Is Called

Open When an object handle is opened

Close When an object handle is closed

Delete Before the object manager deletes an object

Query name When a thread requests the name of an object, such as a file, that exists in a
secondary object namespace

Parse When the object manager is searching for an object name that exists in a
secondary object namespace

Security When a process reads or changes the protection of an object, such as a file, that
exists in a secondary object namespace

Chapter 3: System Mechanisms 135
For example, when a process opens a handle to the object named \Device\Floppy0\
docs\resume.doc, the object manager traverses its name tree until it reaches the device object
named Floppy0. It sees that a parse method is associated with this object, and it calls the
method, passing to it the rest of the object name it was searching for—in this case, the string
\docs\resume.doc. The parse method for device objects is an I/O routine because the I/O
manager defines the device object type and registers a parse method for it. The I/O manager’s
parse routine takes the name string and passes it to the appropriate file system, which finds
the file on the disk and opens it.

The security method, which the I/O system also uses, is similar to the parse method. It is
called whenever a thread tries to query or change the security information protecting a file.
This information is different for files than for other objects because security information is
stored in the file itself rather than in memory. The I/O system, therefore, must be called to
find the security information and read or change it.

Object Handles and the Process Handle Table

When a process creates or opens an object by name, it receives a handle that represents its
access to the object. Referring to an object by its handle is faster than using its name because
the object manager can skip the name lookup and find the object directly. Processes can also
acquire handles to objects by inheriting handles at process creation time (if the creator speci-
fies the inherit handle flag on the CreateProcess call and the handle was marked as inheritable,
either at the time it was created or afterward by using the Windows SetHandleInformation
function) or by receiving a duplicated handle from another process. (See the Windows
DuplicateHandle function.)

All user-mode processes must own a handle to an object before their threads can use the
object. Using handles to manipulate system resources isn’t a new idea. C and Pascal (and
other language) run-time libraries, for example, return handles to opened files. Handles serve
as indirect pointers to system resources; this indirection keeps application programs from fid-
dling directly with system data structures.

Note Executive components and device drivers can access objects directly because they are
running in kernel mode and therefore have access to the object structures in system memory.
However, they must declare their usage of the object by incrementing the reference count so
that the object won’t be deallocated while it’s still being used. (See the section “Object Reten-
tion” later in this chapter for more details.)

Object handles provide additional benefits. First, except for what they refer to, there is no differ-
ence between a file handle, an event handle, and a process handle. This similarity provides a con-
sistent interface to reference objects, regardless of their type. Second, the object manager has the
exclusive right to create handles and to locate an object that a handle refers to. This means that
the object manager can scrutinize every user-mode action that affects an object to see whether
the security profile of the caller allows the operation requested on the object in question.

136 Microsoft Windows Internals, Fourth Edition
EXPERIMENT: Viewing Open Handles
Run Process Explorer, and make sure the lower pane is enabled and configured to show
open handles. (Click on View, Lower Pane View, and then Handles). Then open a com-
mand prompt and view the handle table for the new Cmd.exe process. You should see
an open file handle to the current directory. For example, assuming the current direc-
tory is C:\, Process Explorer shows the following:

If you then change the current directory with the CD command, you will see in Process
Explorer that the handle to the previous current directory is closed and a new handle is
opened to the new current directory. The previous handle is highlighted briefly in red,
and the new handle is highlighted in green. The duration of the highlight can be
adjusted by clicking Options and then Difference Highlight Duration.

Process Explorer’s differences highlighting feature makes it easy to see changes in the
handle table. For example, if a process is leaking handles, viewing the handle table with
Process Explorer can quickly show what handle or handles are being opened but not
closed. This information can assist the programmer to find the handle leak.

Chapter 3: System Mechanisms 137
You can also display the open handle table by using the command line Handle tool from
www.sysinternals.com. For example, note the following partial output of Handle examin-
ing the handle table for a Cmd.exe process before and after changing the directory:

C:\>handle -p cmd.exe

Handle v2.2

Copyright (C) 1997-2004 Mark Russinovich

Sysinternals - www.sysinternals.com

--

cmd.exe pid: 3184 BIGDAVID\dsolomon

b0: File C:\

C:\>cd windows

C:\WINDOWS>handle -p cmd.exe

.

.

cmd.exe pid: 3184 BIGDAVID\dsolomon

b4: File C:\WINDOWS

An object handle is an index into a process-specific handle table, pointed to by the executive
process (EPROCESS) block (described in Chapter 6). The first handle index is 4, the second
8, and so on. A process’s handle table contains pointers to all the objects that the process has
opened a handle to. Handle tables are implemented as a three-level scheme, similar to the way
that the x86 memory management unit implements virtual-to-physical address translation,
giving a maximum of more than 16,000,000 handles per process. (See Chapter 7 for details
about memory management in x86 systems.)

In Windows 2000, when a process is created, the object manager allocates the top level of the
handle table, which contains pointers to the middle-level tables; the middle level, which con-
tains the first array of pointers to subhandle tables; and the lowest level, which contains the
first subhandle table. Figure 3-20 illustrates the Windows 2000 handle table architecture. In
Windows 2000, the object manager treats the low 24 bits of an object handle’s value as three
8-bit fields that index into each of the three levels in the handle table. In Windows XP and
Windows Server 2003, only the lowest level handle table is allocated on process creation—the
other levels are created as needed. In Windows 2000, the subhandle table consists of 255
usable entries. In Windows XP and Windows Server 2003, the subhandle table consists of as
many entries as will fit in a page minus one entry that is used for handle auditing. For exam-
ple, for x86 systems a page is 4096 bytes, divided by the size of a handle table entry (8 bytes),
which is 512, minus 1, which is a total of 511 entries in the lowest level handle table. In Win-
dows XP and Windows Server 2003, the mid-level handle table contains a full page of pointers
to subhandle tables, so the number of subhandle tables depends on the size of the page and
the size of a pointer for the platform.

138 Microsoft Windows Internals, Fourth Edition
Figure 3-20 Windows 2000 process handle table architecture

EXPERIMENT: Creating the Maximum Number of Handles
The test program Testlimit from www.sysinternals.com/windowsinternals.shtml has an
option to open handles to an object until it cannot open any more handles. You can use
this to see how many handles can be created in a single process on your system. Because
handle tables are allocated from paged pool, you might run out of paged pool before you
hit the maximum number of handles that can be created in a single process. To see how
many handles you can create on your system, follow these steps:

1. Download the Testlimit zip file from the link just mentioned, and unzip it into a
directory.

2. Run Process Explorer, and click View and then System Information. Notice the
current and maximum size of paged pool. (To display the maximum pool size val-
ues, Process Explorer must be configured properly to access the symbols for the
kernel image, Ntoskrnl.exe.) Leave this system information display running so
that you can see pool utilization when you run the Testlimit program.

3. Open a command prompt.

4. Run the Testlimit program with the “-h” switch (do this by typing testlimit –h).
When Testlimit fails to open a new handle, it will display the total number of han-
dles it was able to create. If the number is less than approximately 16 million, you
are probably running out of paged pool before hitting the theoretical per-process
handle limit.

5. Close the command-prompt window; doing this will kill the Testlimit process,
thus closing all the open handles.

Process

Handle
table

Top-level
pointers

Middle-level
pointers

Subhandle
table

255

0

255

0

255

0

Chapter 3: System Mechanisms 139
As shown in Figure 3-21, on x86 systems, each handle entry consists of a structure with two
32-bit members: a pointer to the object (with flags), and the granted access mask. On 64-bit
systems, a handle table entry is 12 bytes long: a 64-bit pointer to the object header and a 32-
bit access mask. (Access masks are described in Chapter 8.)

On Windows 2000, the first 32-bit member contains both a pointer to the object header and
four flags. Because object headers are always 8-byte aligned, the low-order 3 bits of this field
are free for use as flags. An entry’s high bit is used as a lock. When the object manager trans-
lates a handle to an object pointer, it locks the handle entry while the translation is in
progress. Because all objects are located in the system address space, the high bit of the object
pointer is set. (The addresses are guaranteed to be higher than 0x80000000 even on systems
with the /3GB boot switch.) Thus, the object manager can keep the high bit clear when a han-
dle table entry is unlocked and, in the process of locking the entry, set the bit and obtain the
object’s correct pointer value. The object manager needs to lock a process’s entire handle
table, using a handle table lock associated with each process, only when the process creates a
new handle or closes an existing handle. In Windows XP and Windows Server 2003, the lock
bit is the low-order bit of the object pointer. The flag that was stored in this low-order bit in
Windows 2000 is now stored in an unused bit in the access mask.

Figure 3-21 Structure of a handle table entry

The first flag indicates whether the caller is allowed to close this handle. The second flag is the
inheritance designation—that is, it indicates whether processes created by this process will get
a copy of this handle in their handle tables. As already noted, handle inheritance can be spec-
ified on handle creation or later with the SetHandleInformation function. (This flag can also be
specified with the Windows SetHandleInformation function.) The third flag indicates whether
closing the object should generate an audit message. (This flag isn’t exposed to Windows—the
object manager uses it internally.)

System components and device drivers often need to open handles to objects that user-mode
applications shouldn’t have access to. This is done by creating handles in the kernel handle
table (referenced internally with the name ObpKernelHandleTable). The handles in this table
are accessible only from kernel mode and in any process context. This means that a kernel-
mode function can reference the handle in any process context with no performance impact.
The object manager recognizes references to handles from the kernel handle table when the

Audit on close

Protect from close

Inheritable

Lock

PIAPointer to object header

Access mask

32 bits

140 Microsoft Windows Internals, Fourth Edition
high bit of the handle is set—that is, when references to kernel-handle-table handles have val-
ues greater than 0x80000000. On Windows 2000, the kernel-handle table is an independent
handle table, but on Windows XP and Windows Server 2003 the kernel-handle table also
serves as the handle table for the System process.

EXPERIMENT: Viewing the Handle Table with the Kernel
Debugger
The !handle command in the kernel debugger takes three arguments:

!handle <handle index> <flags> <processid>

The handle index identifies the handle entry in the handle table. (Zero means display all
handles.) The first handle is index 4, the second 8, and so on. For example, typing !han-
dle 4 will show the first handle for the current process.

The flags you can specify are a bitmask, where bit 0 means display only the information
in the handle entry, bit 1 means display free handles (not just used handles), and bit 2
means display information about the object that the handle refers to. The following
command displays full details about the handle table for process ID 0x408:

kd> !handle 0 7 408

processor number 0

Searching for Process with Cid == 408

PROCESS 865f0790 SessionId: 0 Cid: 0408 Peb: 7ffdf000 ParentCid: 01dc

DirBase: 04fd3000 ObjectTable: 856ca888 TableSize: 21.

Image: i386kd.exe

Handle Table at e2125000 with 21 Entries in use

0000: free handle

0004: Object: e20da2e0 GrantedAccess: 000f001f

Object: e20da2e0 Type: (81491b80) Section

ObjectHeader: e20da2c8

HandleCount: 1 PointerCount: 1

0008: Object: 80b13330 GrantedAccess: 00100003

Object: 80b13330 Type: (81495100) Event

ObjectHeader: 80b13318

HandleCount: 1 PointerCount: 1

Object Security

When you open a file, you must specify whether you intend to read or to write. If you try to
write to a file that is opened for read access, you get an error. Likewise, in the executive, when
a process creates an object or opens a handle to an existing object, the process must specify a
set of desired access rights—that is, what it wants to do with the object. It can request either a set
of standard access rights (such as read, write, and execute) that apply to all object types or

Chapter 3: System Mechanisms 141
specific access rights that vary depending on the object type. For example, the process can
request delete access or append access to a file object. Similarly, it might require the ability to
suspend or terminate a thread object.

When a process opens a handle to an object, the object manager calls the security reference
monitor, the kernel-mode portion of the security system, sending it the process’s set of desired
access rights. The security reference monitor checks whether the object’s security descriptor
permits the type of access the process is requesting. If it does, the reference monitor returns a
set of granted access rights that the process is allowed, and the object manager stores them in
the object handle it creates. How the security system determines who gets access to which
objects is explored in Chapter 8.

Thereafter, whenever the process’s threads use the handle, the object manager can quickly
check whether the set of granted access rights stored in the handle corresponds to the usage
implied by the object service the threads have called. For example, if the caller asked for read
access to a section object but then calls a service to write to it, the service fails.

Object Retention

There are two types of objects: temporary and permanent. Most objects are temporary—that is,
they remain while they are in use and are freed when they are no longer needed. Permanent
objects remain until they are explicitly freed. Because most objects are temporary, the rest of this
section describes how the object manager implements object retention—that is, retaining tempo-
rary objects only as long as they are in use and then deleting them. Because all user-mode pro-
cesses that access an object must first open a handle to it, the object manager can easily track
how many of these processes, and even which ones, are using an object. Tracking these handles
represents one part in implementing retention. The object manager implements object retention
in two phases. The first phase is called name retention, and it is controlled by the number of open
handles to an object that exist. Every time a process opens a handle to an object, the object man-
ager increments the open handle counter in the object’s header. As processes finish using the
object and close their handles to it, the object manager decrements the open handle counter.
When the counter drops to 0, the object manager deletes the object’s name from its global
namespace. This deletion prevents new processes from opening a handle to the object.

The second phase of object retention is to stop retaining the objects themselves (that is, to
delete them) when they are no longer in use. Because operating system code usually accesses
objects by using pointers instead of handles, the object manager must also record how many
object pointers it has dispensed to operating system processes. It increments a reference count
for an object each time it gives out a pointer to the object; when kernel-mode components fin-
ish using the pointer, they call the object manager to decrement the object’s reference count.
The system also increments the reference count when it increments the handle count, and
likewise decrements the reference count when the handle count decrements, because a han-
dle is also a reference to the object that must be tracked. (For further details on object reten-
tion, see the DDK documentation on the functions ObReferenceObjectByPointer and
ObDereferenceObject.)

142 Microsoft Windows Internals, Fourth Edition
Figure 3-22 illustrates two event objects that are in use. Process A has the first event open. Pro-
cess B has both events open. In addition, the first event is being referenced by some kernel-
mode structure; thus, the reference count is 3. So even if processes A and B closed their han-
dles to the first event object, it would continue to exist because its reference count is 1. How-
ever, when process B closes its handle to the second event object, the object would be
deallocated.

Figure 3-22 Handles and reference counts

So even after an object’s open handle counter reaches 0, the object’s reference count might
remain positive, indicating that the operating system is still using the object. Ultimately, when
the reference count drops to 0, the object manager deletes the object from memory.

Because of the way object retention works, an application can ensure that an object and its
name remain in memory simply by keeping a handle open to the object. Programmers who
write applications that contain two or more cooperating processes need not be concerned
that one process might delete an object before the other process has finished using it. In addi-
tion, closing an application’s object handles won’t cause an object to be deleted if the operat-
ing system is still using it. For example, one process might create a second process to execute
a program in the background; it then immediately closes its handle to the process. Because
the operating system needs the second process to run the program, it maintains a reference to
its process object. Only when the background program finishes executing does the object
manager decrement the second process’s reference count and then delete it.

Other structure

HandleCount=1
ReferenceCount=1

Event object

HandleCount=2
ReferenceCount=3

Event object

Handle table

Process A System space

Process B

Handle table

Handles

DuplicateHandle

Index

Chapter 3: System Mechanisms 143
Resource Accounting

Resource accounting, like object retention, is closely related to the use of object handles. A
positive open handle count indicates that some process is using that resource. It also indicates
that some process is being charged for the memory the object occupies. When an object’s han-
dle count and reference count drop to 0, the process that was using the object should no
longer be charged for it.

Many operating systems use a quota system to limit processes’ access to system resources.
However, the types of quotas imposed on processes are sometimes diverse and complicated,
and the code to track the quotas is spread throughout the operating system. For example, in
some operating systems, an I/O component might record and limit the number of files a pro-
cess can open, whereas a memory component might impose a limit on the amount of memory
a process’s threads can allocate. A process component might limit users to some maximum
number of new processes they can create or a maximum number of threads within a process.
Each of these limits is tracked and enforced in different parts of the operating system.

In contrast, the Windows object manager provides a central facility for resource accounting.
Each object header contains an attribute called quota charges that records how much the
object manager subtracts from a process’s allotted paged and/or nonpaged pool quota when
a thread in the process opens a handle to the object.

Each process on Windows points to a quota structure that records the limits and current values
for nonpaged pool, paged pool, and page file usage. (Type dt nt!_EPROCESS_QUOTA_ENTRY
in the kernel debugger to see the format of this structure.) These quotas default to 0 (no limit)
but can be specified by modifying registry values. (See NonPagedPoolQuota, PagedPoolQuota, and
PagingFileQuota under HKLM\System\CurrentControlSet\Session Manager\Memory Manage-
ment.) Note that all the processes in an interactive session share the same quota block (and
there’s no documented way to create processes with their own quota blocks).

Object Names

An important consideration in creating a multitude of objects is the need to devise a success-
ful system for keeping track of them. The object manager requires the following information
to help you do so:

■ A way to distinguish one object from another

■ A method for finding and retrieving a particular object

The first requirement is served by allowing names to be assigned to objects. This is an exten-
sion of what most operating systems provide—the ability to name selected resources, files,
pipes, or a block of shared memory, for example. The executive, in contrast, allows any
resource represented by an object to have a name. The second requirement, finding and
retrieving an object, is also satisfied by object names. If the object manager stores objects by
name, it can find an object by looking up its name.

144 Microsoft Windows Internals, Fourth Edition
Object names also satisfy a third requirement, which is to allow processes to share objects.
The executive’s object namespace is a global one, visible to all processes in the system. One
process can create an object and place its name in the global namespace, and a second process
can open a handle to the object by specifying the object’s name. If an object isn’t meant to be
shared in this way, its creator doesn’t need to give it a name.

To increase efficiency, the object manager doesn’t look up an object’s name each time some-
one uses the object. Instead, it looks up a name under only two circumstances. The first is
when a process creates a named object: the object manager looks up the name to verify that it
doesn’t already exist before storing the new name in the global namespace. The second is
when a process opens a handle to a named object: the object manager looks up the name,
finds the object, and then returns an object handle to the caller; thereafter, the caller uses the
handle to refer to the object. When looking up a name, the object manager allows the caller to
select either a case-sensitive or a case-insensitive search, a feature that supports POSIX and
other environments that use case-sensitive filenames.

Where the names of objects are stored depends on the object type. Table 3-8 lists the standard
object directories found on all Windows systems and what types of objects have their names
stored there. Of the directories listed, only \BaseNamedObjects and \GLOBAL?? (\?? on Win-
dows 2000) are visible to user programs (see the Session Namespace section later in this
chapter for more information).

Because the base kernel objects such as mutexes, events, semaphores, waitable timers, and
sections have their names stored in a single object directory, no two of these objects can have
the same name, even if they are of a different type. This restriction emphasizes the need to
choose names carefully so that they don’t collide with other names (for example, prefix
names with your company and product name).

Table 3-8 Standard Object Directories

Directory Types of Object Names Stored

\GLOBAL?? (\?? in Windows
2000)

MS-DOS device names (\DosDevices is a symbolic link to this
directory.)

\BaseNamedObjects Mutexes, events, semaphores, waitable timers, and section
objects

\Callback Callback objects

\Device Device objects

\Driver Driver objects

\FileSystem File system driver objects and file system recognizer device
objects

\KnownDlls Section names and path for known DLLs (DLLs mapped by the
system at startup time)

\Nls Section names for mapped national language support tables

\ObjectTypes Names of types of objects

\RPC Control Port objects used by remote procedure calls (RPCs)

Chapter 3: System Mechanisms 145
Object names are global to a single computer (or to all processors on a multiprocessor com-
puter), but they’re not visible across a network. However, the object manager’s parse method
makes it possible to access named objects that exist on other computers. For example, the
I/O manager, which supplies file object services, extends the functions of the object man-
ager to remote files. When asked to open a remote file object, the object manager calls a
parse method, which allows the I/O manager to intercept the request and deliver it to a net-
work redirector, a driver that accesses files across the network. Server code on the remote
Windows system calls the object manager and the I/O manager on that system to find the file
object and return the information back across the network.

EXPERIMENT: Looking at the Base Named Objects
You can see the list of base objects that have names with the Winobj tool from www.sys-
internals.com. Run Winobj.exe and click on \BaseNamedObjects, as shown here:

The named objects are shown on the right. The icons indicate the object type.

■ Mutexes are indicated with a stop sign.

■ Sections (Windows file mapping objects) are shown as memory chips.

■ Events are shown as exclamation points.

■ Semaphores are indicated with an icon that resembles a traffic signal.

■ Symbolic links have icons that are curved arrows.

\Security Names of objects specific to the security subsystem

\Windows Windows subsystem ports and window stations

Table 3-8 Standard Object Directories

Directory Types of Object Names Stored

146 Microsoft Windows Internals, Fourth Edition
Object directories The object directory object is the object manager’s means for support-
ing this hierarchical naming structure. This object is analogous to a file system directory and
contains the names of other objects, possibly even other object directories. The object direc-
tory object maintains enough information to translate these object names into pointers to the
objects themselves. The object manager uses the pointers to construct the object handles that
it returns to user-mode callers. Both kernel-mode code (including executive components and
device drivers) and user-mode code (such as subsystems) can create object directories in
which to store objects. For example, the I/O manager creates an object directory named
\Device, which contains the names of objects representing I/O devices.

Symbolic links In certain file systems (on NTFS and some UNIX systems, for example), a
symbolic link lets a user create a filename or a directory name that, when used, is translated by
the operating system into a different file or directory name. Using a symbolic link is a simple
method for allowing users to indirectly share a file or the contents of a directory, creating a
cross-link between different directories in the ordinarily hierarchical directory structure.

The object manager implements an object called a symbolic link object, which performs a sim-
ilar function for object names in its object namespace. A symbolic link can occur anywhere
within an object name string. When a caller refers to a symbolic link object’s name, the object
manager traverses its object namespace until it reaches the symbolic link object. It looks
inside the symbolic link and finds a string that it substitutes for the symbolic link name. It
then restarts its name lookup.

One place in which the executive uses symbolic link objects is in translating MS-DOS-style
device names into Windows internal device names. In Windows, a user refers to floppy and
hard disk drives using the names A:, B:, C:, and so on and serial ports as COM1, COM2, and
so on. The Windows subsystem makes these symbolic link objects protected, global data by
placing them in the object manager namespace under the \?? object directory on Windows
2000 and the \Global?? directory on Windows XP and Windows Server 2003.

Session Namespace

Windows NT was originally written with the assumption that only one user would log on to
the system interactively and that the system would run only one instance of any interactive
application. The addition of Windows Terminal Services in Windows 2000 Server and fast
user switching in Windows XP changed these assumptions, thus requiring changes to the
object manager namespace model to support multiple users. (For a basic description of termi-
nal services and sessions, see Chapter 1.)

Chapter 3: System Mechanisms 147
A user logged on to the console session has access to the global namespace, a namespace that
serves as the first instance of the namespace. Additional sessions are given a session-private
view of the namespace known as a local namespace. The parts of the namespace that are local-
ized for each session include \DosDevices, \Windows, and \BaseNamedObjects. Making sep-
arate copies of the same parts of the namespace is known as instancing the namespace.
Instancing \DosDevices makes it possible for each user to have different network drive letters
and Windows objects such as serial ports. On Windows 2000, the global \DosDevices direc-
tory is named \?? and is the directory to which the \DosDevices symbolic link points, and
local \DosDevices directories are identified by the session id for the terminal server session.
On Windows XP and later, the global \DosDevices directory is named \Global?? and is the
directory to which \DosDevices points, and local \DosDevices directories are identified by
the logon session ID.

The \Windows directory is where Win32k.sys creates the interactive window station,
\WinSta0. A Terminal Services environment can support multiple interactive users, but each
user needs an individual version of WinSta0 to preserve the illusion that he or she is accessing
the predefined interactive window station in Windows. Finally, applications and the system
create shared objects in \BaseNamedObjects, including events, mutexes, and memory sec-
tions. If two users are running an application that creates a named object, each user session
must have a private version of the object so that the two instances of the application don’t
interfere with one another by accessing the same object.

The object manager implements a local namespace by creating the private versions of the
three directories mentioned under a directory associated with the user’s session under \Ses-
sions\X (where X is the session identifier). When a Windows application in remote session
two creates a named event, for example, the object manager transparently redirects the
object’s name from \BaseNamedObjects to \Sessions\2\BaseNamedObjects.

All object manager functions related to namespace management are aware of the instanced
directories and participate in providing the illusion that nonconsole sessions use the same
namespace as the console session. Windows subsystem DLLs prefix names passed by Win-
dows applications that reference objects in \DosDevices with \?? (for example, C:\Windows
becomes \??\C:\Windows). When the object manager sees the special \?? prefix, the steps it
takes depends on the version of Windows, but it always relies on a field named DeviceMap in
the executive process object (EPROCESS, which is described further in Chapter 6) that points
to a data structure shared by other processes in the same session. The DosDevicesDirectory
field of the DeviceMap structure points at the object manager directory that represents the
process’s local \DosDevices. The target directory varies depending on the system:

■ If the system is Windows 2000 and Terminal Services are not installed, the DosDevices-
Directory field of the DeviceMap structure of the process points at the \?? directory
because there are no local namespaces.

148 Microsoft Windows Internals, Fourth Edition
■ If the system is Windows 2000 and Terminal Services are installed, when a new session
becomes active the system copies all the objects from the global \?? directory into the
session’s local \Devices directory and the DosDevicesDirectory field of the DeviceMap
structure points at the local directory.

■ On Windows XP and Windows Server 2003, the system does not make copies of global
objects in the local DosDevices directories. When the object manager sees a reference to
\??, it locates the process’s local \DosDevices by using the DosDevicesDirectory field of
the DeviceMap. If the object manager doesn’t find the object in that directory, it checks
the DeviceMap field of the directory object, and if it’s valid it looks for the object in the
directory pointed to by the GlobalDosDevicesDirectory field of the DeviceMap struc-
ture, which is always \Global??.

Under certain circumstances, applications that are Terminal Services–aware need to access
objects in the console session even if the application is running in a remote session. The appli-
cation might want to do this to synchronize with instances of itself running in other remote
sessions or with the console session. For these cases, the object manager provides the special
override “\Global” that an application can prefix to any object name to access the global
namespace. For example, an application in session two opening an object named \Glo-
bal\ApplicationInitialized is directed to \BasedNamedObjects\ApplicationInitialized instead
of \Sessions\2\BaseNamedObjects\ApplicationInitialized.

On Windows XP and Windows Server 2003, an application that wants to access an object in
the global \DosDevices directory does not need to use the \Global prefix as long as the object
doesn’t exist in its local \DosDevices directory. This is because the object manager will auto-
matically look in the global directory for the object if it doesn’t find it in the local directory.
However, an application running on Windows 2000 with Terminal Services must always spec-
ify the \Global prefix to access objects in the global \DosDevices directory.

EXPERIMENT: Viewing Namespace Instancing
You can see the object manager instance of the namespace by creating a session other
than the console session and then viewing the handle table for a process in that session.
On Windows XP Home Edition or on a Windows XP Professional system that is not a
member of a domain, disconnect the console session (by clicking Start, clicking Log Off,
and choosing Disconnect and Switch User, or by pressing the Windows key + L) and
logging in to a new account. If you have a Windows 2000 Server, Advanced Server, or
Datacenter Server system, run the Terminal Services client, connect to the server, and
log in.

Chapter 3: System Mechanisms 149
Once you are logged in to the new session, run Winobj.exe from www.sysinternals.com
and click on the \Sessions directory. You’ll see a subdirectory with a numeric name for
each active remote session. If you open one of these directories, you’ll see subdirectories
named \DosDevices, \Windows, and \BaseNamedObjects, which are the local
namespace subdirectories of the session. The following screen shot shows a local
namespace:

Next run Process Explorer and select a process in the new session (such as
Explorer.exe), and then view the handle table (by clicking View, Lower Pane View, and
then Handles). You should see a handle to \Windows\Windowstations\WinSta0
underneath \Sessions\n, where n is the session id. Objects with global names will
appear under \Sessions\n\BaseNamedObjects.

Synchronization
The concept of mutual exclusion is a crucial one in operating systems development. It refers to
the guarantee that one, and only one, thread can access a particular resource at a time. Mutual
exclusion is necessary when a resource doesn’t lend itself to shared access or when sharing
would result in an unpredictable outcome. For example, if two threads copy a file to a printer
port at the same time, their output could be interspersed. Similarly, if one thread reads a mem-
ory location while another one writes to it, the first thread will receive unpredictable data. In
general, writable resources can’t be shared without restrictions, whereas resources that aren’t
subject to modification can be shared. Figure 3-23 illustrates what happens when two threads
running on different processors both write data to a circular queue.

150 Microsoft Windows Internals, Fourth Edition
Figure 3-23 Incorrect sharing of memory

Because the second thread got the value of the queue tail pointer before the first thread had
finished updating it, the second thread inserted its data into the same location that the first
thread had used, overwriting data and leaving one queue location empty. Even though this
figure illustrates what could happen on a multiprocessor system, the same error could occur
on a single-processor system if the operating system were to perform a context switch to the
second thread before the first thread updated the queue tail pointer.

Sections of code that access a nonshareable resource are called critical sections. To ensure cor-
rect code, only one thread at a time can execute in a critical section. While one thread is writ-
ing to a file, updating a database, or modifying a shared variable, no other thread can be
allowed to access the same resource. The pseudocode shown in Figure 3-23 is a critical section
that incorrectly accesses a shared data structure without mutual exclusion.

The issue of mutual exclusion, although important for all operating systems, is especially
important (and intricate) for a tightly coupled, symmetric multiprocessing (SMP) operating sys-
tem such as Windows, in which the same system code runs simultaneously on more than one
processor, sharing certain data structures stored in global memory. In Windows, it is the ker-
nel’s job to provide mechanisms that system code can use to prevent two threads from modi-
fying the same structure at the same time. The kernel provides mutual-exclusion primitives
that it and the rest of the executive use to synchronize their access to global data structures.

Because the scheduler synchronizes access to its data structures at DPC/Dispatch level IRQL,
the kernel and executive cannot rely on synchronization mechanisms that would result in a
page fault or reschedule operation to synchronize access to data structures when the IRQL is
DPC/Dispatch level or higher (levels known as an elevated or high IRQL). In the following sec-
tions, you’ll find out how the kernel and executive uses mutual exclusion to protect its global

Time

Get queue tail
Insert data at current location

•
•

•

•
•

•
•

•
•

•
•

•

•
•

•

Increment tail pointer

Processor A Processor B

Get queue tail

Insert data at current location /*ERROR*/
Increment tail pointer

Chapter 3: System Mechanisms 151
data structures when the IRQL is high and what mutual-exclusion and synchronization mech-
anisms the kernel and executive use when the IRQL is low (below DPC/Dispatch level).

High-IRQL Synchronization

At various stages during its execution, the kernel must guarantee that one, and only one, pro-
cessor at a time is executing within a critical section. Kernel critical sections are the code seg-
ments that modify a global data structure such as the kernel’s dispatcher database or its DPC
queue. The operating system can’t function correctly unless the kernel can guarantee that
threads access these data structures in a mutually exclusive manner.

The biggest area of concern is interrupts. For example, the kernel might be updating a global
data structure when an interrupt occurs whose interrupt-handling routine also modifies the
structure. Simple single-processor operating systems sometimes prevent such a scenario by
disabling all interrupts each time they access global data, but the Windows kernel has a more
sophisticated solution. Before using a global resource, the kernel temporarily masks those
interrupts whose interrupt handlers also use the resource. It does so by raising the proces-
sor’s IRQL to the highest level used by any potential interrupt source that accesses the global
data. For example, an interrupt at DPC/dispatch level causes the dispatcher, which uses the
dispatcher database, to run. Therefore, any other part of the kernel that uses the dispatcher
database raises the IRQL to DPC/dispatch level, masking DPC/dispatch-level interrupts
before using the dispatcher database.

This strategy is fine for a single-processor system, but it’s inadequate for a multiprocessor con-
figuration. Raising the IRQL on one processor doesn’t prevent an interrupt from occurring on
another processor. The kernel also needs to guarantee mutually exclusive access across sev-
eral processors.

Interlocked Operations

The simplest form of synchronization mechanisms rely on hardware support for multiproces-
sor-safe manipulating integer values and for performing comparisons. They include functions
such as InterlockedIncrement, InterlockedDecrement, InterlockedExchange, and Interlocked-
CompareExchange. The InterlockedDecrement function, for example, uses the x86 lock instruc-
tion prefix (for example, lock xadd) to lock the multiprocessor bus during the subtraction
operation so that another processor that’s also modifying the memory location being decre-
mented won’t be able to modify between the decrement’s read of the original value and write of
the decremented value. This form of basic synchronization is used by the kernel and drivers.

152 Microsoft Windows Internals, Fourth Edition
Spinlocks

The mechanism the kernel uses to achieve multiprocessor mutual exclusion is called a spin-
lock. A spinlock is a locking primitive associated with a global data structure, such as the DPC
queue shown in Figure 3-24.

Figure 3-24 Using a spinlock

Before entering either critical section shown in the figure, the kernel must acquire the spin-
lock associated with the protected DPC queue. If the spinlock isn’t free, the kernel keeps try-
ing to acquire the lock until it succeeds. The spinlock gets its name from the fact that the
kernel (and thus, the processor) is held in limbo, “spinning,” until it gets the lock.

Spinlocks, like the data structures they protect, reside in global memory. The code to acquire
and release a spinlock is written in assembly language for speed and to exploit whatever lock-
ing mechanism the underlying processor architecture provides. On many architectures, spin-
locks are implemented with a hardware-supported test-and-set operation, which tests the
value of a lock variable and acquires the lock in one atomic instruction. Testing and acquiring
the lock in one instruction prevents a second thread from grabbing the lock between the time
when the first thread tests the variable and the time when it acquires the lock.

All kernel-mode spinlocks in Windows have an associated IRQL that is always at DPC/dis-
patch level or higher. Thus, when a thread is trying to acquire a spinlock, all other activity at
the spinlock’s IRQL or lower ceases on that processor. Because thread dispatching happens at
DPC/dispatch level, a thread that holds a spinlock is never preempted because the IRQL
masks the dispatching mechanisms. This masking allows code executing a critical section pro-
tected by a spinlock to continue executing so that it will release the lock quickly. The kernel
uses spinlocks with great care, minimizing the number of instructions it executes while it
holds a spinlock.

DPC DPC
Begin
 Add DPC from queue
End

Release DPC queue spinlockRelease DPC queue spinlock

Begin
 Remove DPC from queue
End

•
•

•

•
•

•

DPC queue

Critical section

Do
 Try to acquire
 DPC queue
 spinlock
Until SUCCESS

Do
 Try to acquire
 DPC queue
 spinlock
Until SUCCESS

Processor A Processor B

Spinlock

Chapter 3: System Mechanisms 153
Note Because the IRQL is an effective synchronization mechanism on uniprocessors, the
spinlock acquisition and release functions of uniprocessor HALs don’t implement spinlocks—
they simply raise and lower the IRQL.

The kernel makes spinlocks available to other parts of the executive through a set of kernel
functions, including KeAcquireSpinlock and KeReleaseSpinlock. Device drivers, for example,
require spinlocks in order to guarantee that device registers and other global data structures
are accessed by only one part of a device driver (and from only one processor) at a time. Spin-
locks are not for use by user programs—user programs should use the objects described in the
next section.

Kernel spinlocks carry with them restrictions for code that uses them. Because spinlocks
always have an IRQL of DPC/dispatch level or higher, as explained earlier, code holding a
spinlock will crash the system if it attempts to make the scheduler perform a dispatch opera-
tion or if it causes a page fault.

Queued Spinlocks

A special type of spinlock called a queued spinlock is used in some circumstances instead of a
standard spinlock. A queued spinlock is a form of spinlock that scales better on multiproces-
sors than a standard spinlock. In general, Windows will use only standard spinlocks when it
expects there to be low contention for the lock.

A queued spinlock work like this: When a processor wants to acquire a queued spinlock that
is currently held, it places its identifier in a queue associated with the spinlock. When the pro-
cessor that’s holding the spinlock releases it, it hands the lock over to the first processor iden-
tified in the queue. In the meantime, a processor waiting for a busy spinlock checks the status
not of the spinlock itself but of a per-processor flag that the processor ahead of it in the queue
sets to indicate that the waiting processor’s turn has arrived.

The fact that queued spinlocks result in spinning on per-processor flags rather than global
spinlocks has two effects. The first is that the multiprocessor’s bus isn’t as heavily trafficked by
interprocessor synchronization. The second is that instead of a random processor in a waiting
group acquiring a spinlock, the queued spinlock enforces first-in, first-out (FIFO) ordering to
the lock. FIFO ordering means more consistent performance across processors accessing the
same locks.

Windows defines a number of global queued spinlocks by storing pointers to them in an array
contained in each processor’s processer control region (PCR). A global spinlock can be acquired
by calling KeAcquireQueuedSpinlock with the index into the PCR array at which the pointer to
the spinlock is stored. The number of global spinlocks has grown in each release of the oper-
ating system, and the table of index definitions for them is published in the DDK header file
Ntddk.h.

154 Microsoft Windows Internals, Fourth Edition
EXPERIMENT: Viewing Global Queued Spinlocks
You can view the state of the global queued spinlocks (the ones pointed to by the
queued spinlock array in each processor’s PCR) by using the !qlock kernel debugger
command. This command is meaningful only on a multiprocessor system because uni-
processor HALs don’t implement spinlocks. In the following example, taken from a
Windows 2000 system, the dispatcher database queued spinlock is held by processor 1,
and the other queued spinlocks are not acquired. (The dispatcher database is described
in Chapter 6.)

kd> !qlocks

Key: O = Owner, 1-n = Wait order, blank = not owned/waiting, C = Corrupt

Processor Number

Lock Name 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

KE - Dispatcher O

KE - Context Swap

MM - PFN

MM - System Space

CC - Vacb CC – Master

Instack Queued Spinlocks

In addition to using static queued spinlocks that are globally defined, Windows XP and Win-
dows Server 2003 kernels support dynamically allocated queued spinlocks with the KeAc-
quireInStackQueuedSpinlock and KeReleaseInStackQueuedSpinlock functions. Several
components—including the cache manager, executive pool manager, and NTFS—take advan-
tage of these types of locks, and the functions are documented in the DDK for use by third-
party driver writers.

KeAcquireInStackQueuedSpinlock takes a pointer to a spinlock data structure and a spin lock
queue handle. The spin lock handle is actually a data structure in which the kernel stores
information about the lock’s status, including the lock’s ownership and the queue of proces-
sors that might be waiting for the lock to become available.

Executive Interlocked Operations

The kernel supplies a number of simple synchronization functions constructed on spinlocks
for more advanced operations, such as adding and removing entries from singly and doubly
linked lists. Examples include ExInterlockedPopEntryList and ExInterlockedPushEntryList for
singly linked lists, and ExInterlockedInsertHeadList and ExInterlockedRemoveHeadList for dou-
bly linked lists. All these functions require a standard spinlock as a parameter and are used
throughout the kernel and device drivers.

Chapter 3: System Mechanisms 155
Low-IRQL Synchronization

Executive software outside the kernel also needs to synchronize access to global data struc-
tures in a multiprocessor environment. For example, the memory manager has only one page
frame database, which it accesses as a global data structure, and device drivers need to ensure
that they can gain exclusive access to their devices. By calling kernel functions, the executive
can create a spinlock, acquire it, and release it.

Spinlocks only partially fill the executive’s needs for synchronization mechanisms, however.
Because waiting for a spinlock literally stalls a processor, spinlocks can be used only under
the following strictly limited circumstances:

■ The protected resource must be accessed quickly and without complicated interactions
with other code.

■ The critical section code can’t be paged out of memory, can’t make references to page-
able data, can’t call external procedures (including system services), and can’t generate
interrupts or exceptions.

These restrictions are confining and can’t be met under all circumstances. Furthermore, the
executive needs to perform other types of synchronization in addition to mutual exclusion,
and it must also provide synchronization mechanisms to user mode.

There are several additional synchronization mechanisms for use when spinlocks are not suitable:

■ Kernel Dispatcher Objects

■ Fast Mutexes and Guarded Mutexes

■ Push Locks

■ Executive Resources

Table 3-9 serves as a reference that compares and contrasts the capabilities of these mecha-
nisms and their interaction with kernel-mode APC delivery.

Table 3-9 Kernel Synchronization Mechanisms

Exposed for
Use by
Device
Drivers

Disables Normal
Kernel-Mode
APCs

Disables Special
Kernel-Mode
APCs

Supports
Recursive
Acquisition

Supports
Shared and
Exclusive
Acquisition

Kernel Dispatcher
Mutexes

Yes Yes No Yes No

Kernel Dispatcher
Semaphores

Yes No No No No

Fast Mutexes Yes Yes Yes No No

Guarded Mutexes No Yes Yes No No

Push Locks No No No No Yes

Executive Resources Yes Yes No Yes Yes

156 Microsoft Windows Internals, Fourth Edition
Kernel Dispatcher Objects

The kernel furnishes additional synchronization mechanisms to the executive in the form of
kernel objects, known collectively as dispatcher objects. The user-visible synchronization
objects acquire their synchronization capabilities from these kernel dispatcher objects. Each
user-visible object that supports synchronization encapsulates at least one kernel dispatcher
object. The executive’s synchronization semantics are visible to Windows programmers
through the WaitForSingleObject and WaitForMultipleObjects functions, which the Windows
subsystem implements by calling analogous system services the object manager supplies. A
thread in a Windows application can synchronize with a Windows process, thread, event,
semaphore, mutex, waitable timer, I/O completion port, or file object.

One other type of executive synchronization object worth noting is called executive resources.
Executive resources provide both exclusive access (like a mutex) as well as shared read access
(multiple readers sharing read-only access to a structure). However, they’re available only to
kernel-mode code and thus aren’t accessible from the Windows API. Executive resources are
not dispatcher objects but rather data structures allocated directly from nonpaged pool that
have their own specialized services to initialize, lock, release, query, and wait for them. The
executive resource structure is defined in Ntddk.h, and the executive support routines are
documented in the DDK reference documentation.

The remaining subsections describe the implementation details of waiting for dispatcher
objects.

Waiting for Dispatcher Objects A thread can synchronize with a dispatcher object by wait-
ing for the object’s handle. Doing so causes the kernel to suspend the thread and change its
dispatcher state from running to waiting, as shown in Figure 3-25. The kernel removes the
thread from the dispatcher ready queue and no longer considers it for execution.

Note Figure 3-25 is a process state transition diagram with focus on the ready, waiting, and
running states (the states related to waiting for objects). The other states are described in
Chapter 6.

At any given moment, a synchronization object is in one of two states: either the signaled state
or the nonsignaled state. A thread can’t resume its execution until the kernel changes its dis-
patcher state from waiting to ready. This change occurs when the dispatcher object whose
handle the thread is waiting for also undergoes a state change, from the nonsignaled state to
the signaled state (when a thread sets an event object, for example). To synchronize with an
object, a thread calls one of the wait system services the object manager supplies, passing a
handle to the object it wants to synchronize with. The thread can wait for one or several
objects and can also specify that its wait should be canceled if it hasn’t ended within a certain
amount of time. Whenever the kernel sets an object to the signaled state, the kernel’s KiWait-
Test function checks to see whether any threads are waiting for the object and not also waiting

Chapter 3: System Mechanisms 157
for other objects to become signaled. If there are, the kernel releases one or more of the
threads from their waiting state so that they can continue executing.

Figure 3-25 Waiting for a dispatcher object

The following example of setting an event illustrates how synchronization interacts with
thread dispatching:

■ A user-mode thread waits for an event object’s handle.

■ The kernel changes the thread’s scheduling state from ready to waiting and then adds
the thread to a list of threads waiting for the event.

■ Another thread sets the event.

■ The kernel marches down the list of threads waiting for the event. If a thread’s condi-
tions for waiting are satisfied (see Note below), the kernel changes the thread’s state
from waiting to ready. If it is a variable-priority thread, the kernel might also boost its
execution priority.

■ Because a new thread has become ready to execute, the dispatcher reschedules. If it
finds a running thread with a priority lower than that of the newly ready thread, it pre-
empts the lower-priority thread and issues a software interrupt to initiate a context
switch to the higher-priority thread.

■ If no processor can be preempted, the dispatcher places the ready thread in the dis-
patcher ready queue to be scheduled later.

Note Some threads might be waiting for more than one object, so they continue waiting.

StandbyRunning

Terminated

Initialized

ReadySet object to
signaled state

Thread waits
on an object

handle

Waiting

Transition

158 Microsoft Windows Internals, Fourth Edition
What Signals an Object The signaled state is defined differently for different objects. A
thread object is in the nonsignaled state during its lifetime and is set to the signaled state by
the kernel when the thread terminates. Similarly, the kernel sets a process object to the sig-
naled state when the process’s last thread terminates. In contrast, the timer object, like an
alarm, is set to “go off” at a certain time. When its time expires, the kernel sets the timer object
to the signaled state.

When choosing a synchronization mechanism, a program must take into account the rules
governing the behavior of different synchronization objects. Whether a thread’s wait ends
when an object is set to the signaled state varies with the type of object the thread is waiting
for, as Table 3-10 illustrates.

When an object is set to the signaled state, waiting threads are generally released from their
wait states immediately. Some of the kernel dispatcher objects and the system events that
induce their state changes are shown in Figure 3-26.

Table 3-10 Definitions of the Signaled State

Object Type Set to Signaled State When Effect on Waiting Threads

Process Last thread terminates All released

Thread Thread terminates All released

File I/O operation completes All released

Debug Object Debug message is queued to
the object

All released

Event (notification type) Thread sets the event All released

Event (synchronization type) Thread sets the event One thread released; event
object reset

Keyed Event Thread sets event with a key Thread waiting for key and
which is of same process as sig-
naler is released

Semaphore Semaphore count drops by 1 One thread released

Timer (notification type) Set time arrives or time interval
expires

All released

Timer (synchronization type) Set time arrives or time interval
expires

One thread released

Mutex Thread releases the mutex One thread released

File I/O completes All threads released

Queue Item is placed on queue One thread released

Chapter 3: System Mechanisms 159
Figure 3-26 Selected kernel dispatcher objects

Dispatcher object
System events and

resulting state change
Effect of signaled state

on waiting threads

Kernel resumes one
waiting thread.

SignaledNonsignaled

Resumed thread
acquires the mutex.

Owning thread
releases the mutex.

Kernel resumes one
waiting thread.

SignaledNonsignaled

Resumed thread
acquires the mutex.

Owning thread or other
thread releases the mutex.

Kernel resumes one
or more waiting threads.

SignaledNonsignaled

A thread acquires the semaphore.
More resources are not available.

One thread releases the
semaphore, freeing a resource.

Kernel resumes one
or more waiting threads.

SignaledNonsignaled

Kernel resumes one
or more threads.

A thread sets the event.

Kernel resumes waiting
dedicated thread.

SignaledNonsignaled

Kernel resumes the
other dedicated thread.

Dedicated thread sets
one event in the event pair.

Kernel resumes all
waiting threads.

SignaledNonsignaled

A thread reinitializes
the thread object.

Thread terminates.

Kernel resumes all
waiting threads.

SignaledNonsignaled

Mutex (kernel-
mode use only)

Mutex (exported to
user mode)

Semaphore

Event

Event pair

Thread

Timer

A thread (re)initializes
the timer.

Timer expires.

160 Microsoft Windows Internals, Fourth Edition
For example, a notification event object (called a manual reset event in the Windows API) is
used to announce the occurrence of some event. When the event object is set to the signaled
state, all threads waiting for the event are released. The exception is any thread that is waiting
for more than one object at a time; such a thread might be required to continue waiting until
additional objects reach the signaled state.

In contrast to an event object, a mutex object has ownership associated with it. It is used to
gain mutually exclusive access to a resource, and only one thread at a time can hold the
mutex. When the mutex object becomes free, the kernel sets it to the signaled state and then
selects one waiting thread to execute. The thread selected by the kernel acquires the mutex
object, and all other threads continue waiting.

Keyed Events and Critical Sections
A synchronization object new to Windows XP, called a keyed event, bears special men-
tion because of the role it plays in helping processes deal with low-memory situations
when using critical sections. A keyed event, which is not documented, allows a thread to
specify a “key” for which it waits, where the thread wakes when another thread of the
same process signals the event with the same key.

Windows processes often use critical section functions, EnterCriticalSection and Leave-
CriticalSection, to synchronize thread access to resources private to the process. These
functions have advantages over direct use of mutex objects because if there is no conten-
tion they do not make a transition to kernel mode. If there is contention, EnterCritical-
Section dynamically allocates an event object and the thread wanting to acquire the
critical section waits for the thread that owns the critical section to signal it in LeaveCrit-
icalSection.

EnterCriticalSection uses a global keyed event named CritSecOutOfMemoryEvent (in the
\Kernel directory of the object manager namespace) when the allocation of the event
object for the critical section fails because system memory is low. If EnterCriticalSection
has to use CritSecOutOfMemoryEvent instead of a standard event, a thread waiting for the
critical section uses the address of the critical section as the key. This allows the critical
section functions to operate properly even when memory is temporarily low.

This brief discussion wasn’t meant to enumerate all the reasons and applications for using the
various executive objects but rather to list their basic functionality and synchronization
behavior. For information on how to put these objects to use in Windows programs, see the
Windows reference documentation on synchronization objects or Jeffrey Richter’s Program-
ming Applications for Microsoft Windows.

Chapter 3: System Mechanisms 161
Data Structures Two data structures are key to tracking who is waiting for what: dispatcher
headers and wait blocks. Both these structures are publicly defined in the DDK include file
Ntddk.h. The definitions are reproduced here for convenience:

typedef struct _DISPATCHER_HEADER {

UCHAR Type;

UCHAR Absolute;

UCHAR Size;

UCHAR Inserted;

LONG SignalState;

LIST_ENTRY WaitListHead;

} DISPATCHER_HEADER;

typedef struct _KWAIT_BLOCK {

LIST_ENTRY WaitListEntry;

struct _KTHREAD *RESTRICTED_POINTER Thread;

PVOID Object;

struct _KWAIT_BLOCK *RESTRICTED_POINTER NextWaitBlock;

USHORT WaitKey;

USHORT WaitType;

} KWAIT_BLOCK, *PKWAIT_BLOCK, *RESTRICTED_POINTER PRKWAIT_BLOCK;

The dispatcher header contains the object type, signaled state, and a list of the threads waiting
for that object. The wait block represents a thread waiting for an object. Each thread that is in
a wait state has a list of the wait blocks that represent the objects the thread is waiting for.
Each dispatcher object has a list of the wait blocks that represent which threads are waiting for
the object. This list is kept so that when a dispatcher object is signaled, the kernel can quickly
determine who is waiting for that object. The wait block has a pointer to the object being
waited for, a pointer to the thread waiting for the object, and a pointer to the next wait block
(if the thread is waiting for more than one object). It also records the type of wait (any or all)
as well as the position of that entry in the array of handles passed by the thread on the Wait-
ForMultipleObjects call (position zero if the thread was waiting for only one object).

Figure 3-27 shows the relationship of dispatcher objects to wait blocks to threads. In this
example, thread 1 is waiting for object B, and thread 2 is waiting for objects A and B. If object
A is signaled, the kernel will see that because thread 2 is also waiting for another object,
thread 2 can’t be readied for execution. On the other hand, if object B is signaled, the kernel
can ready thread 1 for execution right away because it isn’t waiting for any other objects.

162 Microsoft Windows Internals, Fourth Edition
Figure 3-27 Wait data structures

EXPERIMENT: Looking at Wait Queues
Although many process viewer utilities indicate whether a thread is in a wait state (and
if so, they also indicate what kind of wait), you can see the list of objects a thread is wait-
ing for only with the kernel debugger !thread command. For example, the following
excerpt from the output of a !process command shows that the thread is waiting for an
event object:

kd> !process

§

THREAD 8a12a328 Cid 0bb8.0d50 Teb: 7ffdd000 Win32Thread: e7c9aeb0 WAIT

: (WrUserRequest) UserMode Non-Alertable

8a21bf58 SynchronizationEvent

Object-type-
specific data

Wait list head

State

Object-type-
specific data

Wait list head

State

Size Type

Size Type

Key Type

Key Type Key Type

Object B

Object A

Wait blocks

List entry

Thread 1 wait block

Next link

Thread

Object

List entry

Next link

Thread

Object

List entry

Next link

Thread

Object

Dispatcher objects

Wait block list

Thread 2

Wait block list

Thread 1

Thread 2 wait block

Thread objects

Thread 2 wait block

Chapter 3: System Mechanisms 163
You can use the dt command to interpret the dispatcher header of the object like this:

kd> dt nt!_dispatcher_header 8a21bf58

nt!_DISPATCHER_HEADER

+0x000 Type : 0x1 ’’

+0x001 Absolute : 0 ’’

+0x002 Size : 0x4 ’’

+0x003 Inserted : 0 ’’

+0x004 SignalState : 0

+0x008 WaitListHead : _LIST_ENTRY [0x8a12a398 - 0x8a12a398]

From this, we can ascertain that no other threads are waiting for this event object
because the wait list head forward and backward pointers point to the same location (a
single wait block). Dumping the wait block (at address 0x8a12a398) yields the follow-
ing:

kd> dt nt!_kwait_block 0x8a12a398

nt!_KWAIT_BLOCK

+0x000 WaitListEntry : _LIST_ENTRY [0x8a21bf60 - 0x8a21bf60]

+0x008 Thread : 0x8a12a328

+0x00c Object : 0x8a21bf58

+0x010 NextWaitBlock : 0x8a12a398

+0x014 WaitKey : 0

+0x016 WaitType : 1

If the wait list had more than one entry, you could execute the same command on the
second pointer value in the WaitListEntry field of each wait block (by executing !thread
on the thread pointer in the wait block) to traverse the list and see what other threads
are waiting for the object.

Fast Mutexes and Guarded Mutexes

Fast mutexes, which are also known as executive mutexes, usually offer better performance
than mutex objects because, although they are built on dispatcher event objects, they avoid
waiting for the event object (and therefore the spinlocks on which an event object is based) if
there’s no contention for the fast mutex. This gives the fast mutex especially good perfor-
mance in a multiprocessor environment. Fast mutexes are used widely throughout the kernel
and device drivers.

However, fast mutexes are suitable only when normal kernel-mode APC (described earlier in
this chapter) delivery can be disabled. The executive defines two functions for acquiring
them: ExAcquireFastMutex and ExAcquireFastMutexUnsafe. The former function blocks all APC
delivery by raising the IRQL of the processor to APC_LEVEL and the latter expects to be
called with normal kernel-mode APC delivery disabled, which can be done by raising the
IRQL to APC level or by calling KeEnterCriticalRegion. Another limitation of fast mutexes is
that they can’t be acquired recursively like mutex objects can.

164 Microsoft Windows Internals, Fourth Edition
Guarded mutexes are new to Windows Server 2003 and are essentially the same as fast
mutexes (although they use a different synchronization object, the KGATE, internally). They
are acquired with the KeAcquireGuardedMutex function, but instead of disabling APCs by call-
ing KeEnterCriticalRegion, which disables only normal kernel-mode APCs, it disables all ker-
nel-mode APC delivery by calling KeEnterGuardedRegion. They are not exposed for use outside
of the kernel and are used primarily by the memory manager, which uses them to protect glo-
bal operations such as creating paging files, deleting certain types of shared memory sections,
and performing paged pool expansion. (See Chapter 7 for more information on the memory
manager.)

Executive Resources

Executive resources are a synchronization mechanism that supports shared and exclusive
access, and like fast mutexes, require that normal kernel-mode APC delivery be disabled
before they are acquired. They are also built on dispatcher objects that are only used when
there is contention. Executive resources are used throughout the system, especially in file-sys-
tem drivers.

Threads waiting to acquire a resource for shared access wait for a semaphore associated with
the resource, and threads waiting to acquire a resource for exclusive access wait for an event.
A semaphore with unlimited count is used for shared waiters because they can all be woken
and granted access to the resource when an exclusive holder releases the resource simply by
signaling the semaphore. When a thread waits for exclusive access of a resource that is cur-
rently owned, it waits on a synchronization event object because only one of the waiters will
wake when the event is signaled.

Because of the flexibility that shared and exclusive access offers, there are a number of func-
tions for acquiring resources: ExAcquireResourceSharedLite, ExAcquireResourceExclusiveLite,
ExAcquireSharedStarveExclusive, ExAcquireWaitForExclusive, and ExTryToAcquireResourceExclu-
siveLite. These functions are documented in the DDK.

EXPERIMENT: Listing Acquired Executive Resources
The kernel debugger !locks command searches paged pool for executive resource objects
and dumps their state. By default, the command lists only executive resources that are
currently owned, but the –d option will list all executive resources. Here is partial output
of the command:

lkd> !locks

**** DUMP OF ALL RESOURCE OBJECTS ****

KD: Scanning for held locks.

Resource @ nt!MmSystemWsLock (0x805439a0) Exclusively owned

Contention Count = 123

Threads: 89b36020-01<*>

KD: Scanning for held locks...

Chapter 3: System Mechanisms 165
..

..............................

Resource @ 0x89da1a68 Shared 1 owning threads

Threads: 8a4cb533-01<*> *** Actual Thread 8a4cb530

Note that the contention count, which is extracted from the resource structure, records
the number of times threads have tried to acquire the resource and had to wait because
it was already owned.

You can examine the details of a specific resource object, including the thread that owns
the resource and any threads that are waiting for the resource, by specifying the –v
switch and the address of the resource:

lkd> !locks -v 0x805439a0

Resource @ nt!MmSystemWsLock (0x805439a0) Exclusively owned

Contention Count = 123

Threads: 89b36020-01<*>

THREAD 89b36020 Cid 0e98.0bd4 Teb: 7ffd9000 Win32Thread: e2bcc538 RUNNING on pr

ocessor 0

Not impersonating

DeviceMap e1df7d18

Owning Process 8999d020

Wait Start TickCount 492582 Elapsed Ticks: 15

Context Switch Count 532 LargeStack

UserTime 00:00:01.0462

KernelTime 00:00:00.0320

Start Address 0x77e7d342

Win32 Start Address 0x0101f1d0

Stack Init a9d20000 Current a9d1fd44 Base a9d20000 Limit a9d1d000 Call 0

Priority 11 BasePriority 8 PriorityDecrement 2 DecrementCount 16

Unable to get context for thread running on processor 0, HRESULT 0x80004001

Push Locks

Push locks, which were introduced in Windows XP, are another optimized synchronization
mechanism built on the event object (and in Windows Server 2003 they are built on the inter-
nal KGATE synchronization object), and like fast mutexes, they wait for an event object only
when there’s contention on the lock. They offer advantages over the fast mutex in that they
can be acquired in shared or exclusive mode. They are not documented or exported by the
kernel and are therefore reserved for use by the operating system.

There are two types of push locks: normal and cache aware. Normal push locks require only
the size of a pointer in storage (4 bytes on 32-bit systems and 8 bytes on 64-bit systems).
When a thread acquires a normal push lock, the push lock code marks the push lock as
owned if it is not currently owned. If the push lock is owned exclusively or the thread wants
to acquire the thread exclusively and the push lock is owned on a shared basis, the thread allo-

166 Microsoft Windows Internals, Fourth Edition
cates a wait block on the thread’s stack, initializes an event object in the wait block, and adds
the wait block to the wait list associated with the push lock. When a thread releases a push
lock, the thread wakes a waiter, if any are present, by signaling the event in the waiter’s wait
block.

A cache-aware push lock layers on the basic push lock by allocating a push lock for each pro-
cessor in the system and associating it with the cache-aware push lock. When a thread wants
to acquire a cache-aware push lock for shared access, it simply acquires the push lock allo-
cated for its current processor in shared mode; to acquire a cache-aware push lock exclusively,
it acquires the push lock for each processor in exclusive mode.

Areas where push locks are used include the object manager, where they protect global object
manager data structures and object security descriptors, and the memory manager, where
they protect AWE data structures.

Deadlock Detection with Driver Verifier
A deadlock is a synchronization issue resulting from two threads or processors holding
resources that the other wants and neither will yield what it has. This situation might
result in system or process hangs. Driver Verifier, described in Chapter 7 and Chapter 9,
has an option to check for deadlocks involving spinlocks, fast mutexes, and mutexes.
For information on when to enable Driver Verifier to help resolve system hangs, see
Chapter 14.

System Worker Threads
During system initialization, Windows creates several threads in the System process, called
system worker threads, that exist solely to perform work on behalf of other threads. In many
cases, threads executing at DPC/dispatch level need to execute functions that can be per-
formed only at a lower IRQL. For example, a DPC routine, which executes in an arbitrary
thread context (because DPC execution can usurp any thread in the system) at DPC/dispatch
level IRQL, might need to access paged pool or wait for a dispatcher object used to synchro-
nize execution with an application thread. Because a DPC routine can’t lower the IRQL, it
must pass such processing to a thread that executes at an IRQL below DPC/dispatch level.

Some device drivers and executive components create their own threads dedicated to process-
ing work at passive level; however, most use system worker threads instead, which avoids the
unnecessary scheduling and memory overhead associated with having additional threads in
the system. A device driver or an executive component requests a system worker thread’s ser-
vices by calling the executive functions ExQueueWorkItem or IoQueueWorkItem. These func-
tions place a work item on a queue dispatcher object where the threads look for work. (Queue

Chapter 3: System Mechanisms 167
dispatcher objects are described in more detail in the section “I/O Completion Ports” in Chap-
ter 9.) Work items include a pointer to a routine and a parameter that the thread passes to the
routine when it processes the work item. The routine is implemented by the device driver or
executive component that requires passive-level execution.

For example, a DPC routine that must wait for a dispatcher object can initialize a work item
that points to the routine in the driver that waits for the dispatcher object, and perhaps points
to a pointer to the object. At some stage, a system worker thread will remove the work item
from its queue and execute the driver’s routine. When the driver’s routine finishes, the system
worker thread checks to see whether there are more work items to process. If there aren’t any
more, the system worker thread blocks until a work item is placed on the queue. The DPC
routine might or might not have finished executing when the system worker thread processes
its work item. (On a uniprocessor system, a DPC routine always finishes executing before its
work item is processed because thread scheduling doesn’t take place when the IRQL is at
DPC/dispatch level.)

There are three types of system worker threads:

■ Delayed worker threads execute at priority 12, process work items that aren’t considered
time-critical, and can have their stack paged out to a paging file while they wait for work
items.

■ Critical worker threads execute at priority 13, process time-critical work items, and on
Windows Server systems, have their stacks present in physical memory at all times.

■ A single hypercritical worker thread executes at priority 15 and also keeps its stack in
memory. The process manager uses the hypercritical work item to execute the thread
“reaper” function that frees terminated threads.

The number of delayed and critical worker threads created by the executive’s ExpWorkerIni-
tialization function, which is called early in the boot process, depends on the amount of mem-
ory present on the system and whether the system is a server. Table 3-11 shows the initial
number of threads created on different system configurations. You can specify that ExpInitial-
izeWorker create up to 16 additional delayed and 16 additional critical worker threads with the
AdditionalDelayedWorkerThreads and AdditionalCriticalWorkerThreads values under the
registry key HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\Executive.

Table 3-11 Initial Number of System Worker Threads

Windows 2000
Windows 2000
Server

Windows XP and
Windows Server 2003

Delayed 3 3 7

Critical 5 10 5

Hypercritical 1 1 1

168 Microsoft Windows Internals, Fourth Edition
The executive tries to match the number of critical worker threads with changing workloads
as the system executes. Once every second, the executive function ExpWorkerThreadBalance-
Manager determines whether it should create a new critical worker thread. The critical worker
threads that are created by ExpWorkerThreadBalanceManager are called dynamic worker
threads, and all the following conditions must be satisfied before such a thread is created:

■ Work items exist in the critical work queue.

■ The number of inactive critical worker threads (ones that are either blocked waiting for
work items or that have blocked on dispatcher objects while executing a work routine)
must be less than the number of processors on the system.

■ There are fewer than 16 dynamic worker threads.

Dynamic worker threads exit after 10 minutes of inactivity. Thus, when the workload dictates,
the executive can create up to 16 dynamic worker threads.

EXPERIMENT: Listing System Worker Threads
You can use the !exqueue kernel debugger command to see a listing of system worker
threads classified by their type:

kd> !exqueue

Dumping ExWorkerQueue: 8046A5C0

**** Critical WorkQueue(current = 0 maximum = 1)

THREAD 818a2d40 Cid 8.c Teb: 00000000 Win32Thread: 00000000 WAIT

THREAD 818a2ac0 Cid 8.10 Teb: 00000000 Win32Thread: 00000000 WAIT

THREAD 818a2840 Cid 8.14 Teb: 00000000 Win32Thread: 00000000 WAIT

THREAD 818a25c0 Cid 8.18 Teb: 00000000 Win32Thread: 00000000 WAIT

THREAD 818a2340 Cid 8.1c Teb: 00000000 Win32Thread: 00000000 WAIT

**** Delayed WorkQueue(current = 0 maximum = 1)

THREAD 818a20c0 Cid 8.20 Teb: 00000000 Win32Thread: 00000000 WAIT

THREAD 818a1020 Cid 8.24 Teb: 00000000 Win32Thread: 00000000 WAIT

THREAD 818a1da0 Cid 8.28 Teb: 00000000 Win32Thread: 00000000 WAIT

**** HyperCritical WorkQueue(current = 0 maximum = 1)

THREAD 818a1b20 Cid 8.2c Teb: 00000000 Win32Thread: 00000000 WAIT

Windows Global Flags
Windows has a set of flags stored in a systemwide global variable named NtGlobalFlag that
enable various internal debugging, tracing, and validation support in the operating system.
The system variable NtGlobalFlag is initialized from the registry key HKLM\SYSTEM\Cur-
rentControlSet\Control\Session Manager in the value GlobalFlag at system boot time. By

Chapter 3: System Mechanisms 169
default, this registry value is 0, so it’s likely that on your systems, you’re not using any global
flags. In addition, each image has a set of global flags that also turn on internal tracing and val-
idation code (although the bit layout of these flags is entirely different than the systemwide
global flags). These flags aren’t documented or supported for customer use, but they can be
useful tools for exploring the internal operation of Windows.

Fortunately, the Platform SDK and the debugging tools contain a utility named Gflags.exe
that allows you to view and change the system global flags (either in the registry or in the run-
ning system) as well as image global flags. Gflags has both a command-line and a GUI inter-
face. To see the command-line flags, type gflags /?. If you run the utility without any switches,
the dialog box shown in Figure 3-28 is displayed.

Figure 3-28 Setting system debugging options with Gflags

You can toggle between the settings in the registry (by clicking System Registry) and the cur-
rent value of the variable in system memory (by clicking Kernel Mode). You must click the
Apply button to make the changes. (You’ll exit if you click the OK button.) Although you can
change flag settings on a running system, most flags require a reboot to take effect, and there’s
no documentation on which flags do and which don’t require rebooting. So when in doubt,
reboot after changing a global flag.

The Image File Options choice requires that you fill in the filename of a valid executable
image. This option is used to change a set of global flags that apply to an individual image
(rather than to the whole system). In Figure 3-29, notice that the flags are different than the
operating system ones shown in Figure 3-28.

170 Microsoft Windows Internals, Fourth Edition
Figure 3-29 Setting image global flags with Gflags

EXPERIMENT: Enabling Image Loader Tracing and Viewing
NtGlobalFlag
To see an example of the detailed tracing information you can obtain by setting global
flags, try running Gflags on a system booted with the kernel debugger that is connected
to a host system running Kd or Windbg.

As an example, try enabling the Show Loader Snaps flag. To do this, choose Kernel
Mode, select the Show Loader Snaps check box, and click the Apply button. Then run
an image on this machine, and in the kernel debugger you’ll see volumes of output like
the following:

LDR: PID: 0xb8 started - ’notepad’

LDR: NEW PROCESS

Image Path: C:\Windows\system32\notepad.exe (notepad.exe)

Current Directory: C:\ddk\bin

Search Path: C:\Windows\System32;C:\Windows\system;C:\Windows

LDR: notepad.exe bound to comdlg32.dll

LDR: ntdll.dll used by comdlg32.dll

LDR: Snapping imports for comdlg32.dll from ntdll.dll

§

LDR: KERNEL32.dll loaded. - Calling init routine at 77f01000

LDR: RPCRT4.dll loaded. - Calling init routine at 77e1b6d5

LDR: ADVAPI32.dll loaded. - Calling init routine at 77dc1000

LDR: USER32.dll loaded. - Calling init routine at 77e78037

Chapter 3: System Mechanisms 171
You can use the !gflags and !gflag kernel debugger commands to view the state of the
NtGlobalFlag kernel variable. The !gflags command lists all the flags, indicating which
ones are enabled, whereas !gflag reports only the flags that are enabled.

kd> !gflags

NT!NtGlobalFlag 0x4400

STOP_ON_EXCEPTION SHOW_LDR_SNAPS

DEBUG_INITIAL_COMMAND STOP_ON_HUNG_GUI

HEAP_ENABLE_TAIL_CHECK HEAP_ENABLE_FREE_CHECK

HEAP_VALIDATE_PARAMETERS HEAP_VALIDATE_ALL

*POOL_ENABLE_TAGGING HEAP_ENABLE_TAGGING

USER_STACK_TRACE_DB KERNEL_STACK_TRACE_DB

*MAINTAIN_OBJECT_TYPELIST HEAP_ENABLE_TAG_BY_DLL

ENABLE_CSRDEBUG ENABLE_KDEBUG_SYMBOL_LOAD

DISABLE_PAGE_KERNEL_STACKS HEAP_DISABLE_COALESCING

ENABLE_CLOSE_EXCEPTIONS ENABLE_EXCEPTION_LOGGING

ENABLE_HANDLE_TYPE_TAGGING HEAP_PAGE_ALLOCS

DEBUG_INITIAL_COMMAND_EX DISABLE_DBGPRINT

kd> !gflag

NtGlobalFlag at 8046a164 Current NtGlobalFlag contents: 0x00004400

ptg - Enable pool tagging

otl - Maintain a list of objects for each type

Local Procedure Calls (LPCs)
A local procedure call (LPC) is an interprocess communication facility for high-speed message
passing. It is not directly available through the Windows API; it is an internal mechanism
available only to Windows operating system components. Here are some examples of where
LPCs are used:

■ Windows applications that use remote procedure calls (RPCs), a documented API, indi-
rectly use LPCs when they specify local-RPC, a form of RPC used to communicate
between processes on the same system.

■ A few Windows APIs result in sending messages to the Windows subsystem process.

■ Winlogon uses LPCs to communicate with the local security authentication server pro-
cess, LSASS.

■ The security reference monitor (an executive component explained in Chapter 8) uses
LPCs to communicate with the LSASS process.

172 Microsoft Windows Internals, Fourth Edition
EXPERIMENT: Viewing LPC Port Objects
You can see named LPC port objects with the Winobj tool from www.sysinternals.com.
Run Winobj.exe and select the root directory. A plug icon identifies the port objects, as
shown here:

To see the LPC port objects used by RPC, select the \RPC Control directory, as shown
here:

You can also view LPC port objects by using the !lpc kernel debugger command. The
command accepts parameters that direct it to show LPC ports, LPC messages, and
threads that are waiting or sending LPC messages. To view the LSASS authentication
port (the port that Winlogon sends logon requests to), first obtain a list of the ports on
the system:

Chapter 3: System Mechanisms 173
kd> !lpc

Usage:

!lpc - Display this help

!lpc message [MessageId] - Display the message with a

given ID and all related

information

If MessageId is not

specified, dump all messages

!lpc port [PortAddress] - Display the port information

!lpc scan PortAddress - Search this port and any

connected port

!lpc thread [ThreadAddr] - Search the thread in rundown

port queues and display the

port info

If ThreadAddr is missing,

display all threads marked

as doing some lpc operations

kd> !lpc port

Scanning 206 objects

1 Port: 0xe1360320 Connection: 0xe1360320

Communication: 0x00000000 ’SeRmCommandPort’

1 Port: 0xe136bc20 Connection: 0xe136bc20

Communication: 0x00000000 ’SmApiPort’

1 Port: 0xe133ba80 Connection: 0xe133ba80

Communication: 0x00000000 ’DbgSsApiPort’

1 Port: 0xe13606e0 Connection: 0xe13606e0

Communication: 0x00000000 ’DbgUiApiPort’

§

1 Port: 0xe205f040 Connection: 0xe205f040

Communication: 0x00000000 ’LsaAuthenticationPort’

§

Locate the port named LsaAuthenticationPort in the output and then examine it by
passing its address to the !lpc command, as shown in the following code segment.

kd> !lpc port 0xe205f040

Server connection port e205f040 Name: LsaAuthenticationPort

Handles: 1 References: 37

Server process : ff7d56c0 (lsass.exe)

Queue semaphore : ff7bfcc8

Semaphore state 0 (0x0)

The message queue is empty

The LpcDataInfoChainHead queue is empty

174 Microsoft Windows Internals, Fourth Edition
Typically, LPCs are used between a server process and one or more client processes of that
server. An LPC connection can be established between two user-mode processes or between a
kernel-mode component and a user-mode process. For example, as noted in Chapter 2, Win-
dows processes send occasional messages to the Windows subsystem by using LPCs. Also,
some system processes use LPCs to communicate, such as Winlogon and Lsass. An example
of a kernel-mode component using an LPC to talk to a user process is the communication
between the security reference monitor and the LSASS process.

LPCs are designed to allow three methods of exchanging messages:

■ A message that is shorter than 256 bytes can be sent by calling the LPC with a buffer
containing the message. This message is then copied from the address space of the send-
ing process into system address space, and from there to the address space of the receiv-
ing process.

■ If a client and a server want to exchange more than 256 bytes of data, they can choose to
use a shared section to which both are mapped. The sender places message data in the
shared section and then sends a small message to the receiver with pointers to where the
data is to be found in the shared section.

■ When a server wants to read or write larger amounts of data than will fit in a shared sec-
tion, data can be directly read from or written to a client’s address space. The LPC com-
ponent supplies two functions that a server can use to accomplish this. A message sent
by the first function is used to synchronize the message passing.

An LPC exports a single executive object called the port object to maintain the state needed for
communication. Although an LPC uses a single object type, it has several kinds of ports:

■ Server connection port A named port that is a server connection request point. Clients
can connect to the server by connecting to this port.

■ Server communication port An unnamed port a server uses to communicate with a par-
ticular client. The server has one such port per active client.

■ Client communication port An unnamed port a particular client thread uses to commu-
nicate with a particular server.

■ Unnamed communication port An unnamed port created for use by two threads in the
same process.

LPCs are typically used as follows: A server creates a named server connection port object. A
client makes a connect request to this port. If the request is granted, two new unnamed ports,
a client communication port and a server communication port, are created. The client gets a
handle to the client communication port, and the server gets a handle to the server communi-
cation port. The client and the server will then use these new ports for their communication.

A completed connection between a client and a server is shown in Figure 3-30.

Chapter 3: System Mechanisms 175
Figure 3-30 Use of LPC ports

Kernel Event Tracing
Various components of the Windows kernel and several core device drivers are instrumented
to record trace data of their operation for use in system troubleshooting. They rely on a com-
mon infrastructure in the kernel that provides trace data to the user-mode Event Tracing for
Windows (ETW) facility. An application that uses ETW falls into one or more of three catego-
ries:

■ Controller A controller starts and stops logging sessions and manages buffer pools.

■ Provider A provider defines GUIDs (globally unique identifiers) for the event classes it
can produce traces for and registers them with ETW. The provider accepts commands
from a controller for starting and stopping traces of the event classes for which it’s
responsible.

■ Consumer A consumer selects one or more trace sessions for which it wants to read
trace data. They can receive the events in buffers in real-time or in log files.

Windows Server systems include several built-in providers in user mode, including ones for
Active Directory, Kerberos, and Netlogon. ETW defines a logging session with the name NT
Kernel Logger (also known as the kernel logger) for use by the kernel and core drivers. The
provider for the NT Kernel Logger is implemented by the Windows Management Instrumen-

Connection port

Client address
space

Kernel address space Server address
space

Server process

Handle

Handle

Server view
of section

Server
communication

port

Client
communication

port
Client view
of section

Handle

Shared
section

Message
queue

Client process

176 Microsoft Windows Internals, Fourth Edition
tation (WMI) device driver (driver name Wmixwdm), which is part of Ntoskrnl.exe. (See the
WMI section in Chapter 5 for more information on WMI.) Besides serving as the core of the
kernel logger, the driver manages user-mode ETW event class registration.

The WMI driver exports I/O control interfaces for use by the ETW routines in user mode and
the device drivers that provide traces data for the kernel logger. (See Chapter 9 for more infor-
mation on I/O control commands.) It also implements functions for use by the components
in Ntoskrnl.exe kernel mode that produce trace output.

When a controller in user mode enables the kernel logger, the ETW library, which is imple-
mented in \Windows\System32\Ntdll.dll, sends an I/O control request to the WMI driver
telling it which event classes the controller wants to start tracing. If file logging is configured
(as opposed to in-memory logging to a buffer), the WMI driver creates a system thread in the
system process that creates a log file. When the WMI driver receives trace events from the
enabled trace sources, it records them to a buffer. If it was started, the file logging thread
wakes up once per second to dump the contents of the buffers to the log file.

Trace records generated for the kernel logger have a standard ETW trace event header, which
records timestamp, process, and thread IDs, as well as information on what class of event the
record corresponds to. Event classes can provide additional data specific to their events. For
example, disk event class trace records indicate the operation type (read or write), disk num-
ber at which the operation is directed, and sector offset and length of the operation.

The trace classes that can be enabled for the kernel logger and the component that generates
each class include:

■ Disk I/O Disk class driver

■ File I/O File system drivers

■ Hardware Configuration Plug and play manager (See Chapter 9 for information on the
Plug and Play Manager.)

■ Image Load/Unload The system image loader in the kernel

■ Page Faults Memory manager (See Chapter 7 for more information on page faults.)

■ Process Create/Delete Process manager (See Chapter 6 for more information on the
process manager.)

■ Thread Create/Delete Process manager

■ Registry Activity Configuration manager (See “The Registry” section in Chapter 4 for
more information on the configuration manager.)

■ TCP/UDP Activity TCP/IP driver

You can find more information on ETW and the kernel logger, including sample code for con-
trollers and consumers, in the Platform SDK.

Chapter 3: System Mechanisms 177
EXPERIMENT: Tracing TCP/IP Activity with the Kernel Logger
To enable the kernel logger and have it generate a log file of TCP/IP activity, follow these
steps:

1. Run the Performance Tool, and select the Performance Logs And Alerts node.

2. Select Trace Logs, and then select New Log Settings from the Action menu.

3. When prompted, enter a name for the settings (for example, experiment).

4. On the dialog box that opens, select the Events Logged By System Provider option
and then deselect everything except the Network TCP/IP option.

5. In the Run As edit box, enter the Administrator account name and set the pass-
word to match it.

6. Dismiss the dialog box, and generate network activity by opening a browser and
visiting a Web site.

7. Select the trace log you created in the trace log node, and select Stop from the
Action menu.

8. Open a command prompt, and change to the C:\Perflogs directory (or the direc-
tory into which you specified that the trace log file be stored).

9. If you are running Windows XP or Windows Server 20003, run Tracerpt (located
in the \Windows\System32 directory) and pass it the name of the trace log file. If
you are running Windows 2000, download and run Tracedmp from the Windows
2000 Resource Kit. Both tools generate two files: dumpfile.csv and summary.txt.

178 Microsoft Windows Internals, Fourth Edition
10. Open dumpfile.csv in Microsoft Excel or in a text editor. You should see TCP and/
or UDP trace records like the following:

Wow64
Wow64 (Win32 emulation on 64-bit Windows) refers to the software that permit the execution
of 32-bit x86 applications on 64-bit Windows. It is implemented as a set of user-mode Dlls:

■ Wow64.dll: Manages process and thread creation, hooks exception dispatching and
base system calls exported by Ntoskrnl.exe. It also implements file system redirection
and registry redirection and reflection.

■ Wow64Cpu.dll: Manages the 32-bit CPU context of each running thread inside Wow64,
and provides processor architecture-specific support for switching CPU mode from 32-
bit to 64-bit and vice versa.

■ Wow64Win.dll: Intercepts the GUI system calls exported by Win32k.sys.

The relationship of these Dlls is shown in Figure 3-31.

Figure 3-31 Wow64 architecture

 TcpIp Recv 0xFFFFFFFF 1.27E+17 0 0 4 88 192.168.001.101 192.168.001.108 4608 0 0 0

 TcpIp Send 0xFFFFFFFF 1.27E+17 0 0 4 76 192.168.001.101 192.168.001.108 4608 0 0 0

 TcpIp Recv 0xFFFFFFFF 1.27E+17 0 0 4 88 192.168.001.101 192.168.001.108 4608 0 0 0

 TcpIp Send 0xFFFFFFFF 1.27E+17 0 0 4 76 192.168.001.101 192.168.001.108 4608 0 0 0

 TcpIp Recv 0xFFFFFFFF 1.27E+17 0 0 4 88 192.168.001.101 192.168.001.108 4608 0 0 0

 TcpIp Send 0xFFFFFFFF 1.27E+17 0 0 4 76 192.168.001.101 192.168.001.108 4608 0 0 0

 TcpIp Recv 0xFFFFFFFF 1.27E+17 0 0 4 88 192.168.001.101 192.168.001.108 4608 0 0 0

 TcpIp Send 0xFFFFFFFF 1.27E+17 0 0 4 76 192.168.001.101 192.168.001.108 4608 0 0 0

32-bit EXE, DLLs

32-bit Ntdll.dll

Wow64cpu.dll

Wow64.dll Wow64win.dll

64-bit Ntdll.dll

Ntoskrnl.exe Win32k.sys

Chapter 3: System Mechanisms 179
Wow64 Process Address Space Layout

Wow64 processes may run with 2 GB or 4 GB of virtual space. If the image header has the
large address aware flag set, then the memory manager will reserve the user mode address
space above the 4 GB boundary through the end of the user mode boundary. If the image is
not marked large address space aware, the memory manager will reserve the user mode
address space above 2 GB. (For more information on large address space support, see the sec-
tion “x86 User Address Space Layouts” in Chapter 7.)

System Calls

Wow64 hooks all the code paths where 32-bit code would transition to the native 64-bit sys-
tem or when the native system needs to call into 32-bit user mode code. During process cre-
ation, the process manager maps into the process address space the native 64-bit Ntdll.dll.
When the loader initialization is called, it inspects the image header and if it is 32-bit x86, it
loads Wow64.dll. Wow64 then maps in the 32-bit Ntdll.dll (stored in the \Win-
dows\System32\Syswow64 directory). Wow64 then sets up the startup context inside Ntdll,
switches the CPU mode to 32-bits, and starts executing the 32-bit loader. From this point
onward, execution continues as if the process is running on a native 32-bit system.

Special 32-bit versions of Ntdll.dll, User32.dll, and Gdi32.dll are located in the \Win-
dows\System32\Syswow64 folder. These call into Wow64 rather than issuing the native 32-bit
system call instruction. Wow64 transitions to native 64-bit mode, captures the parameters asso-
ciated with the system call (converting 32-bit pointers to 64-bit pointers), and issues the corre-
sponding native 64-bit system call. When the native system call returns, Wow64 converts any
output parameters if necessary from 64-bit to 32-bit formats before returning to 32-bit mode.

Exception Dispatching

Wow64 hooks exception dispatching through ntdll’s KiUserExceptionDispatcher. Whenever
the 64-bit kernel is about to dispatch an exception to a Wow64 process, Wow64 captures the
native exception and context record in user mode and then prepares a 32-bit exception and
context record and dispatches it the same way the native 32-bit kernel would do.

User Callbacks

Wow64 intercepts all callbacks from the kernel into user mode. Wow64 treats such calls as
system calls; however, the data conversion is done in the reverse order: input parameters are
converted from 64-bits to 32-bits and output parameters are converted when the callback
returns from 32-bit to 64-bit.

180 Microsoft Windows Internals, Fourth Edition
File System Redirection

To maintain application compatibility and to reduce the effort of porting applications from
Win32 to 64-bit Windows, system directory names were kept the same. Therefore, the \Win-
dows\System32 contains native 64-bit images. Wow64, as it hooks all the system calls, trans-
lates all the path-related APIs, and replaces the path name of the \Windows\System32 folder
with \Windows\System32\Syswow64. Wow64 also redirects \Windows\System32\Ime to
\Windows\System32\IME (x86) to help 32-bit application compatibility on 64-bit systems
with Far East languages installed. Also, 32-bit programs are installed in \Program Files (x86),
while 64-bit programs go in the normal \Program Files folder.

There are a few subdirectories of \Windows\System32 which, for compatibility reasons, are
exempted from being redirected such that accesses to them made by 32-bit applications actu-
ally access the real one. These directories include:

■ %windir%\system32\drivers\etc

■ %windir%\system32\spool

■ %windir%\system32\catroot2

■ %windir%\system32\logfiles

Finally, Wow64 provides a mechanism to disable the file system redirection built into Wow64
on a per-thread basis using the Wow64EnableWow64FsRedirection function, available on Win-
dows Server 2003 and later.

Registry Redirection and Reflection

Applications and components store their configuration data in the registry. Components usu-
ally write their configuration data in the registry when they are registered during installation.
If the same component is installed and registered both as a 32-bit binary and a 64-bit binary,
then the last component being registered will override the registration of the previous compo-
nent as they both write to the same location in the registry.

To help solve this problem transparently without introducing any code changes to 32-bit com-
ponents, the registry is split into two portions: Native and Wow64. By default, 32-bit compo-
nents access the 32-bit view, and 64-bit components access the 64-bit view. This provides a
safe execution environment for 32-bit and 64-bit components and separates the 32-bit appli-
cation state from the 64-bit one if it exists.

To implement this, Wow64 intercepts all the system calls that open registry keys and re-trans-
lates the key path to point it to the Wow64 view of the registry. Wow64 splits the registry at
these points:

■ HKLM\Software

■ HKEY_CLASSES_ROOT

Chapter 3: System Mechanisms 181
■ HKEY_CURRENT_USER\Software\Classes

Under each of these keys, Wow64 creates a key called Wow6432Node. Under this key is
stored 32-bit configuration information. All other portions of the registry are shared between
32-bit and 64-bit applications (e.g., HKLM\System).

For applications that need to explicitly specify a registry key for a certain view, the following
flags on the RegOpenKeyEx and RegCreateKeyEx permit this:

■ KEY_WOW64_64KEY – explicitly opens a 64-bit key from either a 32-bit or 64-bit
application

■ KEY_WOW64_32KEY – explicitly opens a 32-bit key from either a 32-bit or 64-bit
application

To enable interoperability through 32-bit and 64-bit COM components, Wow64 mirrors cer-
tain portions of the registry when updated in one view to the other. It does this by intercept-
ing updates to any of the reflected keys, and mirrors the changes intelligently to the other view
of the registry. The list of reflected keys is:

■ HKEY_LOCAL_MACHINE\Software\Classes

■ HKEY_LOCAL_MACHINE\Software\Ole

■ HKEY_LOCAL_MACHINE\Software\Rpc

■ HKEY_LOCAL_MACHINE\Software\COM3

■ HKEY_LOCAL_MACHINE\Software\EventSystem

Reflection of HKLM\Software\Classes\CLSID is intelligent; only LocalServer32 CLSIDs are
reflected because they run out of process, thus they can be COM-activated by 32-bit or 64-bit
applications. However, InProcServer32 CLSIDs are not reflected because 32-bit COM DLLs can’t
be loaded in a 64-bit process and likewise 64-bit COM DLLs can’t be loaded in a 32-bit process.

When reflecting a key/value, the registry reflector marks the key so that it understands that it
has been created by the reflector. This is to help the deletion case when deleting a key that has
been reflected; thus the reflector will be able to tell if it needs to delete the reflected key if it has
been written by the reflector.

I/O Control Requests

Besides normal read and write operations, applications can communicate with some device
drivers through device I/O control functions using the Windows DeviceIoControlFile API. The
application may specify an input and/or output buffer along with the call. If the buffer con-
tains pointer-dependent data, and the process sending the control request is a Wow64 pro-
cess, then the view of the input and/or output structure is different between the 32-bit
application and the 64-bit driver, since pointers are 4 bytes for 32-bit applications and 8 bytes

182 Microsoft Windows Internals, Fourth Edition
for 64-bit applications. In this case, the kernel driver is expected to convert the associated
pointer-dependent structures. Drivers can call the IoIs32bitProcess function to detect if an I/O
request originated from a Wow64 process or not.

16-Bit Installer Applications

Wow64 doesn’t support running 16-bit applications. However, since many application install-
ers are 16-bit programs, Wow64 has special case code to make references to certain well
known 16-bit installers work. These installers include:

■ Microsoft ACME Setup version: 2.6, 3.0, 3.01, and 3.1.

■ InstallShield version 5.x (where x is any minor version number).

Whenever a 16-bit process is about to be created using CreateProcess() API, Ntvdm64.dll is
loaded and control is transferred to it to inspect whether the 16-bit executable is one of the
supported installers. If it is, another CreateProcess is issued to launch a 32-bit version of the
installer with the same command line arguments.

Printing

32-bit printer drivers cannot be used on 64-bit Windows. Print drivers must be ported to
native 64-bit versions. However, since printer drivers run in the user mode address space of
the requesting process, and since only native 64-bit printer drivers are supported on 64-bit
Windows, a special mechanism is needed to support printing from 32-bit processes. This is
done by redirecting all printing functions to Splwow64.exe, the Wow64 RPC print server.
Since Splwow64 is a 64-bit process, it can load 64-bit printer drivers.

Restrictions

Wow64 does not support the execution of 16-bit applications (this is supported on 32-bit ver-
sions of Windows) or the loading of 32-bit kernel mode device drivers (they must be ported
to native 64-bits). Wow64 processes can only load 32-bit DLLs and can’t load native 64-bit
Dlls. Likewise, native 64-bit processes can’t load 32-bit DLLs.

In addition to the above, due to page size differences, Wow64 on IA-64 systems does not sup-
port the ReadFileScatter, WriteFileGather, GetWriteWatch, or Address Window Extension
(AWE) functions. Also, hardware acceleration through DirectX is not available (software emu-
lation is provided for Wow64 processes).

Conclusion
In this chapter, we’ve examined the key base system mechanisms on which the Windows
executive is built. In the next chapter, we’ll look at three important mechanisms involved with
the management infrastructure of Windows: the registry, services, and Windows Management
Instrumentations (WMI).

Chapter 4

Management Mechanisms

This chapter describes three fundamental mechanisms in Microsoft Windows that are critical
to the management and configuration of the system:

■ The registry

■ Services

■ Windows Management Instrumentation

The Registry
The registry plays a key role in the configuration and control of Windows systems. It is the
repository for both systemwide and per-user settings. Although most people think of the reg-
istry as static data stored on the hard disk, as you’ll see in this section, the registry is also a
window into various in-memory structures maintained by the Windows executive and kernel.
This section isn’t meant to be a complete reference to the contents of the Windows registry.
That kind of in-depth information is documented in the “Technical Reference to the Windows
2000 Registry” help file in the Windows 2000 resource kits (Regentry.chm), and for Windows
XP and Windows Server 2003 that information can be found online as part of the Windows
Server 2003 Deployment Kit at http://www.microsoft.com/windowsserver2003/techinfo/reskit/
deploykit.mspx.

We’ll start by providing you with an overview of the registry structure, a discussion of the data
types it supports, and a brief tour of the key information Windows maintains in the registry.
Then we’ll look inside the internals of the configuration manager, the executive component
responsible for implementing the registry database. Among the topics we’ll cover are the inter-
nal on-disk structure of the registry, how Windows retrieves configuration information when
an application requests it, and what measures are employed to protect this critical system
database.

Viewing and Changing the Registry

In general, you should never have to edit the registry directly: application and system settings
stored in the registry that might require manual changes should have a corresponding user
interface to control their modification. However, as you’ve already seen a number of times in
183

184 Microsoft Windows Internals, Fourth Edition
this book, some advanced and debug settings have no editing user interface. Therefore, a
number of tools are included with Windows that enable you to view and modify the registry.

Windows 2000 comes with two tools for editing the registry—Regedit.exe and Regedt32.exe—
whereas Windows XP and Windows Server 2003 have only Regedit.exe. The reason is that the
Windows 2000 version of Regedit, which has flexible searching, importing, and exporting
capabilities, was ported from Windows 98 and therefore does not support editing or viewing
registry security or registry data types not defined on Windows 98. Windows 2000 includes
Regedt32 because although it doesn’t have as powerful a search feature or support importing
and exporting, it was written to run only on Windows 2000 and so it supports security and
Windows 2000–specific data types. The Regedit included with Windows XP and Windows
Server 2003 includes security editing and knowledge of all registry data types, and thus obvi-
ates the need for Regedt32.

There are also a number of command-line registry tools. Reg.exe, for instance, which is
included in Windows XP and Windows Server 2003 and available in the Windows 2000 Sup-
port Tools, has the ability to import, export, back up, and restore keys, as well as to compare,
modify, and delete keys and values.

Registry Usage

There are three principal times that configuration data is read:

■ During the boot process, the system reads settings that specify what device drivers to
load and how various subsystems—such as the memory manager and process manager—
configure themselves and tune system behavior.

■ During login, Explorer and other Windows components read per-user preferences from
the registry, including network drive-letter mappings, desktop wallpaper, screen saver,
menu behavior, and icon placement.

■ During their startup, applications read systemwide settings, such as a list of optionally
installed components and licensing data, as well as per-user settings that might include
menu and toolbar placement and a list of most-recently accessed documents.

However, the registry can be read at other times as well, such as in response to a modification
of a registry value or key. Some applications monitor their configuration settings in the regis-
try and read updated settings when they see a change. In general, however, on an idle system
there should be no registry activity.

The registry is commonly modified in the following cases:

■ Although not a modification, the registry’s initial structure and many default settings are
defined by a prototype version of the registry that ships on the Windows setup media
that is copied onto a new installation.

■ Application setup utilities create default application settings and settings that reflect
installation configuration choices.

Chapter 4: Management Mechanisms 185
■ During the installation of a device driver, the Plug and Play system creates settings in the
registry that tell the I/O manager how to start the driver and creates other settings that
configure the driver’s operation. (See Chapter 9 for more information on how device
drivers are installed.)

■ When you change application or system settings through user interfaces, the changes
are often stored in the registry.

Note Sadly, some applications poll the registry looking for changes when they should be
using the registry’s RegNotifyChangeKey function, which puts a thread to sleep until a change
occurs to the area of the registry in which they’re interested.

Registry Data Types

The registry is a database whose structure is similar to that of a disk volume. The registry con-
tains keys, which are similar to a disk’s directories, and values, which are comparable to files on
a disk. A key is a container that can consist of other keys (subkeys) or values. Values, on the
other hand, store data. Top-level keys are root keys. Throughout this section, we’ll use the
words subkey and key interchangeably. (Only root keys are not subkeys.)

Both keys and values borrow their naming convention from the file system. Thus, you can
uniquely identify a value with the name mark, which is stored in a key called trade, with the
name trade\mark. One exception to this naming scheme is each key’s unnamed value. The
two Registry Editor utilities, Regedit and Regedt32, display these values differently: Regedit
displays the unnamed value as (Default); Regedt32 uses <No Name>.

Values store different kinds of data and can be one of the 15 types listed in Table 4-1. The majority
of registry values are REG_DWORD, REG_BINARY, or REG_SZ. Values of type REG_DWORD
can store numbers or Booleans (on/off values); REG_BINARY values can store numbers larger
than 32 bits or raw data such as encrypted passwords; REG_SZ values store strings (Unicode, of
course) that can represent elements such as names, filenames, paths, and types.

Table 4-1 Registry Value Types

Value Type Description

REG_NONE No value type.

REG_SZ Fixed-length Unicode string.

REG_EXPAND_SZ Variable-length Unicode string that can have embed-
ded environment variables.

REG_BINARY Arbitrary-length binary data.

REG_DWORD 32-bit number.

REG_DWORD_LITTLE_ENDIAN 32-bit number, with low byte first. This is equivalent
to REG_DWORD.

REG_DWORD_BIG_ENDIAN 32-bit number, with high byte first.

REG_LINK Unicode symbolic link.

186 Microsoft Windows Internals, Fourth Edition
The REG_LINK type is particularly interesting because it lets a key transparently point to
another key or value. When you traverse the registry through a link, the path searching con-
tinues at the target of the link. For example, if \Root1\Link has a REG_LINK value of
\Root2\RegKey, and RegKey contains the value RegValue, two paths identify RegValue:
\Root1\Link\RegValue and \Root2\RegKey\RegValue. As explained in the next section,
Windows prominently uses registry links: three of the six registry root keys are links to sub-
keys within the three nonlink root keys. Links aren’t saved; they must be dynamically created
after each reboot.

Registry Logical Structure

You can chart the organization of the registry via the data stored within it. There are six root
keys (and you can’t add new root keys or delete existing ones) that store information, as
shown in Table 4-2.

Why do root-key names begin with an H? Because the root-key names represent Windows
handles (H) to keys (KEY). As mentioned in Chapter 1, HKLM is an abbreviation used for
HKEY_LOCAL_MACHINE. Table 4-3 lists all the root keys and their abbreviations. The fol-
lowing sections explain in detail the contents and purpose of each of these six root keys.
Again, see the “Technical Reference to the Windows 2000 Registry” help file in the Windows
2000 resource kits or the registry section of the Windows Server 2003 Deployment Kit for
details on the contents of these keys.

REG_MULTI_SZ Array of Unicode NULL-terminated strings.

REG_RESOURCE_LIST Hardware resource description.

REG_FULL_RESOURCE_DESCRIPTOR Hardware resource description.

REG_RESOURCE_REQUIREMENTS_LIST Resource requirements.

REG_QWORD 64-bit number.

REG_QWORD_LITTLE_ENDIAN 64-bit number, with low byte first. This is equivalent
to REG_QWORD.

REG_QWORD_BIG_ENDIAN 64-bit number, with high byte first.

Table 4-1 Registry Value Types

Value Type Description

Table 4-2 The Six Root Keys

Root Key Description

HKEY_CURRENT_USER Stores data associated with the currently logged-on user

HKEY_USERS Stores information about all the accounts on the machine

HKEY_CLASSES_ROOT Stores file association and Component Object Model (COM)
object registration information

HKEY_LOCAL_MACHINE Stores system-related information

HKEY_PERFORMANCE_DATA Stores performance information

HKEY_CURRENT_CONFIG Stores some information about the current hardware profile

Chapter 4: Management Mechanisms 187
HKEY_CURRENT_USER

The HKCU root key contains data regarding the preferences and software configuration of the
locally logged-on user. It points to the currently logged-on user’s user profile, located on the
hard disk at \Documents and Settings\<username>\Ntuser.dat. (See the section “Registry
Internals” later in this chapter to find out how root keys are mapped to files on the hard disk.)
Whenever a user profile is loaded (such as at logon time or when a service process runs under
the context of a specific username), HKCU is created as a link to the user’s key under
HKEY_USERS. Table 4-4 lists some of the subkeys under HKCU.

Table 4-3 Registry Root Keys

Root Key
Abbrevia-
tion Description Link

HKEY_CURRENT_
USER

HKCU Points to the user profile
of the currently logged-on
user

Subkey under HKEY_USERS
corresponding to currently
logged-on user

HKEY_USERS HKU Contains subkeys for all loaded
user profiles

Not a link

HKEY_CLASSES_
ROOT

HKCR Contains file association
and COM registration
information

HKLM\SOFTWARE\Classes

HKEY_LOCAL_
MACHINE

HKLM Placeholder—contains other
keys

Not a link

HKEY_CURRENT_
CONFIG

HKCC Current hardware profile HKLM\SYSTEM\CurrentCon-
trolSet\Hardware Profiles\
Current

HKEY_PERFOR-
MANCE_DATA

HKPD Performance counters Not a link

Table 4-4 HKEY_CURRENT_USER Subkeys

Subkey Description

AppEvents Sound/event associations

Console Command window settings (for example, width, height, and
colors)

Control Panel Screen saver, desktop scheme, keyboard, and mouse settings
as well as accessibility and regional settings

Environment Environment variable definitions

Keyboard Layout Keyboard layout setting (for example, U.S. or U.K.)

Network Network drive mappings and settings

Printers Printer connection settings

Software User-specific software preferences

UNICODE Program Groups User-specific start menu group definitions

Windows 3.1 Migration Status File status data for systems that upgrade from Windows 3.x to
Windows 2000 and higher

188 Microsoft Windows Internals, Fourth Edition
HKEY_USERS

HKU contains a subkey for each loaded user profile and user class registration database on
the system. It also contains a subkey named HKU\.DEFAULT that is linked to the profile for
the system (which is used by processes running under the local system account and is
described in more detail in the section “Services” later in this chapter). This is the profile used
by Winlogon, for example, so that changes to the desktop background settings in that profile
will be implemented on the logon screen. When a user logs on to a system for the first time
and her account does not depend on a roaming domain profile (that is, the user’s profile is
obtained from a central network location at the direction of a domain controller), the system
creates a profile for her account that’s based on the profile stored in C:\Documents and Set-
tings\Default User.

The location under which the system stores profiles is defined by the registry value
HKLM\Software\Microsoft\Windows NT\CurrentVersion\ProfileList\ProfilesDirectory,
which is by default set to %SystemDrive%\Documents and Settings. The ProfileList key also
stores the list of profiles present on a system. Information for each profile resides under a sub-
key that has a name reflecting the Security Identifier (SID) of the account to which the profile
corresponds. (See Chapter 8 for more information on SIDs.) Data stored in a profile’s key
includes the time of the last load of the profile in the ProfileLoadTimeLow and ProfileLoadTime-
High values, the binary representation of the account SID in the Sid value, and the path to the
profile’s on-disk hive (which is described later in this chapter in the “Hives” section) in the
ProfileImagePath directory. Windows XP and Windows Server 2003 show the list of profiles
stored on a system in the User Profiles management dialog box, shown in Figure 4-1, that you
access by clicking Settings in the User Profiles section of the Advanced Tab on the System
Control Panel applet.

Figure 4-1 The User Profiles management dialog box

Chapter 4: Management Mechanisms 189
EXPERIMENT: Watching Profile Loading and Unloading
You can see a profile load into the registry and then unload by using the Runas com-
mand to launch a process in an account that’s not currently logged on to the machine.
While the new process is running, run Regedit and note the loaded profile key under
HKEY_USERS. After terminating the process, perform a refresh in Regedit by pressing
the F5 key and the profile should no longer be present.

HKEY_CLASSES_ROOT

HKCR consists of two types of information: file extension associations and COM class regis-
trations. A key exists for every registered filename extension. Most keys contain a REG_SZ
value that points to another key in HKCR containing the association information for the class
of files that extension represents. For example, HKCR\.xls would point to information on
Microsoft Excel files in a key such as HKCU\Excel.Sheet.8. Other keys contain configuration
details for COM objects registered on the system.

The data under HKEY_CLASSES_ROOT comes from two sources:

■ The per-user class registration data in HKCU\SOFTWARE\Classes (mapped to the file
on hard disk \Documents and Settings\<username>\Local Settings\Application
Data\Microsoft\Windows\Usrclass.dat)

■ Systemwide class registration data in HKLM\SOFTWARE\Classes

The reason that there is a separation of per-user registration data from systemwide registration
data is so that roaming profiles can contain these customizations. It also closes a security hole:
a nonprivileged user cannot change or delete keys in the systemwide version
HKEY_CLASSES_ROOT, and thus cannot affect the operation of applications on the system.
Nonprivileged users and applications can read systemwide data and can add new keys and
values to systemwide data (which are mirrored in their per-user data), but they can modify
existing keys and values in their private data only.

HKEY_LOCAL_MACHINE

HKLM is the root key that contains all the systemwide configuration subkeys: HARDWARE,
SAM, SECURITY, SOFTWARE, and SYSTEM.

The HKLM\HARDWARE subkey maintains descriptions of the system’s hardware and all
hardware device-to-driver mappings. The Device Manager tool (which is available by running
System from Control Panel, clicking the Hardware tab, and then clicking Device Manager) lets
you view registry hardware information that it obtains by simply reading values out of the
HARDWARE key.

190 Microsoft Windows Internals, Fourth Edition
EXPERIMENT: Fun with the Hardware Key
You can fool your coworkers or friends into thinking that you have the latest and greatest
processor by modifying the value of the ProcessorNameString value under HKLM\HARD-
WARE\DESCRIPTION\System\CentralProcessor\0. The System applet of the control
panel displays the ProcessorNameString value on the General page. Changes you make to
other values in that key, such as the ~MHz, do not have any affect on what the System
applet displays, however, because the system caches many of the values for use by func-
tions that applications use to query the system’s processor capabilities.

HKLM\SAM holds local account and group information, such as user passwords, group defi-
nitions, and domain associations. Windows Server systems that are operating as domain con-
trollers store domain accounts and groups in Active Directory, a database that stores
domainwide settings and information. (Active Directory isn’t described in this book.) By
default, the security descriptor on the SAM key is configured so that even the administrator
account doesn’t have access.

HKLM\SECURITY stores systemwide security policies and user-rights assignments.
HKLM\SAM is linked into the SECURITY subkey under HKLM\SECURITY\SAM. By default,
you can’t view the contents of HKLM\SECURITY or HKLM\SAM\SAM because the security
settings of those keys allow access only by the system account. (System accounts are dis-
cussed in greater detail later in this chapter.) You can change the security descriptor to allow
read access to administrators, or you can use PsExec to run Regedit in the local system
account (as shown in the related experiment for how to do that) if you want to peer inside.
However, that glimpse won’t be very revealing because the data is undocumented and the
passwords are encrypted with one-way mapping—that is, you can’t determine a password
from its encrypted form.

HKLM\SOFTWARE is where Windows stores systemwide configuration information not
needed to boot the system. Also, third-party applications store their systemwide settings here,
such as paths to application files and directories, and licensing and expiration date information.

HKLM\SYSTEM contains the systemwide configuration information needed to boot the sys-
tem, such as which device drivers to load and which services to start. Because this information
is critical to starting the system, Windows also maintains a copy of part of this information,
called the last known good control set, under this key. The maintenance of a copy allows an admin-
istrator to select a previously working control set in the case that configuration changes made to
the current control set prevent the system from booting. For details on when Windows declares
the current control set “good,” see the section “Accepting the Boot and Last Known Good.”

HKEY_CURRENT_CONFIG

HKEY_CURRENT_CONFIG is just a link to the current hardware profile, stored under
HKLM\SYSTEM\CurrentControlSet\Hardware Profiles\Current. Hardware profiles allow

Chapter 4: Management Mechanisms 191
the administrator to configure variations to the base system driver settings. Although the
underlying profile might change from boot to boot, applications can always reference the cur-
rently active profile through this key. Hardware profile management is managed through the
Hardware Profiles dialog box that you access by clicking Settings in the Hardware Profiles sec-
tion on the Hardware page of the Control Panel’s System applet. During the boot process,
Ntldr will prompt you to specify which profile it should use if there is more than one.

HKEY_PERFORMANCE_DATA

The registry is the mechanism to access performance counter values on Windows, whether
those are from operating system components or server applications. One of the side benefits
of providing access to the performance counters via the registry is that remote performance
monitoring works “for free” because the registry is easily accessible remotely through the nor-
mal registry APIs.

You can access the registry performance counter information directly by opening a special key
named HKEY_PERFORMANCE_DATA and querying values beneath it. You won’t find this
key by looking in the Registry Editor; this key is available only programmatically through the
Windows registry functions, such as RegQueryValueEx. Performance information isn’t actually
stored in the registry; the registry functions use this key to locate the information from perfor-
mance data providers.

You can also access performance counter information by using the Performance Data Helper
(PDH) functions available through the Performance Data Helper API (Pdh.dll). Figure 4-2
shows the components involved in accessing performance counter information.

Figure 4-2 Registry performance counter architecture

High-
performance
data provider

object

High-
performance
data provider

object

High-
performance
data provider

object

System
performance

DLL

Performance
extension

DLL

Windows Management Instrumentation

High-performance provider interface

Registry DLL provider

Performance-
monitoring
applications

Programming
interfaces

RegQueryValueEx

Advapi32.dll PerfLib

Pdh.dll

Custom
application A

Custom
application B

Performance
tool

192 Microsoft Windows Internals, Fourth Edition
Troubleshooting Registry Problems

Because the system and applications depend so heavily on configuration settings to guide
their behavior, system and application failures can result from changing registry data or secu-
rity. When the system or an application fails to read settings that it assumes it will always be
able to access, it can misbehave by crashing, displaying error messages that hide the root
cause, or by not executing with limited functionality. It’s virtually impossible to know what
registry keys or values are misconfigured without understanding how the system or the appli-
cation that’s failing is accessing the registry. In such situations, the Regmon utility from
www.sysinternals.com might provide the answer.

Regmon lets you monitor registry activity as it occurs. For each registry access, Regmon shows
you the process that performed the access and the time, type, and result of the access. This
information is useful for seeing how applications and the system rely on the registry, discov-
ering where applications and the system store configuration settings and troubleshooting
problems related to applications having missing registry keys or values. Regmon includes
advanced filtering and highlighting so that you can zoom in on activity related to specific keys
or values, or to the activity of particular processes.

Regmon Internals

Regmon relies on a device driver that it extracts from its executable image at run time and
then starts. Its first execution requires that the account running it have the Load Driver privi-
lege as well as the Debug privilege; subsequent executions in the same boot session require
only the Debug privilege because once loaded, the driver remains resident.

There are actually three drivers stored within the Regmon executable: one for use on
Windows 95, Windows 98, and Windows Millennium; one for Windows NT, Windows 2000,
and Windows XP; and another for use on Windows Server 2003. The reason that there is a
driver specific to Windows Server 2003 is that on Windows NT, Windows 2000, and Win-
dows XP the only way for a driver to monitor all registry activity is through system-call hook-
ing and because on Windows Server 2003 a driver can use the registry callback mechanism to
monitor registry activity. (Windows 95, Windows 98, and Windows Millennium support a
different registry monitoring mechanism.)

Recall from the “System Service Dispatching” section of Chapter 3 that system service func-
tion addresses are stored in a system service dispatch table in the kernel. A driver can hook a
system service by saving the address of a function from the array and replacing the array entry
with the address of its hook function. After performing theses steps, any invocations of the
hooked system service get diverted to the hooking driver’s function, which can examine or mod-
ify the parameters to the function and, optionally, execute the original system service function.
If it calls the original function, the driver can also examine the result of the operation and exam-
ine data the function returns, such as data associated with registry values. Figure 4-3 shows how
Regmon intercepts registry functions in kernel mode.

Chapter 4: Management Mechanisms 193
Figure 4-3 Regmon’s use of system service hooking

The registry callback mechanism was introduced in Windows XP; however, Regmon still uses
system call hooking when run on Windows XP because the callback mechanism on Windows
XP does not report all registry activity. When a driver uses the callback mechanism, it registers
a callback function with the configuration manager. The configuration manager executes the
driver’s callback functions at certain points during the execution of registry system services so
that the driver has full visibility and control over registry accesses. Antivirus products that
scan registry data for viruses or prevent unauthorized processes from modifying the registry
are other users of the callback mechanism.

EXPERIMENT: Viewing Registry Activity on an Idle System
Because the registry implements the RegNotifyChangeKey function that applications can
use to request notification of registry changes without polling for them, when you Reg-
mon on a system that’s idle you should not see repetitive accesses to the same registry
keys or values. Any such activity identifies a poorly written application that unnecessar-
ily negatively affects a system’s overall performance.

Run Regmon, and after several seconds examine the output log to see whether you can
spot polling behavior. Right-click on an output line associated with polling, and choose
Process Properties from the context menu to view details about the process performing
the activity.

The Regmon GUI
periodically obtains
monitored data from
the driver. User mode

Kernel mode

System service call

Application
executes
registry-related
system service
call.

System service array

Windows system
service dispatcher
looks up the system
service function
address, which
Regmon has replaced
with the address
of its hook function.

Regmon
calls its
system service
hook function.

Regmon
invokes the
original
function.

Regmon
driver

Registry
System Service

System service
dispatcher

Application Regmon GUI

2

3

1

4

5

194 Microsoft Windows Internals, Fourth Edition
EXPERIMENT: Using Regmon to Locate Application Registry
Settings
In some troubleshooting scenarios, you might need to determine where in the registry
the system or an application stores particular settings. This experiment has you use Reg-
mon to discover the location of Notepad’s settings. Notepad, like most Windows appli-
cations, saves user preferences—such as word-wrap mode, font and font size, and
window position—across executions. By having Regmon watching when Notepad reads
or writes its settings, you can identify the registry key in which the settings are stored.
Here are the steps for doing this:

1. Have Notepad save a setting that you can easily search for in a Regmon trace. You
can do this by running Notepad, setting the font to Times New Roman, and then
exiting Notepad.

2. Run Regmon. Open the highlighting filter dialog box and enter notepad.exe in
the Include filter. This will have Regmon log only activity that has notepad.exe in
either the Process or Path columns.

3. Run Notepad again, and after it has launched stop Regmon’s event capture by tog-
gling Capture Events in the Regmon File menu.

4. Scroll to the top line of the resultant log and select it.

5. Press Ctrl+F to open a Find dialog box, and search for times new. Regmon should
highlight a line like the one shown in the following graphic that represents Note-
pad reading the font value from the Registry. Other operations in the immediate
vicinity should relate to other Notepad settings.

6. Finally, double-click the highlighted line. Regmon will execute Regedit (if it’s not
already running) and cause it to navigate to and select the Notepad referenced reg-
istry value.

Chapter 4: Management Mechanisms 195
Regmon Troubleshooting Techniques

Two basic Regmon troubleshooting techniques are effective for discovering the cause of regis-
try-related application or system problems:

■ Look at the last thing in the Regmon trace that the application did before it failed. This
action might point to the problem.

■ Compare a Regmon trace of the failing application with a trace from a working system.

To follow the first approach, run Regmon and then run the application. At the point the failure
occurs, go back to Regmon and stop the logging (by pressing Ctrl+E). Then go to the end of
the log and find the last operations performed by the application before it failed (or crashed,
hung, or whatever). Starting with the last line, work your way backward, examining the files,
registry keys, or both that were referenced—often this will help pinpoint the problem.

Use the second approach when the application fails on one system but works on another.
Capture a Regmon trace of the application on the working and failing systems, and save the
output to a log file. Then open the good and bad log files with Microsoft Excel (accepting the
defaults on the Import wizard), and delete the first three columns. (If you don’t delete the first
three columns, the comparison will show every line as different because the first three col-
umns contain information that is different from run to run, such as the time and the process
ID.) Finally, compare the resulting log files. (You can do this by using WinDiff, which on Win-
dows XP is included in the free support tools on the Windows XP CD, and for Windows 2000
it is included in the Resource Kit.)

Entries in a Regmon trace that have values of “NOTFOUND” or “ACCESS DENIED” in the
Result column are ones that you should investigate. NOTFOUND is reported when an appli-
cation attempts to read from a registry key or value that doesn’t exist. In many cases, a missing
key or value is innocuous because a process that fails to read a setting from the registry simply
falls back on default values. In some cases, however, applications expect to find values for
which there is no default and will fail if they are missing.

Access-denied errors are a common source of registry-related application failures and occur
when an application doesn’t have permission to access a key the way that it wants. Applica-
tions that do not validate registry operation results or perform proper error recovery will fail.

A common result string that might appear suspicious is BUFROVERFLOW. It does not indi-
cate a buffer-overflow exploit in the application that receives it. Instead, it’s used by the con-
figuration manager to inform an application that the buffer it specified to store a registry value
is too small to hold the value. Application developers often take advantage of this behavior to
determine how large a buffer to allocate to store a value. They first perform a registry query
with a 0-length buffer that returns a buffer-overflow error and the length of the data it
attempted to read. The application then allocates a buffer of the indicated size and rereads the
value. You should therefore see operations that return BUFROVERFLOW repeat with a suc-
cessful result.

196 Microsoft Windows Internals, Fourth Edition
In one example of Regmon being used to troubleshoot a real problem, it saved a user from
doing a complete reinstall of his Windows XP system. The symptom was that Internet
Explorer would hang on startup if the user did not first manually dial the Internet connection.
This Internet connection was set as the default connection for the system, so starting Internet
Explorer should have caused an automatic dial-up to the Internet (because Internet Explorer
was set to display a default home page upon startup).

An examination of a Regmon log of Internet Explorer startup activity, going backward from
the point in the log where Internet Explorer hung, showed a query to a key under
HKCU\Software\Microsoft\RAS Phonebook. The user reported that he had previously unin-
stalled the dialer program associated with the key and manually created the dial-up connec-
tion. Because the dial-up connection name did not match that of the uninstalled dialer
program, it appeared that the key had not been deleted by the dialer’s uninstall program and
that it was causing Internet Explorer to hang. After the key was deleted, Internet Explorer
functioned as expected.

Logging Activity in Unprivileged Accounts or During Logon/Logoff

A common application-failure scenario is that an application works when run in an account
that has Administrative group membership but not when run in the account of an unprivi-
leged user. As described earlier, executing Regmon requires security privileges that are not
normally assigned to standard user accounts, but you can capture a trace of applications exe-
cuting in the logon session of an unprivileged user by using the Runas command to execute
Regmon in an administrative account.

If a registry problem relates to account logon or logoff, you’ll also have to take special steps to be
able to use Regmon to capture a trace of those phases of a logon session. Applications that are run
in the local system account are not terminated when a user logs off, and you can take advantage
of that fact to have Regmon run through a logoff and subsequent logon. You can launch Regmon
in the local system account either by using the At command that’s built into Windows and spec-
ifying the /interactive flag, or by using the PsExec utility from www.sysinternals.com, like this:

psexec –i –s –d c:\regmon.exe

The -i switch directs PsExec to have Regmon's window appear on the interactive console, the
-s switch has PsExec run Regmon in the local system account, and the -d switch has PsExec
launch Regmon and exit without waiting for Regmon to terminate. When you execute this
command, the instance of Regmon that executes will survive logoff and reappear on the desk-
top when you log back on, having captured the registry activity of both actions.

Another way to monitor registry activity during the logon, logoff, boot, or shut down process
is to use the Regmon log boot feature, which you can enable by selecting Log Boot in the
Options menu. The next time you boot the system, the Regmon device driver logs registry
activity from early in the boot to the \Windows\Regmon.log. It will continue logging to that
file until disk space runs out, the system shuts down, or you run Regmon. A log file storing a
registry trace of startup, logon, logoff, and shut down on a Windows XP system will typically
be between 50 and 150 MB in size.

Chapter 4: Management Mechanisms 197
Registry Internals

In this section, you’ll find out how the configuration manager—the executive subsystem that
implements the registry—organizes the registry’s on-disk files. We’ll examine how the config-
uration manager manages the registry as applications and other operating system compo-
nents read and change registry keys and values. We’ll also discuss the mechanisms by which
the configuration manager tries to ensure that the registry is always in a recoverable state,
even if the system crashes while the registry is being modified.

Hives

On disk, the registry isn’t simply one large file but rather a set of discrete files called hives. Each
hive contains a registry tree, which has a key that serves as the root or starting point of the tree.
Subkeys and their values reside beneath the root. You might think that the root keys displayed
by the Registry Editor tools correlate to the root keys in the hives, but such is not the case. Table
4-5 lists registry hives and their on-disk filenames. The pathnames of all hives except for user
profiles are coded into the configuration manager. As the configuration manager loads hives,
including system profiles, it notes each hive’s path in the values under the HKLM\SYS-
TEM\CurrentControlSet\Control\hivelist subkey, removing the path if the hive is unloaded.
(User profiles are unloaded when not referenced.) It creates the root keys, linking these hives
together to build the registry structure you’re familiar with and that the Registry Editor displays.

You’ll notice that some of the hives listed in Table 4-5 are volatile and don’t have associated
files. The system creates and manages these hives entirely in memory; the hives are therefore
temporary. The system creates volatile hives every time it boots. An example of a volatile hive
is the HKLM\HARDWARE hive, which stores information about physical devices and the
devices’ assigned resources. Resource assignment and hardware detection occur every time
the system boots, so not storing this data on disk is logical.

Table 4-5 On-Disk Files Corresponding to Paths in the Registry

Hive Registry Path Hive File Path

HKEY_LOCAL_MACHINE\SYSTEM \Windows\System32\Config\System

HKEY_LOCAL_MACHINE\SAM \Windows\System32\Config\Sam

HKEY_LOCAL_MACHINE\SECURITY \Windows\System32\Config\Security

HKEY_LOCAL_MACHINE\SOFTWARE \Windows\System32\Config\Software

HKEY_LOCAL_MACHINE\HARDWARE Volatile hive

HKEY_LOCAL_MACHINE\SYSTEM\Clone Volatile hive (on Windows 2000 only)

HKEY_USERS\<security ID of username> \Documents and Settings\<username>\Ntuser.dat

HKEY_USERS\<security ID of user-
name>_Classes

\Documents and Settings\<username>\Local
Settings\Application Data\Microsoft\Windows\
Usrclass.dat

HKEY_USERS\.DEFAULT \Windows\System32\Config\Default

198 Microsoft Windows Internals, Fourth Edition
EXPERIMENT: Manually Loading and Unloading Hives
Regedt32 on Windows 2000 and Regedit on Windows XP and Windows Server 2003
have the ability to load hives that you can access through its File menu. This capability
can be useful in troubleshooting scenarios where you want to view or edit a hive from an
unbootable system or a backup medium. In this experiment, you’ll use Regedt32 (if
you’re running Windows 2000) or Regedit (if you’re running Windows XP and Win-
dows Server 2003) to load a version of the HKLM\SYSTEM hive that Windows Setup
creates and stores in \Windows\Repair during the install process.

1. Hives can be loaded only underneath HKLM or HKU, so open Regedit or
Regedt32, select HKLM, and choose Load Hive from the Regedit File menu or the
Regedt32 Registry menu.

2. Navigate to the \Windows\Repair directory in the Load Hive dialog box, select
System.bak, and open it. When prompted, enter Test as the name of the key under
which it will load.

3. Open the newly created HKLM\Test key, and explore the contents of the hive.

4. Open HKLM\System\CurrentControlSet\Control\Hivelist, and locate the entry
\Registry\Machine\Test, which demonstrates how the configuration manager
lists loaded hives in the HiveList key.

5. Select HKLM\Test, and choose Unload Hive from the Regedit File menu or the
Regedt32 Registry menu to unload the hive.

Hive Size Limits

In some cases, hive sizes are limited. For example, Windows places a limit on the size of the
HKLM\SYSTEM hive. It does so because Ntldr reads the entire HKLM\SYSTEM hive into
physical memory near the start of the boot process when virtual memory paging is not
enabled. Ntldr also loads Ntoskrnl and boot device drivers into physical memory, so it must
constrain the amount of physical memory assigned to HKLM\SYSTEM. (See Chapter 6 for
more information on the role Ntldr plays during the startup process.) On Windows 2000,
Ntldr places a fixed upper limit on its size of 12 MB, but on Windows XP and Windows Server
2003 it is more flexible, allowing the hive to be up to 200 MB or one fourth the amount of
physical memory on the system, whichever is lower.

On Windows 2000, there is also a limit on the combined sizes of all loaded registry hives.
Windows 2000 uses a type of kernel memory called paged pool to hold registry hives in mem-
ory, and therefore, the total amount of loaded registry data is constrained by the amount of
paged pool that’s available. The amount of paged pool the memory manager creates during its
initialization is based on a number of factors, such as the amount of physical memory on the
system. On a system where the memory manager creates the largest amount of paged pool

Chapter 4: Management Mechanisms 199
possible, the registry size limit is 376 MB. Because a system will not operate smoothly if there
is not enough paged pool left over for other uses, Windows 2000 won’t let registry data grow
to more than 80 percent of paged pool and also honors a user-configurable registry quota if
it’s less than that amount. Click the Change button in the Virtual Memory section of the Per-
formance Options dialog box that you reach on the Advanced page of the Control Panel’s Sys-
tem applet to view or modify the registry quota setting, which you can see in Figure 4-4.

Figure 4-4 Windows 2000 registry quota setting

The upper limit on the total size of loaded registry hives can create a limit on the number of
concurrently logged-in users on a Windows 2000 system running Terminal Services, because
each user’s profile contributes to the loaded hive size. On Windows XP and Windows Server
2003, the configuration manager therefore does not use paged pool and instead relies on the
memory manager’s memory-mapping functions to map into system memory only the por-
tions of registry hives that it’s accessing at any given point in time. There is no registry quota
on Windows XP or Windows Server 2003, and the total size of loaded hives does not con-
strain the scalability of Terminal Services.

EXPERIMENT: Looking at Hive Handles
The configuration manager opens hives by using the kernel handle table (described in
Chapter 3) so that it can access hives from any process context. Using the kernel handle
table is an efficient alternative to approaches that involve using drivers or executive com-
ponents to access from the system process only handles that must be protected from
user processes. You can use the Process Explorer utility, available from www.sysinter-
nals.com, to see the hive handles. On Windows 2000, the object manager reports kernel

200 Microsoft Windows Internals, Fourth Edition
handle table handles as being opened in the System Idle process, and on Windows XP
and Windows Server 2003 it reports them as being opened in the System process. Select
the appropriate process for the Windows version that you are running, and select Han-
dles from the Lower Pane View menu entry in the View menu. Sort by handle type, and
scroll until you see the hive files, as shown in the following graphic.

A special type of key known as a symbolic link makes it possible for the configuration manager
to link hives to organize the registry. A symbolic link is a key that redirects the configuration
manager to another key. Thus, the key HKLM\SAM is a symbolic link to the key at the root of
the SAM hive.

Hive Structure

The configuration manager logically divides a hive into allocation units called blocks in much
the same way that a file system divides a disk into clusters. By definition, the registry block
size is 4096 bytes (4 KB). When new data expands a hive, the hive always expands in block-
granular increments. The first block of a hive is the base block. The base block includes global
information about the hive, including a signature—regf—that identifies the file as a hive,
updated sequence numbers, a time stamp that shows the last time a write operation was initi-
ated on the hive, the hive format version number, a checksum, and the hive file’s internal file-
name (for example, \Device\HarddiskVolume1\WINDOWS\SYSTEM32\CONFIG\SAM).
We’ll clarify the significance of the updated sequence numbers and time stamp when we
describe how data is written to a hive file. The hive format version number specifies the data
format within the hive. The configuration manager uses hive format version 1.3 on Windows
2000. On Windows XP and Windows Server 2003, it uses format version 1.3 for all hives
except for System and Software for roaming profile compatibility with Windows 2000. For
System and Software hives, it uses version 1.5 because of the new format’s optimizations for
large values and searching.

Windows organizes the registry data that a hive stores in containers called cells. A cell can hold
a key, a value, a security descriptor, a list of subkeys, or a list of key values. A field at the

Chapter 4: Management Mechanisms 201
beginning of a cell’s data describes the data’s type. Table 4-6 describes each cell data type in
detail. A cell’s header is a field that specifies the cell’s size. When a cell joins a hive and the
hive must expand to contain the cell, the system creates an allocation unit called a bin. A bin
is the size of the new cell rounded up to the next block boundary. The system considers any
space between the end of the cell and the end of the bin to be free space that it can allocate to
other cells. Bins also have headers that contain a signature, hbin, and a field that records the
offset into the hive file of the bin and the bin’s size.

By using bins, instead of cells, to track active parts of the registry, Windows minimizes some
management chores. For example, the system usually allocates and deallocates bins less fre-
quently than it does cells, which lets the configuration manager manage memory more effi-
ciently. When the configuration manager reads a registry hive into memory, it can choose to
read only bins that contain cells (that is, active bins) and to ignore empty bins. When the sys-
tem adds and deletes cells in a hive, the hive can contain empty bins interspersed with active
bins. This situation is similar to disk fragmentation, which occurs when the system creates
and deletes files on the disk. When a bin becomes empty, the configuration manager joins to
the empty bin any adjacent empty bins to form as large a contiguous empty bin as possible.
The configuration manager also joins adjacent deleted cells to form larger free cells. (The con-
figuration manager shrinks a hive only when bins at the end of the hive become free. You can
compact the registry by backing it up and restoring it using the Windows RegSaveKey and
RegReplaceKey functions, which are used by the Windows Backup utility.)

Table 4-6 Cell Data Types

Data Type Description

Key cell A cell that contains a registry key, also called a key node. A key cell
contains a signature (kn for a key, kl for a symbolic link), the time
stamp of the most recent update to the key, the cell index of the
key’s parent key cell, the cell index of the subkey-list cell that iden-
tifies the key’s subkeys, a cell index for the key’s security descriptor
cell, a cell index for a string key that specifies the class name of the
key, and the name of the key (for example, CurrentControlSet).

Value cell A cell that contains information about a key’s value. This cell in-
cludes a signature (kv), the value’s type (for example, REG_ DWORD
or REG_BINARY), and the value’s name (for example, Boot-Execute).
A value cell also contains the cell index of the cell that contains the
value’s data.

Subkey-list cell A cell composed of a list of cell indexes for key cells that are all sub-
keys of a common parent key.

Value-list cell A cell composed of a list of cell indexes for value cells that are all val-
ues of a common parent key.

Security-descriptor cell A cell that contains a security descriptor. Security-descriptor cells in-
clude a signature (ks) at the head of the cell and a reference count
that records the number of key nodes that share the security de-
scriptor. Multiple key cells can share security-descriptor cells.

202 Microsoft Windows Internals, Fourth Edition
The links that create the structure of a hive are called cell indexes. A cell index is the offset of a
cell into the hive file. Thus, a cell index is like a pointer from one cell to another cell that the
configuration manager interprets relative to the start of a hive. For example, as you saw in
Table 4-6, a cell that describes a key contains a field specifying the cell index of its parent key;
a cell index for a subkey specifies the cell that describes the subkeys that are subordinate to
the specified subkey. A subkey-list cell contains a list of cell indexes that refer to the subkey’s
key cells. Therefore, if you want to locate, for example, the key cell of subkey A, whose parent
is key B, you must first locate the cell containing key B’s subkey list using the subkey-list cell
index in key B’s cell. Then you locate each of key B’s subkey cells by using the list of cell
indexes in the subkey-list cell. For each subkey cell, you check to see whether the subkey’s
name, which a key cell stores, matches the one you want to locate, in this case, subkey A.

The distinction between cells, bins, and blocks can be confusing, so let’s look at an example of
a simple registry hive layout to help clarify the differences. The sample registry hive file in Fig-
ure 4-5 contains a base block and two bins. The first bin is empty, and the second bin contains
several cells. Logically, the hive has only two keys: the root key Root, and a subkey of Root,
Sub Key. Root has two values, Val 1 and Val 2. A subkey-list cell locates the root key’s subkey,
and a value-list cell locates the root key’s values. The free spaces in the second bin are empty
cells. Figure 4-5 doesn’t show the security cells for the two keys, which would be present in a
hive.

Figure 4-5 Internal structure of a registry hive

Figure 4-6 shows an example of the Disk Probe utility (Dskprobe.exe) examining the first bin
in a SYSTEM hive. Notice the bin’s signature, hbin, at the top right side of the image. Look
beneath the bin signature and you’ll see the signature nk. This signature is the signature of a
key cell (kn). The signature displays backward because of the way x86 computers store data.
The cell is the SYSTEM hive’s root cell, which the configuration manager has named internally
$$$PROTO.HIV, as specified by the name that follows the nk signature.

Block boundaries

Key cell (key node)

Value cell
Value-list cell

Subkey-list cell
Free space

Base block Empty bin Root Val 1 Val 2
Sub
Key

Bin 1

Bin 2

Chapter 4: Management Mechanisms 203
Figure 4-6 Binary contents of first bin in the SYSTEM hive

To optimize searches for both values and subkeys, the configuration manager sorts subkey-list
cells alphabetically. The configuration manager can then perform a binary search when it
looks for a subkey within a list of subkeys. The configuration manager examines the subkey in
the middle of the list, and if the name of the subkey the configuration manager is looking for
is alphabetically before the name of the middle subkey, the configuration manager knows that
the subkey is in the first half of the subkey list; otherwise, the subkey is in the second half of
the subkey list. This splitting process continues until the configuration manager locates the
subkey or finds no match. Value-list cells aren’t sorted, however, so new values are always
added to the end of the list.

Cell Maps

The configuration manager doesn’t access a hive’s image on disk every time a registry access
occurs. Windows 2000 keeps a version of every hive in the kernel’s address space. When a
hive initializes, the configuration manager determines the size of the hive file, allocates
enough memory from the kernel’s paged pool to store it, and reads the hive file into memory.
(For more information on paged pool, see Chapter 7.) Because all loaded registry hives are
read into paged pool, that registry data is typically the largest consumer of the paged pool in
Windows 2000. (To check paged pool allocation, use the Poolmon utility, described in the
“Experiment: Monitoring Pool Usage” sidebar in Chapter 7.)

In Windows XP and Windows Server 2003, the configuration manager maps portions of a hive
into memory as it needs to access them. It uses the cache manager’s file mapping functions to
map in 16-KB views into the hive files. (See Chapter 10 for more information on the cache
manager.) To prevent hive mapping from consuming all the cache manager’s address range, the

Key cell signature

Name

Bin signature

204 Microsoft Windows Internals, Fourth Edition
configuration manager tries to keep no more than 256 views of a hive mapped at any given point
in time by unmapping least-recently used (LRU) views when it reaches that limit. The configu-
ration manager still uses the paged pool to store various data structures (including the LRU list
of views), but its use of the paged pool is a fraction of what it is in Windows 2000.

Note On Windows XP and Windows Server 2003, the configuration manager will store a
block in the paged pool instead of mapping it if the block exceeds 256 KB in size.

If hives never grew, the configuration manager could perform all its registry management on
the in-memory version of a hive as if the hive were a file. Given a cell index, the configuration
manager could calculate the location in memory of a cell simply by adding the cell index,
which is a hive file offset, to the base of the in-memory hive image. Early in the system boot,
this process is exactly what Ntldr does with the SYSTEM hive: Ntldr reads the entire SYSTEM
hive into memory as a read-only hive and adds the cell indexes to the base of the in-memory
hive image to locate cells. Unfortunately, hives grow as they take on new keys and values,
which means the system must allocate paged pool memory to store the new bins that contain
added keys and values. Thus, the paged pool that keeps the registry data in memory isn’t nec-
essarily contiguous.

EXPERIMENT: Viewing Hive Paged Pool Usage
There are no administrative-level tools that show you the amount of paged pool that reg-
istry hives, including user profiles, are consuming on Windows 2000. However, the !reg
dumppool kernel debugger command shows you not only how many pages of the paged
pool each loaded hive consumes but also how many of the pages store volatile and non-
volatile data. The command prints the total hive memory usage at the end of the output.
(The command shows only the last 32 characters of a hive’s name.)

kd> !reg dumppool

dumping hive at e20d66a8 (a\Microsoft\Windows\UsrClass.dat)

Stable Length = 1000

1/1 pages present

Volatile Length = 0

dumping hive at e215ee88 (ettings\Administrator\ntuser.dat)

Stable Length = f2000

242/242 pages present

Volatile Length = 2000

2/2 pages present

dumping hive at e13fa188 (\SystemRoot\System32\Config\SAM)

Stable Length = 5000

5/5 pages present

Volatile Length = 0

...

Chapter 4: Management Mechanisms 205
EXPERIMENT: Viewing Hive Memory Usage
In Windows XP and Windows Server 2003, you can view statistics on hive memory
usage, including its stable (on-disk) size and nonvolatile size, the number of active
views, and the number of views that are locked into memory, using the !reg hivelist com-
mand (note that the line output wraps):

--

| HiveAddr |Stable Length|Stable Map|Volatile Length|Volatile Map|MappedViews|PinnedVi

ews|U(Cnt)| BaseBlock | FileName

--

| e22f8b68 | 5000 | e22f8bc4 | 1000 | e22f8ca0 | 2 |

0 | 0| e2353000 | \Microsoft

\Windows\UsrClass.dat

| e28c3008 | 3fe000 | e1e84000 | c000 | e28c3140 | 116 |

0 | 0| e1e48000 | ttings\Adm

inistrator\ntuser.dat

| e23ec008 | 1000 | e23ec064 | 0 | 00000000 | 1 |

0 | 0| e23ee000 | \Microsoft

\Windows\UsrClass.dat

| e23ed760 | 37000 | e23ed7bc | 1000 | e23ed898 | 14 |

0 | 0| e23ef000 | ettings\Lo

calService\ntuser.dat

...

In the preceding output, the Administrator account’s profile hive (the full path of which,
\Documents and Settings\Administrator\ntuser.dat, is truncated in the output) has 116
mapped views and is approximately 4 MB in size (0x3f000 in decimal). The !reg viewlist
command will dump the mapped views of the hive you specify. Here’s the output of that
command when executed for the UsrClass.dat hive that was printed as the first hive of
the !reg hivelist command’s output:

kd> !reg viewlist e22f8b68

0 Pinned Views ; PinViewListHead = e22f8da0 e22f8da0

2 Mapped Views ; LRUViewListHead = e1cf4448 e1c5d440

--

| ViewAddr |FileOffset| Size |ViewAddress| Bcb | LRUViewList | PinV

iewList | UseCount |

--

| e1cf4448 | 0 | 4000 | c9a40000 | 8a4bb0e9 | e1c5d440 e22f8d98 | e1cf445

0 e1cf4450 | 0 |

| e1c5d440 | 4000 | 2000 | c9a44000 | 8a4bb0e9 | e22f8d98 e1cf4448 | e1c5d44

8 e1c5d448 | 0 |

--

206 Microsoft Windows Internals, Fourth Edition
The output shows the addresses of the two views that the hivelist command reported for
the hive in the ViewAddress column. Using the debugger’s db command to dump the
contents of memory at the address of the first view reveals that it maps the base block of
the hive, recognizable with its regf signature:

kd> db c9a40000

c9a40000 72 65 67 66 d5 01 00 00-d5 01 00 00 cc 20 43 c7 regf......... C.

c9a40010 3d 40 c4 01 01 00 00 00-03 00 00 00 00 00 00 00 =@..............

c9a40020 01 00 00 00 20 00 00 00-00 50 00 00 01 00 00 00P......

c9a40030 5c 00 4d 00 69 00 63 00-72 00 6f 00 73 00 6f 00 \.M.i.c.r.o.s.o.

c9a40040 66 00 74 00 5c 00 57 00-69 00 6e 00 64 00 6f 00 f.t.\.W.i.n.d.o.

c9a40050 77 00 73 00 5c 00 55 00-73 00 72 00 43 00 6c 00 w.s.\.U.s.r.C.l.

c9a40060 61 00 73 00 73 00 2e 00-64 00 61 00 74 00 00 00 a.s.s...d.a.t...

c9a40070 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

To deal with noncontiguous memory addresses referencing hive data in memory, the config-
uration manager adopts a strategy similar to what the Windows memory manager uses to
map virtual memory addresses to physical memory addresses. The configuration manager
employs a two-level scheme, which Figure 4-7 illustrates, that takes as input a cell index (that
is, a hive file offset) and returns as output both the address in memory of the block the cell
index resides in and the address in memory of the block the cell resides in. Remember that a
bin can contain one or more blocks and that hives grow in bins, so Windows always repre-
sents a bin with a contiguous region of memory. Therefore, all blocks within a bin occur
within the same cache manager view (in Windows XP and Windows Server 2003) or portion
of a paged pool (in Windows 2000).

Figure 4-7 Structure of a cell index

To implement the mapping, the configuration manager divides a cell index logically into
fields, in the same way that the memory manager divides a virtual address into fields. Win-
dows interprets a cell index’s first field as an index into a hive’s cell map directory. The cell

Cell index

Directory index Table index Byte offset

Hive’s cell map
directory

Target block
Cell map table

32 0

1023

0

0

Hive cell map directory pointer

511

Cell

Chapter 4: Management Mechanisms 207
map directory contains 1024 entries, each of which refers to a cell map table that contains 512
map entries. An entry in this cell map table is specified by the second field in the cell index.
That entry locates the bin and block memory addresses of the cell. In Windows XP and Win-
dows Server 2003, not all bins are necessarily mapped into memory, and if a cell lookup yields
an address of 0, the configuration manager maps the bin into memory, unmapping another
on the mapping LRU list it maintains, if necessary.

In the final step of the translation process, the configuration manager interprets the last field
of the cell index as an offset into the identified block to precisely locate a cell in memory.
When a hive initializes, the configuration manager dynamically creates the mapping tables,
designating a map entry for each block in the hive, and it adds and deletes tables from the cell
directory as the changing size of the hive requires.

The Registry Namespace and Operation

The configuration manager defines a key object object type to integrate the registry’s namespace
with the kernel’s general namespace. The configuration manager inserts a key object named Reg-
istry into the root of the Windows namespace, which serves as the entry point to the registry.
Regedit shows key names in the form HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet,
but the Windows subsystem translates such names into their object namespace form (for exam-
ple, \Registry\Machine\System\CurrentControlSet). When the Windows object manager
parses this name, it encounters the key object by the name of Registry first and hands the rest of
the name to the configuration manager. The configuration manager takes over the name pars-
ing, looking through its internal hive tree to find the desired key or value. Before we describe the
flow of control for a typical registry operation, we need to discuss key objects and key control
blocks. Whenever an application opens or creates a registry key, the object manager gives a han-
dle with which to reference the key to the application. The handle corresponds to a key object
that the configuration manager allocates with the help of the object manager. By using the object
manager’s object support, the configuration manager takes advantage of the security and refer-
ence-counting functionality that the object manager provides.

For each open registry key, the configuration manager also allocates a key control block. A key
control block stores the full pathname of the key, includes the cell index of the key node that
the control block refers to, and contains a flag that notes whether the configuration manager
needs to delete the key cell that the key control block refers to when the last handle for the key
closes. Windows places all key control blocks into a hash table to enable quick searches for
existing key control blocks by name. A key object points to its corresponding key control
block, so if two applications open the same registry key, each will receive a key object, and
both key objects will point to a common key control block.

When an application opens an existing registry key, the flow of control starts with the appli-
cation specifying the name of the key in a registry API that invokes the object manager’s name-
parsing routine. The object manager, upon encountering the configuration manager’s registry
key object in the namespace, hands the pathname to the configuration manager. The configu-

208 Microsoft Windows Internals, Fourth Edition
ration manager uses the in-memory hive data structures to search through keys and subkeys
to find the specified key. If the configuration manager finds the key cell, the configuration
manager searches the key control block tree to determine whether the key is open (by the
same or another application). The search routine is optimized to always start from the closest
ancestor with a key control block already opened. For example, if an application opens \Reg-
istry\Machine\Key1\Subkey2, and \Registry\Machine is already opened, the parse routine
uses the key control block of \Registry\Machine as a starting point. If the key is open, the con-
figuration manager increments the existing key control block’s reference count. If the key isn’t
open, the configuration manager allocates a new key control block and inserts it into the tree.
Then the configuration manager allocates a key object, points the key object at the key control
block, and returns control to the object manager, which returns a handle to the application.

When an application creates a new registry key, the configuration manager first finds the key
cell for the new key’s parent. The configuration manager then searches the list of free cells for
the hive in which the new key will reside to determine whether cells exist that are large
enough to hold the new key cell. If there aren't any free cells large enough, the configuration
manager allocates a new bin and uses it for the cell, placing any space at the end of the bin on
the free cell list. The new key cell fills with pertinent information—including the key’s name—
and the configuration manager adds the key cell to the subkey list of the parent key’s subkey-
list cell. Finally, the system stores the cell index of the parent cell in the new subkey’s key cell.

The configuration manager uses a key control block’s reference count to determine when to
delete the key control block. When all the handles that refer to a key in a key control block
close, the reference count becomes 0, which denotes that the key control block is no longer
necessary. If an application that calls an API to delete the key sets the delete flag, the configu-
ration manager can delete the associated key from the key’s hive because it knows that no
application is keeping the key open.

EXPERIMENT: Viewing Key Control Blocks
You can use the kernel debugger to list all the key control blocks allocated on a system
with the command !reg openkeys. Alternatively, if you want to view the key control block
for a particular open key, use !reg findkcb:

kd> !reg findkcb \registry\machine\software\microsoft

Found KCB = e1034d40 :: \REGISTRY\MACHINE\SOFTWARE\MICROSOFT

You can then examine a reported key control block with the !reg kcb command:

kd> !reg kcb e1034d40

Key : \REGISTRY\MACHINE\SOFTWARE\MICROSOFT

RefCount : 1f

Flags : CompressedName, Stable

Chapter 4: Management Mechanisms 209
ExtFlags :

Parent : 0xe1997368

KeyHive : 0xe1c8a768

KeyCell : 0x64e598 [cell index]

TotalLevels : 4

DelayedCloseIndex: 2048

MaxNameLen : 0x3c

MaxValueNameLen : 0x0

MaxValueDataLen : 0x0

LastWriteTime : 0x 1c42501:0x7eb6d470

KeyBodyListHead : 0xe1034d70 0xe1034d70

SubKeyCount : 137

ValueCache.Count : 0

KCBLock : 0xe1034d40

KeyLock : 0xe1034d40

The Flags field indicates that the name is stored in compressed form and the SubKey-
Count field shows that the key has 137 subkeys.

Stable Storage

To make sure that a nonvolatile registry hive (one with an on-disk file) is always in a recover-
able state, the configuration manager uses log hives. Each nonvolatile hive has an associated
log hive, which is a hidden file with the same base name as the hive and a .log extension. For
example, if you look in your \Windows\System32\Config directory (and you have the Show
Hidden Files And Folders folder option selected), you’ll see System.log, Sam.log, and other
.log files. When a hive initializes, the configuration manager allocates a bit array in which each
bit represents a 512-byte portion, or sector, of the hive. This array is called the dirty sector array
because an on bit in the array means that the system has modified the corresponding sector in
the hive in memory and must write the sector back to the hive file. (An off bit means that the
corresponding sector is up to date with the in-memory hive’s contents.)

When the creation of a new key or value or the modification of an existing key or value takes
place, the configuration manager notes the sectors of the hive that change in the hive’s dirty
sector array. Then the configuration manager schedules a lazy write operation, or a hive sync.
The hive lazy writer system thread wakes up 5 seconds after the request to synchronize the
hive and writes dirty hive sectors for all hives from memory to the hive files on disk. Thus, the
system flushes, at the same time, all the registry modifications that take place between the
time a hive sync is requested and the time the hive sync occurs. When a hive sync takes place,
the next hive sync will occur no sooner than 5 seconds later.

Note On Windows Server 2003, you can change the default 5-second delay the hive lazy
writer thread uses up by setting the registry value HKLM\System\CurrentControlSet\Session
Manager\Configuration Manager\RegistryLazyFlushInterval.

210 Microsoft Windows Internals, Fourth Edition
If the lazy writer simply wrote all a hive’s dirty sectors to the hive file and the system crashed
in midoperation, the hive file would be in an inconsistent (corrupted) and unrecoverable
state. To prevent such an occurrence, the lazy writer first dumps the hive’s dirty sector array
and all the dirty sectors to the hive’s log file, increasing the log file’s size if necessary. The lazy
writer then updates a sequence number in the hive’s base block and writes the dirty sectors to
the hive. When the lazy writer is finished, it updates a second sequence number in the base
block. Thus, if the system crashes during the write operations to the hive, at the next reboot
the configuration manager will notice that the two sequence numbers in the hive’s base block
don’t match. The configuration manager can update the hive with the dirty sectors in the
hive’s log file to roll the hive forward. The hive is then up to date and consistent.

To further protect the integrity of the crucial SYSTEM hive in Windows 2000, the configuration
manager maintains a mirror of the SYSTEM hive on disk. If you look at the nonhidden files in a
Windows 2000 \Windows\System32\Config directory, you’ll see System.alt. System.alt is the
alternate hive. Whenever a hive sync flushes dirty sectors to the SYSTEM hive, the hive sync also
updates the System.alt hive. If the configuration manager detects that the SYSTEM hive is cor-
rupt when the system boots, the configuration manager attempts to load the hive’s alternate. If
that hive is usable, it then uses that alternate to update the original SYSTEM hive.

Windows XP and Windows Server 2003 do not maintain a System.alt hive because NTLDR on
those versions of Windows knows how to process the System.log file to bring up to date a
System hive that’s become inconsistent during a shut down or crash. Windows Server 2003 has
other enhancements for tolerating corruption of the registry. Prior to Windows Server 2003, the
configuration manager crashes the system if it reads a base block, bin, or cell that contains data
that fails basic consistency checks. The configuration manager in Windows Server 2003 is more
tolerant of such problems, and if the corruption isn’t too severe, it will reinitialize corrupted data
structures, possibly deleting subkeys in the process, and continue operation. If it has to resort to
self-healing operation, it pops up a system error dialog box notifying the user.

Note When you look at the hidden files on \Windows\System32\Config, you’ll also see a file
named System.sav. System.Sav is the version of the SYSTEM hive that served as the initial copy
of the System hive and is what Windows Setup copied from the install media.

Registry Optimizations

The configuration manager makes a few noteworthy performance optimizations. First, virtu-
ally every registry key has a security descriptor that protects access to the key. Storing a
unique security-descriptor copy for every key in a hive would be highly inefficient, however,
because the same security settings often apply to entire subtrees of the registry. When the sys-
tem applies security to a key in Windows 2000, the configuration manager first checks the
security descriptors associated with the key’s parent key and then checks all the parent’s sub-
keys. If any of those security descriptors match the security descriptor the system is applying
to the key, the configuration manager simply shares the existing descriptors with the key,

Chapter 4: Management Mechanisms 211
employing a reference count to track how many keys share the same descriptor. In Windows
XP and Windows Server 2003, the configuration manager checks a pool of the unique secu-
rity descriptors used within the same hive as the key to which new security is being applied,
and it shares any existing descriptor for the key, ensuring that there is at most one copy of
every unique security descriptor in a hive.

The configuration manager also optimizes the way it stores key and value names in a hive.
Although the registry is fully Unicode-capable and specifies all names using the Unicode con-
vention, if a name contains only ASCII characters, the configuration manager stores the name
in ASCII form in the hive. When the configuration manager reads the name (such as when
performing name lookups), it converts the name into Unicode form in memory. Storing the
name in ASCII form can significantly reduce the size of a hive.

To minimize memory usage, key control blocks don’t store full key registry pathnames.
Instead, they reference only a key’s name. For example, a key control block that refers to \Reg-
istry\System\Control would refer to the name Control rather than to the full path. A further
memory optimization is that the configuration manager uses key name control blocks to store
key names, and all key control blocks for keys with the same name share the same key name
control block. To optimize performance, the configuration manager stores the key control
block names in a hash table for quick lookups.

To provide fast access to key control blocks, the configuration manager stores frequently
accessed key control blocks in the cache table, which is configured as a hash table. When the
configuration manager needs to look up a key control block, it first checks the cache table.
Finally, the configuration manager has another cache, the delayed close table, that stores key
control blocks that applications close, so that an application can quickly reopen a key it has
recently closed. The configuration manager removes the oldest key control blocks from the
delayed close table as it adds the most recently closed blocks to the table.

Services
Almost every operating system has a mechanism to start processes at system startup time that
provide services not tied to an interactive user. In Windows, such processes are called services
or Windows services, because they rely on the Windows API to interact with the system. Ser-
vices are similar to UNIX daemon processes and often implement the server side of client/
server applications. An example of a Windows service might be a Web server because it must
be running regardless of whether anyone is logged on to the computer and it must start run-
ning when the system starts so that an administrator doesn’t have to remember, or even be
present, to start it.

Windows services consist of three components: a service application, a service control pro-
gram (SCP), and the service control manager (SCM). First, we’ll describe service applications,
service accounts, and the operations of the SCM. Then we’ll explain how auto-start services
are started during the system boot. We’ll also cover the steps the SCM takes when a service
fails during its startup and the way the SCM shuts down services.

212 Microsoft Windows Internals, Fourth Edition
Service Applications

Service applications, such as Web servers, consist of at least one executable that runs as a Win-
dows service. A user wanting to start, stop, or configure a service uses an SCP. Although Win-
dows supplies built-in SCPs that provide general start, stop, pause, and continue functionality,
some service applications include their own SCP that allows administrators to specify config-
uration settings particular to the service they manage.

Service applications are simply Windows executables (GUI or console) with additional code
to receive commands from the SCM as well as to communicate the application’s status back to
the SCM. Because most services don’t have a user interface, they are built as console pro-
grams.

When you install an application that includes a service, the application’s setup program must
register the service with the system. To register the service, the setup program calls the Win-
dows CreateService function, a services-related function implemented in Advapi32.dll (\Win-
dows\System32\Advapi32.dll). Advapi32, the “Advanced API” DLL, implements all the
client-side SCM APIs.

When a setup program registers a service by calling CreateService, a message is sent to the SCM
on the machine where the service will reside. The SCM then creates a registry key for the ser-
vice under HKLM\SYSTEM\CurrentControlSet\Services. The Services key is the nonvolatile
representation of the SCM’s database. The individual keys for each service define the path of
the executable image that contains the service as well as parameters and configuration
options.

After creating a service, an installation or management application can start the service via the
StartService function. Because some service-based applications also must initialize during the
boot process to function, it’s not unusual for a setup program to register a service as an auto-
start service, ask the user to reboot the system to complete an installation, and let the SCM
start the service as the system boots.

When a program calls CreateService, it must specify a number of parameters describing the ser-
vice’s characteristics. The characteristics include the service’s type (whether it’s a service that
runs in its own process rather than a service that shares a process with other services), the
location of the service’s executable image file, an optional display name, an optional account
name and password used to start the service in a particular account’s security context, a start
type that indicates whether the service starts automatically when the system boots or manu-
ally under the direction of an SCP, an error code that indicates how the system should react if
the service detects an error when starting, and, if the service starts automatically, optional
information that specifies when the service starts relative to other services.

The SCM stores each characteristic as a value in the service’s registry key. Figure 4-8 shows an
example of a service registry key.

Chapter 4: Management Mechanisms 213
Figure 4-8 Example of a service registry key

Table 4-7 lists all the service characteristics, many of which also apply to device drivers. (Not
every characteristic applies to every type of service or device driver.) If a service needs to store
configuration information that is private to the service, the convention is to create a subkey
named Parameters under its service key and then store the configuration information in values
under that subkey. The service then can retrieve the values by using standard registry functions.

Note The SCM does not access a service’s Parameters subkey until the service is deleted, at
which time the SCM deletes the service’s entire key, including subkeys like Parameters.

Table 4-7 Service and Driver Registry Parameters

Value Setting Value Name Value Setting Description

Start SERVICE_BOOT_START (0) Ntldr or Osloader preloads the driver
so that it is in memory during the
boot. These drivers are initialized just
prior to SERVICE_ SYSTEM_START
drivers.

SERVICE_SYSTEM_START (1) The driver loads and initializes
during kernel initialization after
SERVICE_ BOOT_START drivers have
initialized.

SERVICE_AUTO_START (2) The SCM starts the driver or service
after the SCM process, Services.exe,
starts.

SERVICE_DEMAND_START (3) The SCM starts the driver or service
on demand.

214 Microsoft Windows Internals, Fourth Edition
SERVICE_DISABLED (4) The driver or service doesn’t load or
initialize.

ErrorControl SERVICE_ERROR_IGNORE (0) Any error the driver or service returns
is ignored and no warning is logged
or displayed.

SERVICE_ERROR_NORMAL (1) If the driver or service reports an
error, a warning displays.

SERVICE_ERROR_SEVERE (2) If the driver or service returns an
error and last known good isn’t
being used, reboot into last known
good; otherwise, continue the boot.

SERVICE_ERROR_CRITICAL (3) If the driver or service returns an
error and last known good isn’t
being used, reboot into last known
good; otherwise, stop the boot with
a blue screen crash.

Type SERVICE_KERNEL_DRIVER (1) Device driver.

SERVICE_FILE_SYSTEM_DRIVER (2) Kernel-mode file system driver.

SERVICE_ADAPTER (4) Obsolete.

SERVICE_RECOGNIZER_DRIVER (8) File system recognizer driver.

SERVICE_WIN32_OWN_PROCESS
(16)

The service runs in a process that
hosts only one service.

SERVICE_WIN32_SHARE_PROCESS
(32)

The service runs in a process that
hosts multiple services.

SERVICE_INTERACTIVE_PROCESS
(256)

The service is allowed to display
windows on the console and receive
user input.

Group Group name The driver or service initializes when
its group is initialized.

Tag Tag number The specified location in a group
initialization order. This parameter
doesn’t apply to services.

ImagePath Path to service or driver executable
file

If ImagePath isn’t specified, the I/O
manager looks for drivers in
\Windows\System32\Drivers and the
SCM uses Windows functions that
search for the image using the PATH
environment variable.

DependOnGroup Group name The driver or service won’t load
unless a driver or service from the
specified group loads.

Table 4-7 Service and Driver Registry Parameters

Value Setting Value Name Value Setting Description

Chapter 4: Management Mechanisms 215
Notice that Type values include three that apply to device drivers: device driver, file system
driver, and file system recognizer. These are used by Windows device drivers, which also store
their parameters as registry data in the Services registry key. The SCM is responsible for starting
drivers with a Start value of SERVICE_AUTO_START or SERVICE_DEMAND_START, so it’s
natural for the SCM database to include drivers. Services use the other types, SERVICE_
WIN32_OWN_PROCESS and SERVICE_WIN32_SHARE_PROCESS, which are mutually
exclusive. An executable that hosts more than one service specifies the SERVICE_WIN32_
SHARE_PROCESS type. An advantage to having a process run more than one service is that the
system resources that would otherwise be required to run them in distinct processes are saved.
A potential disadvantage is that if one of the services of a collection running in the same process
causes an error that terminates the process, all the services of that process terminate. Also,
another limitation is that all the services must run under the same account.

DependOnService Service name The service won’t load until after the
specified service loads. This parame-
ter doesn’t apply to device drivers
other than those with a start type of
SERVICE_AUTO_START.

ObjectName Usually LocalSystem, but can be an
account name, such as .\Administra-
tor

Specifies the account in which the
service will run. If ObjectName isn’t
specified, LocalSystem is the account
used. This parameter doesn’t apply
to device drivers.

DisplayName Name of service The service application shows
services by this name. If no name is
specified, the name of the service’s
registry key becomes its name.

Description Description of service Up to 32767-byte description of the
service.

FailureActions Description of actions the SCM
should take when service process ex-
its unexpectedly

Failure actions include restarting the
service process, rebooting the system,
and running a specified program. This
value doesn’t apply to drivers.

FailureCommand Program command line The SCM reads this value only if Fail-
ureActions specifies that a program
should execute upon service failure.
This value doesn’t apply to drivers.

Security Security descriptor This value contains the security de-
scriptor that defines who has what
access to the service object created
internally by the SCM.

Table 4-7 Service and Driver Registry Parameters

Value Setting Value Name Value Setting Description

216 Microsoft Windows Internals, Fourth Edition
When the SCM starts a service process, the process immediately invokes the StartServiceCtrl-
Dispatcher function. StartServiceCtrlDispatcher accepts a list of entry points into services, one
entry point for each service in the process. Each entry point is identified by the name of the
service the entry point corresponds to. After making a named pipe communications connection
to the SCM, StartServiceCtrlDispatcher sits in a loop waiting for commands to come through the
pipe from the SCM. The SCM sends a service-start command each time it starts a service the pro-
cess owns. For each start command it receives, the StartServiceCtrlDispatcher function creates a
thread, called a service thread, to invoke the starting service’s entry point and implement the
command loop for the service. StartServiceCtrlDispatcher waits indefinitely for commands from
the SCM and returns control to the process’s main function only when all the process’s services
have stopped, allowing the service process to clean up resources before exiting.

A service entry point’s first action is to call the RegisterServiceCtrlHandler function. This func-
tion receives and stores a pointer to a function, called the control handler, which the service
implements to handle various commands it receives from the SCM. RegisterServiceCtrlHandler
doesn’t communicate with the SCM, but it stores the function in local process memory for the
StartServiceCtrlDispatcher function. The service entry point continues initializing the service,
which can include allocating memory, creating communications end points, and reading pri-
vate configuration data from the registry. A convention most services follow is to store their
parameters under a subkey of their service registry key, named Parameters. While the entry
point is initializing the service, it might periodically send status messages, using the SetService-
Status function, to the SCM indicating how the service’s startup is progressing. After the entry
point finishes initialization, a service thread usually sits in a loop waiting for requests from cli-
ent applications. For example, a Web server would initialize a TCP listen socket and wait for
inbound HTTP connection requests.

A service process’s main thread, which executes in the StartServiceCtrlDispatcher function,
receives SCM commands directed at services in the process and invokes the target service’s
control handler function (stored by RegisterServiceCtrlHandler). SCM commands include stop,
pause, resume, interrogate, and shutdown, or application-defined commands. Figure 4-9
shows the internal organization of a service process. Pictured are the two threads that make
up a process hosting one service: the main thread and the service thread.

Chapter 4: Management Mechanisms 217
Figure 4-9 Inside a service process

SrvAny Tool
If you have a program that you want to run as a service, you need to modify the startup
code to conform to the requirements for services outlined in this section. If you don’t
have the source code, you can use the SrvAny tool in the Windows resource kits. SrvAny
enables you to run any application as a service. It reads the path of the service file that it
must load from the Parameters subkey of the service’s registry key. When SrvAny starts,
it notifies the SCM that it is hosting a particular service, and when it receives a start com-
mand, it launches the service executable as a child process. The child process receives a
copy of the SrvAny process’s access token and a reference to the same window station,
so the executable runs within the same security account and with the same interactivity
setting as you specified when configuring the SrvAny process. SrvAny services don’t
have the share-process Type value, so each application you install as a service with
SrvAny runs in a separate process with a different instance of the SrvAny host program.

Service Accounts

The security context of a service is an important consideration for service developers as well
as for system administrators because it dictates what resources the process can access. Unless
a service installation program or administrator specifies otherwise, most services run in the
security context of the local system account (displayed sometimes as SYSTEM and other times
as LocalSystem). Windows XP introduced two variants on the local system account, the net-
work service and local service accounts. The new accounts have fewer capabilities than the local
system account from a security standpoint, and any built-in Windows service that does not

Pipe to
SCM

Main

StartServiceCtrlDispatcher

Service control handler

RegisterServiceCtrlHandler

Initialize

Process client requests

Main thread

Connections to
service clients

Service thread

1. StartServiceCtrlDispatcher launches service thread.
2. Service thread registers control handler.
3. StartServiceCtrlDispatcher calls handlers in response to SCM commands.
4. Service thread processes client requests.

2

3

3

1

4

218 Microsoft Windows Internals, Fourth Edition
require the power of the local system account runs in the appropriate alternate service
account. The following subsections describe the special characteristics of these accounts.

The Local System Account

The local system account is the same account in which core Windows user-mode operating sys-
tem components run, including the Session Manager (\Windows\System32\Smss.exe), the
Windows subsystem process (Csrss.exe), the local security authority subsystem (\Windows\

System32\Lsass.exe), and the Winlogon process (\Windows\System32\Winlogon.exe).

From a security perspective, the local system account is extremely powerful—more powerful
than any local or domain account when it comes to security ability on a local system. This
account has the following characteristics:

■ It is a member of the local administrators group. Table 4-8 shows the groups to which
the local system account belongs. (See Chapter 8 for information on how group mem-
bership is used in object access checks.)

■ It has the right to enable virtually every privilege (even privileges not normally granted
to the local administrator account, such as creating security tokens). See Table 4-9 for
the list of privileges assigned to the local system account. (Chapter 8 describes the use
of each privilege.)

■ Most files and registry keys grant full access to the local system account. (Even if they
don’t grant full access, a process running under the local system account can exercise
the take-ownership privilege to gain access.)

■ Processes running under the local system account run with the default user profile
(HKU\.DEFAULT). Therefore, they can’t access configuration information stored in the
user profiles of other accounts.

■ When a system is a member of a Windows domain, the local system account includes
the machine security identifier (SID) for the computer on which a service process is run-
ning. Therefore, a service running in the local system account will be automatically
authenticated on other machines in the same forest by using its computer account. (A
forest is a grouping of domains.)

■ Unless the machine account is specifically granted access to resources (such as network
shares, named pipes, and so on), a process can access network resources that allow null
sessions—that is, connections that require no credentials. You can specify the shares and
pipes on a particular computer that permit null sessions in the NullSessionPipes and
NullSessionShares registry values under HKLM\SYSTEM\CurrentControlSet\Ser-
vices\lanmanserver\parameters.

Chapter 4: Management Mechanisms 219
Table 4-8 Service Account Group Membership

Local System Network Service Local Service

Everyone

Authenticated Users

Administrators

Everyone

Authenticated Users

Users

Local

Network Service

Service

Everyone

Authenticated Users

Users

Local

Local Service

Service

Table 4-9 Service Account Privileges

Local System Network Service Local Service

SeAssignPrimaryToken
Privilege

SeAuditPrivilege

SeBackupPrivilege

SeChangeNotifyPrivilege

SeCreateGlobalPrivilege

SeCreatePagefilePrivilege

SeCreatePermanentPrivilege

SeCreateTokenPrivilege*

SeDebugPrivilege

SeImpersonatePrivilege

SeIncreaseBasePriorityPrivilege

SeIncreaseQuotaPrivilege

SeLoadDriverPrivilege

SeLockMemoryPrivilege

SeManageVolumePrivilege

SeProfileSingleProcessPrivilege

SeRestorePrivilege

SeSecurityPrivilege

SeShutdownPrivilege

SeSystemEnvironmentPrivilege

SeSystemTimePrivilege

SeTakeOwnershipPrivilege

SeTcbPrivilege

SeUndockPrivilege

SeAssignPrimaryToken
Privilege

SeAuditPrivilege

SeChangeNotifyPrivilege

SeIncreaseQuotaPrivilege

Privileges assigned to the
Everyone, Authenticated
Users, and Users groups

SeAssignPrimaryTokenPrivilege

SeAuditPrivilege

SeChangeNotifyPrivilege

SeIncreaseQuotaPrivilege

Privileges assigned to the Every-
one, Authenticated Users, and
Users groups

* The local system account on Windows Server 2003 does not include this privilege.

220 Microsoft Windows Internals, Fourth Edition
The Network Service Account

The network service account is intended for use by services that wish to authenticate to other
machines on the network using the computer account, as does the local system account, but
do not have the need for membership in the administrators group or the use of many of the
privileges assigned to the local system account. Because the network service account does not
belong to the administrators group, services running in the network service account by
default have access to far fewer registry keys and file system folders and files than the services
running the local system account. Further, the assignment of few privileges limits the scope of
a compromised network service process. For example, a process running in the network ser-
vice account cannot load a device driver or open arbitrary processes.

Another difference between the network service and local system accounts is that processes
running in the network service account use the network service account’s profile. The registry
component of the network service profile loads under HKU\S-1-5-20, and the files and direc-
tories that make up the component reside in \Documents and Settings\NetworkService.

A service that runs in the network service account in Windows XP and Windows Server
2003 is the DNS client, which is responsible for resolving DNS names and for locating
domain controllers.

The Local Service Account

The local service account is virtually identical to the network service account with the impor-
tant difference that it can access only network resources that allow anonymous access. Table
4-9 shows that it has the same privileges as the local service account, and Table 4-8 shows that
it belongs to the same groups with the exception that it belongs to the Network Service group
instead of the Local Service group. The profile used by processes running in the local service
loads into HKU\S-1-5-19 and is stored in \Documents and Settings\LocalService.

Examples of services that Windows XP and Windows Server 2003 run in the local service
account include the Remote Registry Service that allows remote access to the local system’s
registry, the Alerter service that receives network-broadcast administrative alerts messages,
and the LmHosts service that performs NetBIOS name resolution.

Running Services in Alternate Accounts

Because of the restrictions just outlined, some services need to run with the security creden-
tials of a user account. You can configure a service to run in an alternate account when the
service is created or by specifying an account and password that the service should run
under with the Windows Services MMC snap-in. In the Services snap-in, right-click on a ser-
vice and select Properties, click the Log On tab, and select the This Account option, as
shown in Figure 4-10.

Chapter 4: Management Mechanisms 221
Figure 4-10 Service account settings

Interactive Services

Another restriction for services running under the local system, local service, and network ser-
vice accounts is that they can’t (without using a special flag on the MessageBox function, dis-
cussed in a moment) display dialog boxes or windows on the interactive user’s desktop. This
limitation isn’t the direct result of running under these accounts but rather a consequence of
the way the Windows subsystem assigns service processes to window stations.

The Windows subsystem associates every Windows process with a window station. A window
station contains desktops, and desktops contain windows. Only one window station can be
visible on a console and receive user mouse and keyboard input. In a Terminal Services envi-
ronment, one window station per session is visible, but services all run as part of the console
session. Windows names the visible window station WinSta0, and all interactive processes
access WinSta0.

Unless otherwise directed, the Windows subsystem associates services running in the local
system account with a nonvisible window station named Service-0x0-3e7$ that all noninter-
active services share. The number in the name, 3e7, represents the logon session identifier
Lsass assigns to the logon session the SCM uses for noninteractive services running in the
local system account.

Services configured to run under a user account (that is, not the local system account) are run
in a different nonvisible window station named with the LSASS logon identifier assigned for
the service’s logon session. Figure 4-11 shows a sample display from the Winobj tool, avail-
able from www.sysinternals.com, viewing the object manager directory in which Windows

222 Microsoft Windows Internals, Fourth Edition
places window station objects. Visible are the interactive window station (WinSta0), the non-
interactive system service window station (Service-0x0-3e7$), and a noninteractive window
station assigned to a service process logged on as a user (Service-0x0-6368f$).

Figure 4-11 List of window stations

Regardless of whether services are running in a user account, the local system account, or the
local or network service accounts, services that aren’t running on the visible window station
can’t receive input from a user or display windows on the console. In fact, if a service were to
pop up a normal dialog box on the window station, the service would appear hung because
no user would be able to see the dialog box, which of course would prevent the user from pro-
viding keyboard or mouse input to dismiss it and allow the service to continue executing.
(The one exception is if the special flag MB_SERVICE_NOTIFICATION or
MB_DEFAULT_DESKTOP_ ONLY is set on the MessageBox call—if
MB_SERVICE_NOTIFICATION is specified, the message box will always be displayed on the
interactive window station, even if the service wasn’t configured with permission to interact
with the user; if MB_DEFAULT_DESKTOP_ONLY is specified, the message box is displayed
on the default desktop of the interactive window station.)

In rare cases, a service can have a valid reason to interact with the user via dialog boxes or win-
dows. To configure a service with the right to interact with the user, the SERVICE_
INTERACTIVE_PROCESS modifier must be present in the service’s registry key’s Type
parameter. (Note that services configured to run under a user account can’t be marked as
interactive.) When the SCM starts a service marked as interactive, it launches the service’s pro-
cess in the local system account’s security context but connects the service with WinSta0
instead of the noninteractive service window station. This connection to WinSta0 allows the
service to display dialog boxes and windows on the console and allows those windows to
respond to user input.

Chapter 4: Management Mechanisms 223
Note Microsoft discourages running interactive services, especially in the local system
account, because of the inherent security vulnerability it creates. Windows presented by an inter-
active service are susceptible to the receipt of windows messages that a malicious process run-
ning on the desktop of an unprivileged user can use to cause buffer overflows in the service
process and subvert the service process to elevate the security privileges of the malicious process.

The Service Control Manager

The SCM’s executable file is \Windows\System32\Services.exe, and like most service pro-
cesses, it runs as a Windows console program. The Winlogon process starts the SCM early
during the system boot. (Refer to Chapter 5 for details on the boot process.) The SCM’s
startup function, SvcCtrlMain, orchestrates the launching of services that are configured for
automatic startup. SvcCtrlMain executes shortly after the screen switches to a blank desktop
but generally before Winlogon has loaded the graphical identification and authentication
interface (GINA) that presents a logon dialog box.

SvcCtrlMain first creates a synchronization event named SvcCtrlEvent_ A3752DX that it ini-
tializes as nonsignaled. Only after the SCM completes steps necessary to prepare it to receive
commands from SCPs does the SCM set the event to a signaled state. The function that an
SCP uses to establish a dialog with the SCM is OpenSCManager. OpenSCManager prevents an
SCP from trying to contact the SCM before the SCM has initialized by waiting for
SvcCtrlEvent_A3752DX to become signaled.

Next, SvcCtrlMain gets down to business and calls ScCreateServiceDB, the function that builds
the SCM’s internal service database. ScCreateServiceDB reads and stores the contents of
HKLM\SYSTEM\CurrentControlSet\Control\ServiceGroupOrder\List, a REG_MULTI_SZ
value that lists the names and order of the defined service groups. A service’s registry key con-
tains an optional Group value if that service or device driver needs to control its startup order-
ing with respect to services from other groups. For example, the Windows networking stack
is built from the bottom up, so networking services must specify Group values that place them
later in the startup sequence than networking device drivers. SCM internally creates a group
list that preserves the ordering of the groups it reads from the registry. Groups include (but
are not limited to) NDIS, TDI, Primary Disk, Keyboard Port, and Keyboard Class. Add-on and
third-party applications can even define their own groups and add them to the list. Microsoft
Transaction Server, for example, adds a group named MS Transactions.

ScCreateServiceDB then scans the contents of HKLM\SYSTEM\CurrentControlSet\Services,
creating an entry in the service database for each key it encounters. A database entry includes
all the service-related parameters defined for a service as well as fields that track the service’s
status. The SCM adds entries for device drivers as well as for services because the SCM starts
services and drivers marked as auto-start and detects startup failures for drivers marked boot-
start and system-start. It also provides a means for applications to query the status of drivers.

224 Microsoft Windows Internals, Fourth Edition
The I/O manager loads drivers marked boot-start and system-start before any user-mode pro-
cesses execute, and therefore any drivers having these start types load before the SCM starts.

ScCreateServiceDB reads a service’s Group value to determine its membership in a group and
associates this value with the group’s entry in the group list created earlier. The function also
reads and records in the database the service’s group and service dependencies by querying
its DependOnGroup and DependOnService registry values. Figure 4-12 shows how the SCM
organizes the service entry and group order lists. Notice that the service list is alphabetically
sorted. The reason this list is sorted alphabetically is that the SCM creates the list from the Ser-
vices registry key, and Windows stores registry keys alphabetically.

Figure 4-12 Organization of a service database

During service startup, the SCM might need to call on LSASS (for example, to log on a service
in a user account), so the SCM waits for LSASS to signal the LSA_RPC_SERVER_ACTIVE syn-
chronization event, which it does when it finishes initializing. Winlogon also starts the LSASS
process, so the initialization of LSASS is concurrent with that of the SCM, and the order in
which LSASS and the SCM complete initialization can vary. Then SvcCtrlMain calls ScGetBoot-
AndSystemDriverState to scan the service database looking for boot-start and system-start
device driver entries. ScGetBootAndSystemDriverState determines whether or not a driver suc-
cessfully started by looking up its name in the object manager namespace directory named
\Driver. When a device driver successfully loads, the I/O manager inserts the driver’s object in
the namespace under this directory, so if its name isn’t present, it hasn’t loaded. Figure 4-13
shows Winobj displaying the contents of the Driver directory. If a driver isn’t loaded, the SCM
looks for its name in the list of drivers returned by the PnP_DeviceList function. PnP_DeviceList
supplies the drivers included in the system’s current hardware profile. SvcCtrlMain notes the
names of drivers that haven’t started and that are part of the current profile in a list named
ScFailedDrivers.

Before starting the auto-start services, the SCM performs a few more steps. It creates its remote
procedure call (RPC) named pipe, which is named \Pipe\Ntsvcs, and then RPC launches a

Service database

Type
Start
DependOnGroup
DependOnService
Status
Group
…

Group1

Group order list

Service entry list

Service1 Service2 Service3

Type
Start
DependOnGroup
DependOnService
Status
Group
…

Type
Start
DependOnGroup
DependOnService
Status
Group
…

Group2 Group3

Chapter 4: Management Mechanisms 225
thread to listen on the pipe for incoming messages from SCPs. The SCM then signals its ini-
tialization-complete event, SvcCtrlEvent_A3752DX. Registering a console application shut-
down event handler and registering with the Windows subsystem process via
RegisterServiceProcess prepares the SCM for system shutdown.

Figure 4-13 List of driver objects

Network Drive Letters
In addition to its role as an interface to services, the SCM has another totally unrelated
responsibility: it notifies GUI applications in a system whenever the system creates or
deletes a network drive-letter connection. The SCM waits for the Multiple Provider
Router (MPR) to signal a named event, \BaseNamedObjects\ScNetDrvMsg, which MPR
signals whenever an application assigns a drive letter to a remote network share or
deletes a remote-share drive-letter assignment. (See Chapter 13 for more information on
MPR.) When MPR signals the event, the SCM calls the GetDriveType Windows function
to query the list of connected network drive letters. If the list changes across the event
signal, the SCM sends a Windows broadcast message of type WM_DEVICECHANGE.
The SCM uses either DBT_ DEVICEREMOVECOMPLETE or DBT_DEVICEARRIVAL as
the message’s subtype. This message is primarily intended for Windows Explorer so
that it can update any open My Computer windows to show the presence or absence of
a network drive letter.

Service Startup

SvcCtrlMain invokes the SCM function ScAutoStartServices to start all services that have a Start
value designating auto-start. ScAutoStartServices also starts auto-start device drivers. To avoid
confusion, you should assume that the term services means services and drivers unless indi-

226 Microsoft Windows Internals, Fourth Edition
cated otherwise. The algorithm in ScAutoStartServices for starting services in the correct order
proceeds in phases, whereby a phase corresponds to a group and phases proceed in the
sequence defined by the group ordering stored in the HKLM\SYSTEM\CurrentCon-
trolSet\Control\ServiceGroupOrder\List registry value. The List value, shown in Figure 4-14,
includes the names of groups in the order that the SCM should start them. Thus, assigning a
service to a group has no effect other than to fine-tune its startup with respect to other services
belonging to different groups.

Figure 4-14 ServiceGroupOrder registry key

When a phase starts, ScAutoStartServices marks all the service entries belonging to the phase’s
group for startup. Then ScAutoStartServices loops through the marked services seeing whether
it can start each one. Part of the check it makes consists of determining whether the service
has a dependency on another group, as specified by the existence of the DependOnGroup
value in the service’s registry key. If a dependency exists, the group on which the service is
dependent must have already initialized, and at least one service of that group must have suc-
cessfully started. If the service depends on a group that starts later than the service’s group in
the group startup sequence, the SCM notes a “circular dependency” error for the service. If
ScAutoStartServices is considering a Windows service or an auto-start device driver, it next
checks to see whether the service depends on one or more other services, and if so, if those
services have already started. Service dependencies are indicated with the DependOnService
registry value in a service’s registry key. If a service depends on other services that belong to
groups that come later in the ServiceGroupOrder\List, the SCM also generates a “circular
dependency” error and doesn’t start the service. If the service depends on any services from
the same group that haven’t yet started, the service is skipped.

When the dependencies of a service have been satisfied, ScAutoStartServices makes a final
check to see whether the service is part of the current boot configuration before starting the
service. When the system is booted in safe mode, the SCM ensures that the service is either
identified by name or by group in the appropriate safe boot registry key. There are two safe
boot keys, Minimal and Network, under HKLM\SYSTEM\CurrentControlSet\Control\Safe-
Boot, and the one that the SCM checks depends on what safe mode the user booted. If the
user chose Safe Mode or Safe Mode With Command Prompt at the special boot menu (which
you can access by pressing F8 when prompted in the boot process), the SCM references the

Chapter 4: Management Mechanisms 227
Minimal key; if the user chose Safe Mode With Networking, the SCM refers to Network. The
existence of a string value named Option under the SafeBoot key indicates not only that the
system booted in safe mode but also the type of safe mode the user selected. For more infor-
mation about safe boots, see the section “Safe Mode” in Chapter 5.

Once the SCM decides to start a service, it calls ScStartService, which takes different steps for
services than for device drivers. When ScStartService starts a Windows service, it first deter-
mines the name of the file that runs the service’s process by reading the ImagePath value from
the service’s registry key. It then examines the service’s Type value, and if that value is
SERVICE_WINDOWS_SHARE_PROCESS (0x20), the SCM ensures that the process the ser-
vice runs in, if already started, is logged on using the same account as specified for the service
being started. A service’s ObjectName registry value stores the user account in which the ser-
vice should run. A service with no ObjectName or an ObjectName of LocalSystem runs in the
local system account.

The SCM verifies that the service’s process hasn’t already been started in a different account
by checking to see whether the service’s ImagePath value has an entry in an internal SCM
database called the image database. If the image database doesn’t have an entry for the Image-
Path value, the SCM creates one. When the SCM creates a new entry, it stores the logon
account name used for the service and the data from the service’s ImagePath value. The SCM
requires services to have an ImagePath value. If a service doesn’t have an ImagePath value, the
SCM reports an error stating that it couldn’t find the service’s path and isn’t able to start the
service. If the SCM locates an existing image database entry with matching ImagePath data,
the SCM ensures that the user account information for the service it’s starting is the same as
the information stored in the database entry—a process can be logged on as only one account,
so the SCM reports an error when a service specifies a different account name than another
service that has already started in the same process.

The SCM calls ScLogonAndStartImage to log on a service if the service’s configuration specifies
and to start the service’s process. The SCM logs on services that don’t run in the system
account by calling the LSASS function LsaLogonUser. LsaLogonUser normally requires a pass-
word, but the SCM indicates to LSASS that the password is stored as a service’s LSASS “secret”
under the key HKLM\SECURITY\Policy\Secrets in the registry. (Keep in mind that the con-
tents of the SECURITY aren’t typically visible because its default security settings permit
access only from the system account.) When the SCM calls LsaLogonUser, it specifies a service
logon as the logon type, so LSASS looks up the password in the Secrets subkey that has a
name in the form _SC_<service name>.

The SCM directs LSASS to store a logon password as a secret using the LsaStorePrivateData
function when an SCP configures a service’s logon information. When a logon is successful,
LsaLogonUser returns a handle to an access token to the caller. Windows uses access tokens to
represent a user’s security context, and the SCM later associates the access token with the pro-
cess that implements the service.

228 Microsoft Windows Internals, Fourth Edition
After a successful logon, the SCM loads the account’s profile information, if it’s not already
loaded, by calling the UserEnv DLL’s (\Windows\System32\Userenv.dll) LoadUserProfile
function. The value HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Profile-
List\<user profile key>\ProfileImagePath contains the location on disk of a registry hive that
LoadUserProfile loads into the registry, making the information in the hive the
HKEY_CURRENT_USER key for the service.

An interactive service must open the WinSta0 window station, but before ScLogonAndStartIm-
age allows an interactive service to access WinSta0 it checks to see whether the value
HKLM\SYSTEM\CurrentControlSet\Control\Windows\NoInteractiveServices is set.
Administrators set this value to prevent services marked as interactive from displaying win-
dows on the console. This option is desirable in unattended server environments in which no
user is present to respond to popups from interactive services.

As its next step, ScLogonAndStartImage proceeds to launch the service’s process, if the process
hasn’t already been started (for another service, for example). The SCM starts the process in
a suspended state with the CreateProcessAsUser Windows function. The SCM next creates a
named pipe through which it communicates with the service process, and it assigns the pipe
the name \Pipe\Net\NtControlPipeX, where X is a number that increments each time the
SCM creates a pipe. The SCM resumes the service process via the ResumeThread function and
waits for the service to connect to its SCM pipe. If it exists, the registry value HKLM\SYS-
TEM\CurrentControlSet\Control\ServicesPipeTimeout determines the length of time that
the SCM waits for a service to call StartServiceCtrlDispatcher and connect before it gives up, ter-
minates the process, and concludes that the service failed to start. If ServicesPipeTimeout
doesn’t exist, the SCM uses a default timeout of 30 seconds. The SCM uses the same timeout
value for all its service communications.

When a service connects to the SCM through the pipe, the SCM sends the service a start com-
mand. If the service fails to respond positively to the start command within the timeout
period, the SCM gives up and moves on to start the next service. When a service doesn’t
respond to a start request, the SCM doesn’t terminate the process, as it does when a service
doesn’t call StartServiceCtrlDispatcher within the timeout; instead, it notes an error in the sys-
tem Event Log that indicates the service failed to start in a timely manner.

If the service the SCM starts with a call to ScStartService has a Type registry value of
SERVICE_KERNEL_DRIVER or SERVICE_FILE_SYSTEM_ DRIVER, the service is really a
device driver, and so ScStartService calls ScLoadDeviceDriver to load the driver. ScLoadDevice-
Driver enables the load driver security privilege for the SCM process and then invokes the ker-
nel service NtLoadDriver, passing in the data in the ImagePath value of the driver’s registry
key. Unlike services, drivers don’t need to specify an ImagePath value, and if the value is
absent, the SCM builds an image path by appending the driver’s name to the string \Win-
dows\System32\Drivers\.

Chapter 4: Management Mechanisms 229
ScAutoStartServices continues looping through the services belonging to a group until all the
services have either started or generated dependency errors. This looping is the SCM’s way of
automatically ordering services within a group according to their DependOnService depen-
dencies. The SCM will start the services that other services depend on in earlier loops, skip-
ping the dependent services until subsequent loops. Note that the SCM ignores Tag values for
Windows services, which you might come across in subkeys under the HKLM\SYSTEM\
CurrentControlSet\Services key; the I/O manager honors Tag values to order device driver
startup within a group for boot and system-start drivers.

Once the SCM completes phases for all the groups listed in the ServiceGroupOrder\List
value, it performs a phase for services belonging to groups not listed in the value and a final
phase for services without a group. When it’s finished starting all auto-start services and driv-
ers, the SCM signals the event \BaseNamedObjects\SC_AutoStartComplete.

Startup Errors

If a driver or a service reports an error in response to the SCM’s startup command, the Error-
Control value of the service’s registry key determines how the SCM reacts. If the ErrorControl
value is SERVICE_ERROR_IGNORE (0) or the ErrorControl value isn’t specified, the SCM
simply ignores the error and continues processing service startups. If the ErrorControl value
is SERVICE_ERROR_NORMAL (1), the SCM writes an event to the system Event Log that
says, “The <service name> service failed to start due to the following error:”. The SCM includes
the textual representation of the Windows error code that the service returned to the SCM as
the reason for the startup failure in the Event Log record. Figure 4-15 shows the Event Log
entry that reports a service startup error.

Figure 4-15 Service startup failure Event Log entry

230 Microsoft Windows Internals, Fourth Edition
If a service with an ErrorControl value of SERVICE_ERROR_SEVERE (2) or
SERVICE_ERROR_CRITICAL (3) reports a startup error, the SCM logs a record to the Event
Log and then calls the internal function ScRevertToLastKnownGood. This function switches the
system’s registry configuration to a version, named last known good, with which the system
last booted successfully. Then it restarts the system using the NtShutdownSystem system ser-
vice, which is implemented in the executive. If the system is already booting with the last
known good configuration, the system just reboots.

Accepting the Boot and Last Known Good

Besides starting services, the system charges the SCM with determining when the system’s
registry configuration, HKLM\SYSTEM\CurrentControlSet, should be saved as the last
known good control set. The CurrentControlSet key contains the Services key as a subkey, so
CurrentControlSet includes the registry representation of the SCM database. It also contains
the Control key, which stores many kernel-mode and user-mode subsystem configuration set-
tings. By default, a successful boot consists of a successful startup of auto-start services and a
successful user logon. A boot fails if the system halts because a device driver crashes the sys-
tem during the boot or if an auto-start service with an ErrorControl value of
SERVICE_ERROR_SEVERE or SERVICE_ERROR_CRITICAL reports a startup error.

The SCM obviously knows when it has completed a successful startup of the auto-start ser-
vices, but Winlogon (\Windows\System32\Winlogon.exe) must notify it when there is a suc-
cessful logon. Winlogon invokes the NotifyBootConfigStatus function when a user logs on, and
NotifyBootConfigStatus sends a message to the SCM. Following the successful start of the auto-
start services or the receipt of the message from NotifyBootConfigStatus (whichever comes
last), the SCM calls the system function NtInitializeRegistry to save the current registry startup
configuration.

Third-party software developers can supersede Winlogon’s definition of a successful logon
with their own definition. For example, a system running Microsoft SQL Server might not
consider a boot successful until after SQL Server is able to accept and process transactions.
Developers impose their definition of a successful boot by writing a boot-verification program
and installing the program by pointing to its location on disk with the value stored in the reg-
istry key HKLM\SYSTEM\CurrentControlSet\Control\BootVerificationProgram. In addi-
tion, a boot-verification program’s installation must disable Winlogon’s call to
NotifyBootConfigStatus by setting HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVer-
sion\Winlogon\ReportBootOk to 0. When a boot-verification program is installed, the SCM
launches it after finishing auto-start services and waits for the program’s call to NotifyBootCon-
figStatus before saving the last known good control set.

Windows maintains several copies of CurrentControlSet, and CurrentControlSet is really a
symbolic registry link that points to one of the copies. The control sets have names in the form
HKLM\SYSTEM\ControlSetnnn, where nnn is a number such as 001 or 002. The HKLM\SYS-
TEM\Select key contains values that identify the role of each control set. For example, if Cur-

Chapter 4: Management Mechanisms 231
rentControlSet points to ControlSet001, the Current value under Select has a value of 1. The
LastKnownGood value under Select contains the number of the last known good control set,
which is the control set last used to boot successfully. Another value that might be on your
system under the Select key is Failed, which points to the last control set for which the boot
was deemed unsuccessful and aborted in favor of an attempt at booting with the last known
good control set. Figure 4-16 displays a system’s control sets and Select values.

Figure 4-16 Control set selection key

NtInitializeRegistry takes the contents of the last known good control set and synchronizes it
with that of the CurrentControlSet key’s tree. If this was the system’s first successful boot, the
last known good won’t exist and the system will create a new control set for it. If the last
known good tree exists, the system simply updates it with differences between it and Current-
ControlSet.

Last known good is helpful in situations in which a change to CurrentControlSet, such as the
modification of a system performance-tuning value under HKLM\SYSTEM\Control or the
addition of a service or device driver, causes the subsequent boot to fail. Users can press F8
early in the boot process to bring up a menu that lets them direct the boot to use the last
known good control set, rolling the system’s registry configuration back to the way it was the
last time the system booted successfully. Chapter 5 describes in more detail the use of Last
Known Good and other recovery mechanisms for troubleshooting system startup problems.

Service Failures

A service can have optional FailureActions and FailureCommand values in its registry key that
the SCM records during the service’s startup. The SCM registers with the system so that the
system signals the SCM when a service process exits. When a service process terminates unex-
pectedly, the SCM determines which services ran in the process and takes the recovery steps
specified by their failure-related registry values.

Actions that a service can configure for the SCM include restarting the service, running a pro-
gram, and rebooting the computer. Furthermore, a service can specify the failure actions that

232 Microsoft Windows Internals, Fourth Edition
take place the first time the service process fails, the second time, and subsequent times, and
it can indicate a delay period that the SCM waits before restarting the service if the service asks
to be restarted. The service failure action of the IIS Admin Service results in the SCM running
the IISReset application, which performs cleanup work and then restarts the service. You can
easily manage the recovery actions for a service with the Recovery tab of the service’s Proper-
ties dialog box in the Services MMC snap-in, as shown in Figure 4-17.

Figure 4-17 Service recovery options

Service Shutdown

When Winlogon calls the Windows ExitWindowsEx function, ExitWindowsEx sends a message
to Csrss, the Windows subsystem process, to invoke Csrss’s shutdown routine. Csrss loops
through the active processes and notifies them that the system is shutting down. For every
system process except the SCM, Csrss waits up to the number of seconds specified by
HKU\.DEFAULT\Control Panel\Desktop\WaitToKillAppTimeout (which defaults to 20 sec-
onds) for the process to exit before moving on to the next process. When Csrss encounters
the SCM process, it also notifies it that the system is shutting down but employs a timeout
specific to the SCM. Csrss recognizes the SCM using the process ID Csrss saved when the
SCM registered with Csrss using the RegisterServicesProcess function during system initializa-
tion. The SCM’s timeout differs from that of other processes because Csrss knows that the
SCM communicates with services that need to perform cleanup when they shut down, and so
an administrator might need to tune only the SCM’s timeout. The SCM’s timeout value resides
in the HKLM\SYSTEM\CurrentControlSet\Control\WaitToKillServiceTimeout registry
value, and it defaults to 20 seconds.

Chapter 4: Management Mechanisms 233
The SCM’s shutdown handler is responsible for sending shutdown notifications to all the ser-
vices that requested shutdown notification when they initialized with the SCM. The SCM
function ScShutdownAllServices loops through the SCM services database searching for ser-
vices desiring shutdown notification and sends each one a shutdown command. For each ser-
vice to which it sends a shutdown command, the SCM records the value of the service’s wait
hint, a value that a service also specifies when it registers with the SCM. The SCM keeps track
of the largest wait hint it receives. After sending the shutdown messages, the SCM waits either
until one of the services it notified of shutdown exits or until the time specified by the largest
wait hint passes.

If the wait hint expires without a service exiting, the SCM determines whether one or more of
the services it was waiting on to exit have sent a message to the SCM telling the SCM that the
service is progressing in its shutdown process. If at least one service made progress, the SCM
waits again for the duration of the wait hint. The SCM continues executing this wait loop until
either all the services have exited or none of the services upon which it’s waiting has notified
it of progress within the wait hint timeout period.

While the SCM is busy telling services to shut down and waiting for them to exit, Csrss waits
for the SCM to exit. If Csrss’s wait ends without the SCM having exited (the WaitToKillSer-
viceTimeout time expires), Csrss simply moves on, continuing the shutdown process. Thus,
services that fail to shut down in a timely manner are simply left running, along with the SCM,
as the system shuts down. Unfortunately, there’s no way for administrators to know whether
they should raise the WaitToKillServiceTimeout value on systems where services aren’t get-
ting a chance to shut down completely before the system shuts down. See “Shutdown” in
Chapter 5 for more information on the shutdown process.

Shared Service Processes

Running every service in its own process instead of having services share a process when-
ever possible wastes system resources. However, sharing processes means that if any of the
services in the process has a bug that causes the process to exit, all the services in that pro-
cess terminate.

Of the Windows built-in services, some run in their own process and some share a process
with other services. For example, the SCM process hosts the Event Log service and the user-
mode Plug and Play service, and the LSASS process contains security-related services—such as
the Security Accounts Manager (SamSs) service, the Net Logon (Netlogon) service, and the
IPSec Policy Agent (PolicyAgent) service.

There is also a “generic” process named Service Host (SvcHost - \Win-
dows\System32\Svchost.exe) to contain multiple services. Multiple instances of SvcHost can
be running in different processes. Services that run in SvcHost processes include Telephony

234 Microsoft Windows Internals, Fourth Edition
(TapiSrv), Remote Procedure Call (RpcSs), and Remote Access Connection Manager (Ras-
Man). Windows implements services that run in SvcHost as DLLs and includes an ImagePath
definition of the form “%SystemRoot%\System32\svchost.exe -k netsvcs” in the service’s reg-
istry key. The service’s registry key must also have a registry value named ServiceDll under a
Parameters subkey that points to the service’s DLL file.

All services that share a common SvcHost process specify the same parameter (“-k netsvcs” in
the example in the preceding paragraph) so that they have a single entry in the SCM’s image
database. When the SCM encounters the first service that has a SvcHost ImagePath with a par-
ticular parameter during service startup, it creates a new image database entry and launches a
SvcHost process with the parameter. The new SvcHost process takes the parameter and looks
for a value having the same name as the parameter under HKLM\SOFTWARE\Microsoft\
Windows NT\CurrentVersion\Svchost. SvcHost reads the contents of the value, interpreting
it as a list of service names, and notifies the SCM that it’s hosting those services when SvcHost
registers with the SCM. Figure 4-18 presents an example Svchost registry key that shows that
a SvcHost process started with the “-k netsvcs” parameter is prepared to host a number of dif-
ferent network-related services.

Figure 4-18 Svchost registry key

When the SCM encounters a SvcHost service during service startup with an ImagePath
matching an entry it already has in the image database, it doesn’t launch a second process but
instead just sends a start command for the service to the SvcHost it already started for that
ImagePath value. The existing SvcHost process reads the ServiceDll parameter in the service’s
registry key and loads the DLL into its process to start the service.

Chapter 4: Management Mechanisms 235
EXPERIMENT: Viewing Services Running Inside Processes
The Process Explorer utility that you can download from www.sysinternals.com shows
detailed information about the services running with processes. Run Process Explorer
and view Services tabs on the process properties dialog box for the following processes:
Services.exe, Lsass.exe, and Svchost.exe. Several instances of SvcHost will be running
on your system, and you can see the account in which each is running by adding the
Username column to the Process Explorer display or by looking at the Username field
on the Image tab of a process’s Process Properties dialog box. The following figure
shows the list of services running within a SvcHost executing in the local service
account:

The information displayed includes the service name, display name, and service descrip-
tion, if it has one, which Process Explorer shows beneath the service list when you select
a service.

You can also use the tlist.exe tool from the Windows Support Tools or Tasklist, which
ships with Windows XP and Windows Server 2003, to view the list of services running
within processes from a command prompt. The syntax to see services with Tlist is:

tlist /s

The syntax for tasklist is:

tasklist /svc

Note that these utilities do not show service display names or descriptions, only service
names.

236 Microsoft Windows Internals, Fourth Edition
Service Control Programs

Service control programs are standard Windows applications that use XSCM service manage-
ment functions, including CreateService, OpenService, StartService, ControlService, QueryService-
Status, and DeleteService. To use the SCM functions, an SCP must first open a communications
channel to the SCM by calling the OpenSCManager function. At the time of the open call, the
SCP must specify what types of actions it wants to perform. For example, if an SCP simply
wants to enumerate and display the services present in the SCM’s database, it requests enu-
merate-service access in its call to OpenSCManager. During its initialization, the SCM creates
an internal object that represents the SCM database and uses the Windows security functions
to protect the object with a security descriptor that specifies what accounts can open the
object with what access permissions. For example, the security descriptor indicates that the
Authenticated Users group can open the SCM object with enumerate-service access. However,
only administrators can open the object with the access required to create or delete a service.

As it does for the SCM database, the SCM implements security for services themselves. When
an SCP creates a service by using the CreateService function, it specifies a security descriptor
that the SCM associates internally with the service’s entry in the service database. The SCM
stores the security descriptor in the service’s registry key as the Security value, and it reads
that value when it scans the registry’s Services key during initialization so that the security set-
tings persist across reboots. In the same way that an SCP must specify what types of access it
wants to the SCM database in its call to OpenSCManager, an SCP must tell the SCM what
access it wants to a service in a call to OpenService. Accesses that an SCP can request include
the ability to query a service’s status and to configure, stop, and start a service.

The SCP you’re probably most familiar with is the Services MMC snap-in that’s included in
Windows, which resides in \Windows\System32\Filemgmt.dll. Windows XP and Windows
Server 2003 include Sc.exe (Service Controller tool), a command-line service control program
that’s available for Windows 2000 in the Windows 2000 resource kits.

SCPs sometimes layer service policy on top of what the SCM implements. A good example is
the timeout that the Services MMC snap-in implements when a service is started manually.
The snap-in presents a progress bar that represents the progress of a service’s startup.
Whereas the SCM waits indefinitely for a service to respond to a start command, the Services
snap-in waits only 2 minutes before the progress bar reaches 100 percent and the snap-in
announces that the service didn’t start in a timely manner. Services indirectly interact with
SCPs by setting their configuration status to reflect their progress as they respond to SCM
commands such as the start command. SCPs query the status with the QueryServiceStatus
function. They can tell when a service actively updates the status versus when a service
appears to be hung, and the SCM can take appropriate actions in notifying a user about what
the service is doing.

Chapter 4: Management Mechanisms 237
Windows Management Instrumentation
Windows NT has always had integrated performance and system-event monitoring tools.
Applications and the system typically use the Event Manager to report errors and diagnostic
messages. The Event Viewer utility lets administrators view event output from either the local
computer or another computer on the network. Similarly, the performance counter mecha-
nism lets applications and operating system components report performance-related statistics
to performance-monitoring applications such as the Performance Monitor.

Although the Windows NT 4 event-monitoring and performance-monitoring features met
their design goals, they had limitations. For example, the programming interfaces differ from
one another, and this variation increases the complexity of applications that use both event
and performance monitoring to collect data. Perhaps the biggest drawback to the monitoring
facilities in Windows NT 4 is that they have little or no extensibility and that neither event log-
ging nor performance data collection provides the two-way interaction necessary in a manage-
ment API. Applications must provide data in predefined formats. The Performance API
provides no way for an application to receive notification of performance-related events, and
applications that request notification of Event Manager events can’t restrict notification to spe-
cific event types or sources. Finally, clients of either collection facility can’t communicate with
event-data or performance-data providers through the Event Manager or Performance API.

To address these limitations as well as to provide management capabilities for other types of
data sources, Windows has a new management mechanism, Windows Management Instru-
mentation (WMI). WMI is an implementation of Web-Based Enterprise Management
(WBEM), a standard that the Distributed Management Task Force (DMTF—an industry con-
sortium) defines. The WBEM standard encompasses the design of an extensible enterprise
data-collection and data-management facility that has the flexibility and extensibility required
to manage local and remote systems that comprise arbitrary components. WMI support was
added to Windows NT 4 in Service Pack 4. It is also supported in Windows 95 OSR2, Win-
dows 98 and Windows Millennium. Although most of this section applies to all the Windows
platforms that support WMI, implementation details are specific to Windows 2000, Windows
XP, and Windows Server 2003.

WMI Architecture

WMI consists of four main components, as shown in Figure 4-19: management applications,
WMI infrastructure, providers, and managed objects. Management applications are Win-
dows applications that access and display or process data that the applications obtain about
managed objects. A simple example of a management application is a Performance tool
replacement that relies on WMI rather than the Performance API to obtain performance
information. A more complex example is an enterprise-management tool that lets adminis-
trators perform automated inventories of the software and hardware configuration of every
computer in their enterprise.

238 Microsoft Windows Internals, Fourth Edition
Figure 4-19 WMI architecture

Developers typically must target management applications to collect data from and manage
specific objects. An object might represent one component, such as a network adapter device,
or a collection of components, such as a computer. (The computer object might contain the
network adapter object.) Providers need to define and export the representation of the objects
that management applications are interested in. For example, the vendor of a network adapter
might want to add adapter-specific properties to the network adapter WMI support that Win-
dows includes, querying and setting the adapter’s state and behavior as the management
applications direct. In some cases (for example, for device drivers), Microsoft supplies a pro-
vider that has its own API to help developers leverage the provider’s implementation for their
own managed objects with minimal coding effort.

The WMI infrastructure, the heart of which is the Common Information Model (CIM) Object
Manager (CIMOM), is the glue that binds management applications and providers. (CIM is
described later in this chapter.) The infrastructure also serves as the object-class store and, in
many cases, as the storage manager for persistent object properties. WMI implements the
store, or repository, as an on-disk database named the CIMOM Object Repository. As part of
its infrastructure, WMI supports several APIs through which management applications access
object data and providers supply data and class definitions.

Database
application

Web browser
C/C++

application

ODBC
ActiveX
controls

Windows Management API

Management
applications

COM/DCOM

COM/DCOM

CIM repository CIM Object Manager (CIMOM) WMI infrastructure

SNMP provider Windows provider
Registry
provider Providers

SNMP objects Windows objects
Registry
objects Managed objects

Chapter 4: Management Mechanisms 239
Windows programs use the WMI COM API, the primary management API, to directly interact
with WMI. Other APIs layer on top of the COM API and include an Open Database Connec-
tivity (ODBC) adapter for the Microsoft Access database application. A database developer
uses the WMI ODBC adapter to embed references to object data in the developer’s database.
Then the developer can easily generate reports with database queries that contain WMI-based
data. WMI ActiveX controls support another layered API. Web developers use the ActiveX
controls to construct Web-based interfaces to WMI data. Another management API is the
WMI scripting API, for use in script-based applications and Microsoft Visual Basic programs.
WMI scripting support exists for all Microsoft programming language technologies.

As they are for management applications, WMI COM interfaces constitute the primary API for
providers. However, unlike management applications, which are COM clients, providers are
COM or Distributed COM (DCOM) servers (that is, the providers implement COM objects
that WMI interacts with). Possible embodiments of a WMI provider include DLLs that load
into WMI’s manager process or stand-alone Windows applications or Windows services.
Microsoft includes a number of built-in providers that present data from well-known sources,
such as the Performance API, the registry, the Event Manager, Active Directory, SNMP, and
Windows Driver Model (WDM) device drivers. The WMI SDK lets developers develop third-
party WMI providers.

Providers

At the core of WBEM is the DMTF-designed CIM specification. The CIM specifies how man-
agement systems represent, from a systems management perspective, anything from a com-
puter to an application or device on a computer. Provider developers use the CIM to represent
the components that make up the parts of an application for which the developers want to
enable management. Developers use the Managed Object Format (MOF) language to imple-
ment a CIM representation.

In addition to defining classes that represent objects, a provider must interface WMI to the
objects. WMI classifies providers according to the interface features the providers supply.
Table 4-10 lists WMI provider classifications. Note that a provider can implement one or more
features; therefore, a provider can be, for example, both a class and an event provider. To clar-
ify the feature definitions in Table 4-10, let’s look at a provider that implements several of
those features. The Event Log provider supports several objects, including an Event Log Com-
puter, an Event Log Record, and an Event Log File. The Event Log is an Instance provider
because it can define multiple instances for several of its classes. One class for which the Event
Log provider defines multiple instances is the Event Log File class (Win32_NTEventlogFile);
the Event Log provider defines an instance of this class for each of the system’s event logs
(that is, System Event Log, Application Event Log, and Security Event Log).

240 Microsoft Windows Internals, Fourth Edition
The Event Log provider defines the instance data and lets management applications enumer-
ate the records. To let management applications use WMI to back up and restore the Event
Log files, the Event Log provider implements backup and restore methods for Event Log File
objects. Doing so makes the Event Log provider a Method provider. Finally, a management
application can register to receive notification whenever a new record writes to one of the
Event Logs. Thus, the Event Log provider serves as an Event provider when it uses WMI event
notification to tell WMI that Event Log records have arrived.

The Common Information Model and the Managed Object Format
Language

The CIM follows in the steps of object-oriented languages such as C++ and Java, in which a
modeler designs representations as classes. Working with classes lets developers use the
powerful modeling techniques of inheritance and composition. Subclasses can inherit the
attributes of a parent class, and they can add their own characteristics and override the char-
acteristics they inherit from the parent class. A class that inherits properties from another
class derives from that class. Classes also compose: a developer can build a class that includes
other classes.

The DMTF provides multiple classes as part of the WBEM standard. These classes are CIM’s
basic language and represent objects that apply to all areas of management. The classes are
part of the CIM core model. An example of a core class is CIM_ManagedSystemElement. This
class contains a few basic properties that identify physical components such as hardware
devices, and logical components such as processes and files. The properties include a caption,
description, installation date, and status. Thus, the CIM_LogicalElement and
CIM_PhysicalElement classes inherit the attributes of the CIM_ManagedSystemElement
class. These two classes are also part of the CIM core model. The WBEM standard calls these
classes abstract classes because they exist solely as classes that other classes inherit (that is, no

Table 4-10 Provider Classifications

Classification Description

Class Can supply, modify, delete, and enumerate a provider-specific class. Can
also support query processing. Active Directory is a rare example of a ser-
vice that is a class provider.

Instance Can supply, modify, delete, and enumerate instances of system and provid-
er-specific classes. An instance represents a managed object. Can also sup-
port query processing.

Property Can supply and modify individual object property values.

Method Supplies methods for a provider-specific class.

Event Generates event notifications.

Event consumer Maps a physical consumer to a logical consumer to support event notifica-
tion.

Chapter 4: Management Mechanisms 241
object instances of an abstract class exist). You can therefore think of abstract classes as tem-
plates that define properties for use in other classes.

A second category of classes represents objects that are specific to management areas but
independent of a particular implementation. These classes constitute the common model and
are considered an extension of the core model. An example of a common-model class is the
CIM_FileSystem class, which inherits the attributes of CIM_LogicalElement. Because virtually
every operating system—including Windows, Linux, and other varieties of UNIX—rely on file-
system-based structured storage, the CIM_FileSystem class is an appropriate constituent of
the common model.

The final class category, the extended model, comprises technology-specific additions to the
common model. Windows defines a large set of these classes to represent objects specific to
the Windows environment. Because all operating systems store data in files, the CIM common
model includes the CIM_LogicalFile class. The CIM_DataFile class inherits the
CIM_LogicalFile class, and Windows adds the Win32_PageFile and Win32_ShortcutFile file
classes for those Windows file types.

The Event Log provider makes extensive use of inheritance. Figure 4-20 shows a view of the
WMI CIM Studio, a class browser that ships with the WMI Administrative Tools that you can
obtain from the Microsoft download center at the Microsoft Web site. You can see where the
Event Log provider relies on inheritance in the provider’s Win32_NTEventlogFile class,
which derives from CIM_DataFile. Event Log files are data files that have additional Event
Log–specific attributes such as a log file name (LogfileName) and a count of the number of
records that the file contains (NumberOfRecords). The tree that the class browser shows
reveals that Win32_NTEventlogFile is based on several levels of inheritance, in which
CIM_DataFile derives from CIM_LogicalFile, which derives from CIM_LogicalElement, and
CIM_LogicalElement derives from CIM_ManagedSystemElement.

As stated earlier, WMI provider developers write their classes in the MOF language. The fol-
lowing output shows the definition of the Event Log provider’s Win32_NTEventlogFile,
which is selected in Figure 4-20. Notice the correlation between the properties that the right
panel in Figure 4-20 lists and those properties’ definitions in the MOF file below. CIM Studio
uses yellow arrows to tag those properties that a class inherits. Thus, you don’t see those prop-
erties specified in Win32_NTEventlogFile’s definition.

dynamic: ToInstance, provider(“MS_NT_EVENTLOG_PROVIDER”), Locale(1033), UUID(“{8502C57B-

5FBB-11D2-AAC1-006008C78BC7}”)]

class Win32_NTEventlogFile : CIM_DataFile

{

[read] string LogfileName;

[read, write] uint32 MaxFileSize;

[read] uint32 NumberOfRecords;

[read, volatile, ValueMap{"0", “1..365", “4294967295"}] string OverWritePolicy;

[read, write, Units(“Days”), Range(“0-365 | 4294967295”)] uint32 OverwriteOutDated;

[read] string Sources[];

242 Microsoft Windows Internals, Fourth Edition
[implemented, Privileges{"SeSecurityPrivilege",

“SeBackupPrivilege"}] uint32 ClearEventlog([in] string ArchiveFileName);

[implemented, Privileges{"SeSecurityPrivilege",

“SeBackupPrivilege"}] uint32 BackupEventlog([in] string ArchiveFileName);

};

Figure 4-20 WMI CIM Studio

One term worth reviewing is dynamic, which is a descriptive designator for the
Win32_NTEventlogFile class that the MOF file in the preceding output shows. Dynamic
means that the WMI infrastructure asks the WMI provider for the values of properties associ-
ated with an object of that class whenever a management application queries the object’s
properties. A static class is one in the WMI repository; the WMI infrastructure refers to the
repository to obtain the values instead of asking a provider for the values. Because updating
the repository is a relatively expensive operation, dynamic providers are more efficient for
objects that have properties that change frequently.

Chapter 4: Management Mechanisms 243
EXPERIMENT: Viewing the MOF Definitions of WMI Classes
You can view the MOF definition for any WMI class by using the WbemTest tool that
comes with Windows. In this experiment, we’ll look at the MOF definition for the
Win32_NTEventLogFile class:

1. Run Wbemtest from the Start menu’s Run dialog box.

2. Click the Connect button, change the Namespace to root\cimv2, and connect.

3. Select Enum Classes, select the Recursive option button, and then click OK.

4. Find Win32_NTEventLogFile in the list classes, and double-click it to see its class
properties.

5. Click the Show MOF button to open a window that displays the MOF text.

After constructing classes in MOF, WMI developers can supply the class definitions to WMI in
several ways. WDM provider developers compile a MOF file into a binary MOF (BMF) file—a
more compact binary representation than a MOF file—and give the BMF files to the WDM
infrastructure. Another way is for the provider to compile the MOF and use WMI COM APIs
to give the definitions to the WMI infrastructure. Finally, a provider can use the MOF Com-
piler (Mofcomp.exe) tool to give the WMI infrastructure a classes-compiled representation
directly.

The WMI Namespace

Classes define the properties of objects, and objects are class instances on a system. WMI uses
a namespace that contains several subnamespaces that WMI arranges hierarchically to orga-
nize objects. A management application must connect to a namespace before the application
can access objects within the namespace.

WMI names the namespace root directory root. All WMI installations have four predefined
namespaces that reside beneath root: CIMV2, Default, Security, and WMI. Some of these
namespaces have other namespaces within them. For example, CIMV2 includes the Applica-
tions and ms_409 namespaces as subnamespaces. Providers sometimes define their own
namespaces; you can see the WMI namespace (which the Windows device driver WMI pro-
vider defines) beneath root in Windows.

EXPERIMENT: Viewing WMI Namespaces
You can see what namespaces are defined on a system with WMI CIM Studio. WMI
CIM Studio presents a connection dialog box when you run it that includes a
namespace browsing button to the right of the namespace edit box. Opening the
browser and selecting a namespace has WMI CIM Studio connect to that namespace.

244 Microsoft Windows Internals, Fourth Edition
Windows Server 2003 defines over a dozen namespaces beneath root, some of which
are visible here:

Unlike a file system namespace, which comprises a hierarchy of directories and files, a WMI
namespace is only one level deep. Instead of using names as a file system does, WMI uses
object properties that it defines as keys to identify the objects. Management applications spec-
ify class names with key names to locate specific objects within a namespace. Thus, each
instance of a class must be uniquely identifiable by its key values. For example, the Event Log
provider uses the Win32_NTLogEvent class to represent records in an Event Log. This class
has two keys: Logfile, a string; and RecordNumber, an unsigned integer. A management appli-
cation that queries WMI for instances of Event Log records obtains them from the provider
key pairs that identify records. The application refers to a record using the syntax that you see
in this sample object pathname:

\\DARYL\root\CIMV2:Win32_NTLogEvent.Logfile="Application",

RecordNumber="1”

The first component in the name (\\DARYL) identifies the computer on which the object is
located, and the second component (\root\CIMV2) is the namespace in which the object
resides. The class name follows the colon, and key names and their associated values follow
the period. A comma separates the key values.

WMI provides interfaces that let applications enumerate all the objects in a particular class or
to make queries that return instances of a class that match a query criteria.

Class Association

Many object types are related to one another in some way. For example, a computer object has
a processor, software, an operating system, active processes, and so on. WMI lets providers
construct an association class to represent a logical connection between two different classes.
Association classes associate one class with another, so the classes have only two properties: a
class name and the Ref modifier. The following output shows an association in which the

Chapter 4: Management Mechanisms 245
Event Log provider’s MOF file associates the Win32_NTLogEvent class with the
Win32_ComputerSystem class. Given an object, a management application can query associ-
ated objects. In this way, a provider defines a hierarchy of objects.

[dynamic: ToInstance, provider("MS_NT_EVENTLOG_PROVIDER"): ToInstance, EnumPrivileges{"SeSec

urityPrivilege"}: ToSubClass, Locale(1033): ToInstance, UUID("{8502C57F-5FBB-11D2-AAC1-

006008C78BC7}"): ToInstance, Association: DisableOverride ToInstance ToSubClass]

class Win32_NTLogEventComputer

{

[key, read: ToSubClass] Win32_ComputerSystem ref Computer;

[key, read: ToSubClass] Win32_NTLogEvent ref Record;

};

Figure 4-21 shows the WMI Object Browser (another tool that the WMI Administrative Tools
includes) displaying the contents of the CIMV2 namespace. Windows system components
typically place their objects within the CIMV2 namespace. The Object Browser first locates
the Win32_ComputerSystem object instance MR-XEON, which is the object that represents
the computer. Then the Object Browser obtains the objects associated with
Win32_ComputerSystem and displays them beneath MR-XEON. The Object Browser user
interface displays association objects with a double-arrow folder icon. The associated class
type’s objects display beneath the folder.

Figure 4-21 WMI Object Browser

You can see in the Object Browser that the Event Log provider’s association class
Win32_NTLogEventComputer is beneath MR-XEON and that numerous instances of the
Win32_NTLogEvent class exist. Refer to the preceding output to verify that the MOF file
defines the Win32_NTLogEventComputer class to associate the Win32_ComputerSystem
class with the Win32_NTLogEvent class. Selecting an instance of Win32_NTLogEvent in the
Object Browser reveals that class’s properties under the Properties tab in the right-hand pane.
Microsoft intended the Object Browser to help WMI developers examine their objects, but a
management application would perform the same operations and display properties or col-
lected information more intelligibly.

246 Microsoft Windows Internals, Fourth Edition
EXPERIMENT: Using WMI Scripts to Manage Systems
A powerful aspect of WMI is its support for scripting languages. Microsoft has generated
hundreds of scripts that perform common administrative tasks for managing user
accounts, files, the registry, processes, and hardware devices. While some scripts ship in
the Windows Resource Kits, the Microsoft TechNet Scripting Center Web site serves as
the central location for Microsoft scripts. Using a script from the scripting center is as
easy as copying its text from your Internet browser, storing it in a file with with a .vbs
extension, and running it with the command cscript script.vbs, where “script” is the
name you gave the script. Cscript is the command-line interface to Windows Script Host
(WSH).

Here’s a sample TechNet script that registers to receive events when Win32_Process
object instances are created, which occurs whenever a process starts, and prints a line
with the name of the process that the object represents:

strComputer = "."

Set objWMIService = GetObject("winmgmts:" _

& "{impersonationLevel=impersonate}!\\" & strComputer & "\root\cimv2")

Set colMonitoredProcesses = objWMIService. _

ExecNotificationQuery("select * from __instancecreationevent " _

& " within 1 where TargetInstance isa 'Win32_Process'")

i = 0

Do While i = 0

Set objLatestProcess = colMonitoredProcesses.NextEvent

Wscript.Echo objLatestProcess.TargetInstance.Name

Loop

The line that invokes ExecNotificationQuery does so with a parameter that includes a
“select” statement, which highlights WMI’s support for a read-only subset of the ANSI
standard Structured Query Language (SQL), known as WQL, to provide a flexible way
for WMI consumers to specify the information that they want to extract from WMI pro-
viders. Running the sample script with Cscript and then starting Notepad results in the
following output:

C:\>cscript monproc.vbs

Microsoft (R) Windows Script Host Version 5.6

Copyright (C) Microsoft Corporation 1996-2001. All rights reserved.

NOTEPAD.EXE

Chapter 4: Management Mechanisms 247
WMI Implementation

In Windows 2000, the WMI service is implemented in \Windows\System32\Winmgmt.exe,
which the Windows SCM starts the first time a management application or WMI provider
tries to access WMI APIs. In Windows XP and Windows Server 2003, the WMI service runs in
a shared Svchost process that executes in the local system account.

In Windows 2000, WMI loads providers as in-process DCOM servers that execute within the
Winmgmt service process. If a provider bug crashes the WMI process, the WMI service exits and
then restarts in response to the next WMI request. Because the WMI service shares its Svchost
process with several other services that would also exit if a WMI provider bug caused the pro-
cess to exit, in Windows XP and Windows Server 2003, WMI loads providers into the Wmi-
prvse.exe provider-hosting process. Wmiprvse.exe launches as a child of the RPC service
process. WMI executes Wmiprvse in the local system, local service, or network service accounts,
depending on the value of the HostingModel property of the WMI Win32Provider object
instance that represents the provider implementation. A Wmiprvse process exits after the pro-
vider is removed from the cache, one minute following the last provider request it receives.

EXPERIMENT: Viewing Wmiprvse Creation
You can see Wmiprvse being created by running Process Explorer from www.sysinter-
nals.com and executing Wmic. A Wmiprvse process will appear beneath the Svchost pro-
cess that hosts the RPC service. If Process Explorer job highlighting is enabled, it will
appear with the job highlight color because, to prevent a runaway provider from con-
suming all virtual memory resources on a system, Wmiprvse executes in a job object
that limits the number of child processes it can create and the amount of virtual memory
each process and all the processes of the job can allocate. (See Chapter 6 for more infor-
mation on job objects.)

248 Microsoft Windows Internals, Fourth Edition
Most WMI components reside by default in \Windows\System32 and \Windows\System32\
Wbem, including Windows MOF files, built-in provider DLLs, and management application
WMI DLLs. Look in the \Windows\System32\Wbem directory, and you’ll find Ntevt.mof,
the Event Log provider MOF file. You’ll also find Ntevt.dll, the Event Log provider’s DLL,
which the WMI service uses.

Directories beneath \Windows\System32\Wbem store the repository, log files, and third-
party MOF files. WMI implements the repository—named the CIMOM repository—using a
proprietary version of the Microsoft JET database engine. In Windows 2000, the database file
stores in \Windows\System32\Wbem\Repository\Cim.rep; in Windows XP and Windows
Server 2003, the database resides in \Windows\System32\Wbem\Repository\Fs.

WMI honors numerous registry settings (including various internal performance parameters
such as CIMOM backup locations and intervals in Windows 2000) that the service’s
HKLM\SOFTWARE\Microsoft\WBEM\CIMOM registry key stores.

Device drivers use special interfaces to provide data to and accept commands—called the WMI
System Control commands—from WMI. These interfaces are part of the WDM, which is
explained in Chapter 9. Because the interfaces are cross-platform, they fall under the
\root\WMI namespace.

WMIC
Windows XP and Windows Server 2003 include Wmic.exe, a utility that allows you to
interact with WMI from a WMI-aware command-line shell. All WMI objects and their
properties, including their methods, are accessible through the shell, which makes
WMIC an advanced systems management console.

WMI Security

WMI implements security at the namespace level. If a management application successfully
connects to a namespace, the application can view and access the properties of all the objects
in that namespace. An administrator can use the WMI Control application to control which
users can access a namespace. To start the WMI Control application, from the Start menu,
select Programs, Administrative Tools, Computer Management. Next, open the Services And
Applications branch. Right-click WMI Control, and select Properties to launch the WMI Con-
trol Properties dialog box, which Figure 4-22 shows. To configure security for namespaces,
click the Security tab, select the namespace, and click Security. The other tabs in the WMI
Control Properties dialog box let you modify the performance and backup settings that the
registry stores.

Chapter 4: Management Mechanisms 249
Figure 4-22 WMI security properties

Conclusion
So far, we’ve examined the overall structure of Windows and the core system mechanisms on
which the structure is built, and core management mechanisms. With this foundation laid,
we're ready to explore the boot process and the individual executive components in more
detail.

Chapter 5

Startup and Shutdown

In this chapter, we’ll describe the steps required to boot Microsoft Windows and the options
that can affect system startup. Understanding the details of the boot process will help you
diagnose problems that can arise during a boot. Then we’ll explain the kinds of things that
can go wrong during the boot process and how to resolve them. Finally, we’ll explain what
occurs on an orderly system shutdown.

Boot Process
In describing the Windows boot process, we’ll start with the installation of Windows and pro-
ceed through the execution of boot support files. Device drivers are a crucial part of the boot
process, so we’ll explain the way that they control the point in the boot process at which they
load and initialize. Then we’ll describe how the executive subsystems initialize and how the
kernel launches the user-mode portion of Windows by starting the Session Manager process
(Smss.exe), the Windows subsystem, and the logon process (Winlogon). Along the way, we’ll
highlight the points at which various text appears on the screen to help you correlate the inter-
nal process with what you see when you watch Windows boot.

The early phases of the boot process differ significantly on x86 and x64 systems versus IA64
systems. The next sections describe the portions of the boot process specific to x86 and x64
and follow with a section describing the IA64-specific portions of the boot process.

x86 and x64 Preboot

The Windows boot process doesn’t begin when you power on your computer or press the
reset button. It begins when you install Windows on your computer. At some point during the
execution of the Windows Setup program, the system’s primary hard disk is prepared with
code that takes part in the boot process. Before we get into what this code does, let’s look at
how and where Windows places the code on a disk. Since the early days of MS-DOS, a stan-
dard has existed on x86 systems for the way physical hard disks are divided into volumes.
Microsoft operating systems split hard disks into discrete areas known as partitions and use
file systems (such as FAT and NTFS) to format each partition into a volume. A hard disk can
251

252 Microsoft Windows Internals, Fourth Edition
contain up to four primary partitions. Because this apportioning scheme would limit a disk
to four volumes, a special partition type, called an extended partition, further allocates up to
four additional partitions within each primary partition. Extended partitions can contain
extended partitions, which can contain extended partitions, and so on, making the number
of volumes an operating system can place on a disk effectively infinite. Figure 5-1 shows an
example of a hard disk layout, and Table 5-1 summarizes the files involved in the x86 and
x64 boot process. (You can learn more about Windows partitioning in Chapter 10, which
covers storage management.)

Table 5-1 x86 and x64 Boot Process Components

Component Processor Execution Responsibilities

Master Boot Record (MBR)
code

16-bit real mode Reads and loads partition boot sectors.

Boot sector 16-bit real mode Reads the root directory to load Ntldr.

Ntldr 16-bit real mode and
32-bit or 64-bit protected
mode; turns on paging

Reads Boot.ini, presents boot menu, and
loads Ntoskrnl.exe, Bootvid.dll, Hal.dll,
and boot-start device drivers. If a 32-bit
installation is booted, switches to 32-bit
protected mode; if a 64-bit installation is
booted, switches to 64-bit long mode.

Ntdetect.com 16-bit real mode Performs hardware detection for Ntldr.

Ntbootdd.sys Protected mode Device driver used for disk I/O on SCSI
and Advanced Technology Attachment
(ATA) systems where the BIOS is not
used.

Ntoskrnl.exe Protected mode with
paging

Initializes executive subsystems and
boot and system-start device drivers,
prepares the system for running native
applications, and runs Smss.exe.

Hal.dll Protected mode with
paging

Kernel-mode DLL that interfaces
Ntoksnrl and drivers to the hardware.

Smss Native application Loads Windows subsystem, including
Win32k.sys and Csrss.exe, and starts
Winlogon process.

Winlogon Native application Starts the service control manager
(SCM), starts the Local Security Sub-
system (LSASS), and presents interactive
logon dialog box.

Service control manager
(SCM)

Native application Loads and initializes auto-start device
drivers and Windows services.

Chapter 5: Startup and Shutdown 253
Figure 5-1 Sample hard disk layout

Physical disks are addressed in units known as sectors. A hard disk sector on an IBM-compat-
ible PC is typically 512 bytes. Utilities that prepare hard disks for the definition of volumes,
including the MS-DOS Fdisk utility or the Windows Setup program, write a sector of data
called a Master Boot Record (MBR) to the first sector on a hard disk. (MBR partitioning is
described in Chapter 10.) The MBR includes a fixed amount of space that contains executable
instructions (called boot code) and a table (called a partition table) with four entries that define
the locations of the primary partitions on the disk. When an IBM-compatible computer boots,
the first code it executes is called the BIOS, which is encoded into the computer’s ROM. The
BIOS selects a boot device, reads that device’s MBR into memory, and transfers control to the
code in the MBR.

The MBRs written by Microsoft partitioning tools, such as the one integrated into Windows
Setup and the Disk Management MMC snap-in, go through a similar process of reading and
transferring control. First, an MBR’s code scans the primary partition table until it locates a
partition containing a flag that signals the partition is bootable. When the MBR finds at least
one such flag, it reads the first sector from the flagged partition into memory and transfers
control to code within the partition. This type of partition is called a boot partition, and the
first sector of such a partition is called a boot sector. The volume defined for the boot partition
is called the system volume.

Partition 1 Partition 2

Partition table

1
2
3
4

Boot code

Partition 4Partition 3
(Extended)

Partitions within an
extended partition

MBR Boot sector Extended partition boot record

Boot partition

254 Microsoft Windows Internals, Fourth Edition
Operating systems generally write boot sectors to disk without a user’s involvement. For
example, when Windows Setup writes the MBR to a hard disk, it also writes a boot sector to
the first bootable partition of the disk. You might have created a MS-DOS boot sector during
the installation of MS-DOS, Windows Me, Windows 98, or Windows 95. Windows Setup
checks to see whether the boot sector it will overwrite with a Windows boot sector is a valid
MS-DOS boot sector. If it is, Windows Setup copies the boot sector’s contents to a file named
Bootsect.dos in the root directory of the partition.

Before writing to a partition’s boot sector, Windows Setup ensures that the partition is format-
ted with a file system that Windows supports (FAT, FAT32, or NTFS) by formatting the boot
partition (and any other partition) with a file system type you specify. If partitions are already
formatted, you can instruct Setup to skip this step. After Setup formats the boot partition,
Setup copies the files Windows uses to the boot partition (the system volume), including two
files that are part of the boot sequence, Ntldr and Ntdetect.com.

Another of Setup’s roles is to create a boot menu file, Boot.ini, in the root directory of the sys-
tem volume. This file contains options for starting the version of Windows that Setup installs
and any preexisting Windows installations. If Bootsect.dos contains a valid MS-DOS boot sec-
tor, one of the entries Boot.ini creates is to boot into MS-DOS. The following output shows a
sample Boot.ini file from a dual-boot computer on which MS-DOS is installed before Win-
dows XP:

[boot loader]

timeout=30

default=multi(0)disk(0)rdisk(0)partition(1)\WINDOWS

[operating systems]

multi(0)disk(0)rdisk(0)partition(1) \WINDOWS="Microsoft Windows XP Professional" /fastdetect

C:\="Microsoft Windows"

You’ll notice in the sample file that the path to the Windows directory is specified in a special
syntax that conforms to the Advanced RISC Computing (ARC) naming convention. There are
three variants to the syntax used by Windows. The first, shown in the preceding code sample,
is the multi() syntax, which instructs Windows to use BIOS INT 13 functions to load system
files. Thus, the multi() syntax is present when the disk on which the boot volume is located
has a controller that provides INT-13 support. The multi() syntax follows this format:

multi(W)disk(X)rdisk(Y)partition(Z)

W is the disk controller number (also known as the ordinal number) and is typically 0. X is
always 0 in the multi() syntax. Y specifies the physical hard disk attached to controller W. For
ATA controllers, this number is typically between 0 and 3. For SCSI controllers, the number is
typically between 0 and 15. Z indicates the partition number on the physical disk that corre-
sponds to the boot volume. The first partition is assigned the number 1.

Chapter 5: Startup and Shutdown 255
The scsi() ARC syntax informs Windows that it should rely on disk I/O services provided by
Ntbootdd.sys (described shortly) to access the files on the boot volume. The format of the
scsi() syntax is:

scsi(W)disk(X)rdisk(Y)partition(Z)

In this syntax, W is the controller number, and X is the physical hard disk attached to the con-
troller and is typically between 0 and 15. Y specifies the SCSI logical unit number (LUN) of
the disk that contains the boot volume and is typically 0. Finally, Z is the partition that corre-
sponds to the boot volume with numbering starting at 1.

The final syntax used by Windows is the signature() syntax. This instructs Windows to locate
the disk with the signature that matches the first value in parentheses, regardless of the con-
troller number associated with the disk and to use Ntbootdd.sys to access the boot volume. A
disk signature is a globally unique identifier (GUID) that Windows Setup extracts from infor-
mation in the MBR and writes to the disk. The signature() syntax is as follows:

signature(V)disk(X)rdisk(Y)partition(Z)

V is a 32-bit hexadecimal disk signature that identifies the disk. X is the physical hard disk
with the specific signature, and it can be attached to any controller on the system. Y is always
0, and Z is the partition number on which the boot volume is located.

Windows uses the signature() syntax in the following cases:

■ The boot volume is larger than 7.8 GB in size, and BIOS extended INT-13 functions
(those used to access parts of a disk beyond 7.8 GB) cannot access the entire volume.

■ The BIOS does not support extended INT-13 functions.

The x86/x64 Boot Sector and Ntldr

Setup must know the partition format before it writes a boot sector because the contents of
the boot sector vary depending on the format. For example, if the boot partition is a FAT par-
tition, Windows writes code to the boot sector that understands the FAT file system. But if the
partition is in NTFS format, Windows writes NTFS-capable code. The role of the boot-sector
code is to give Windows information about the structure and format of a volume and to read
in the Ntldr file from the root directory of the volume. Thus, the boot-sector code contains just
enough read-only file system code to accomplish this task. After the boot-sector code loads
Ntldr into memory, it transfers control to Ntldr’s entry point. If the boot-sector code can’t find
Ntldr in the volume’s root directory, it displays the error message “BOOT: Couldn’t find
NTLDRP” if the boot file system is FAT or “NTLDR is missing” if the file system is NTFS.

256 Microsoft Windows Internals, Fourth Edition
Ntldr begins its existence while a system is executing in an x86 operating mode called real mode.
In real mode, no virtual-to-physical translation of memory addresses occurs, which means that
programs that use the memory addresses interpret them as physical addresses and that only the
first 1 MB of the computer’s physical memory is accessible. Simple MS-DOS programs execute
in a real-mode environment. However, the first action Ntldr takes is to switch the system to pro-
tected mode. Still no virtual-to-physical translation occurs at this point in the boot process, but a
full 32 bits of memory becomes accessible. After the system is in protected mode, Ntldr can
access all of physical memory. After creating enough page tables to make memory below 16 MB
accessible with paging turned on, Ntldr enables paging. Protected mode with paging enabled is
the mode in which Windows executes in normal operation.

After Ntldr enables paging, it is fully operational. However, it still relies on functions supplied
by the boot code to access IDE-based system and boot disks as well as the display. The boot-
code functions briefly switch off paging and switch the processor back to a mode in which ser-
vices provided by the BIOS can be executed. If the disk containing the boot volume is SCSI-
based and is not accessible using BIOS firmware support, Ntldr loads a file named
Ntbootdd.sys and uses it instead of the boot-code functions for disk access. Ntbootdd.sys is a
copy of the SCSI miniport driver that Windows uses when its fully operation to access the
boot disk. (See Chapter 10 for more information on disk drivers.) Ntldr next reads the
Boot.ini file from the root directory using built-in file system code. Like the boot sector’s code,
Ntldr contains read-only NTFS and FAT code; unlike the boot sector’s code, however, Ntldr’s
file system code can read subdirectories.

Ntldr next clears the screen. If there is a valid Hiberfil.sys file in the root of the system volume,
it shortcuts the boot process by reading the contents of the file into memory and transferring
control to code in the kernel that resumes a hibernated system. That code is responsible for
restarting drivers that were active when the system was shut down. Hiberfil.sys will be valid
only if the last time the computer was shut down it was hibernated. (See the section “The
Power Manager” in Chapter 11 for information on hibernation.)

If there is more than one boot-selection entry in Boot.ini, it presents the user with the boot-selec-
tion menu. (If there is only one entry, Ntldr bypasses the menu and proceeds to displaying the
startup progress bar.) Selection entries in Boot.ini direct Ntldr to the partition on which the
Windows system directory (typically \Windows) of the selected installation resides. This parti-
tion might be the same as the boot partition, or it might be another primary partition.

If the Boot.ini entry refers to an MS-DOS installation (that is, by referring to C:\ as the system
partition), Ntldr reads the contents of the Bootsect.dos file into memory, switches back to 16-
bit real mode, and calls the MBR code in Bootsect.dos. This action causes the Bootsect.dos
code to execute as if the MBR had read the code from disk. Code in Bootsect.dos continues an
MS-DOS-specific boot, such as is used to boot Microsoft Windows Me, Windows 98, or Win-
dows 95 on a computer on which these operating systems are installed with Windows.

Chapter 5: Startup and Shutdown 257
Entries in Boot.ini can include optional arguments that Ntldr and other components involved
in the boot process interpret. Table 5-2 contains a complete list of these options and their
effects. The Bootcfg.exe tool, introduced in Windows XP, provides a convenient interface to
setting a number of the switches. Any options that are included on the Boot.ini save to the
Registry value HKLM\System\CurrentControlSet\Control\SystemStartOptions.

Table 5-2 Boot Options

Boot Qualifier Meaning

/3GB Increases the size of the user process address space from 2 GB to
3 GB (and therefore reduces the size of system space from 2 GB
to 1 GB). Giving virtual-memory-intensive applications such as
database servers a larger address space can improve their per-
formance. For an application to take advantage of this feature,
however, two additional conditions must be met: the system
must be running Windows XP, Windows Server 2003, Windows
2000 Advanced Server, or Datacenter Server; and the application
.exe must be flagged as a 3-GB-aware application (applies to 32-
bit systems only). (See the section “Address Space Layout” in
Chapter 7 for more information.)

/BASEVIDEO Causes Windows to use the standard VGA display driver for GUI-
mode operations.

/BAUDRATE= Enables kernel-mode debugging, and specifies an override for
the default baud rate (19200) at which a remote kernel debug-
ger host will connect. Example: /BAUDRATE=115200.

/BOOTLOG Causes Windows to write a log of the boot to the file %System-
Root%\Ntbtlog.txt.

/BOOTLOGO Use this switch to have Windows XP or Windows Server 2003 dis-
play an installable splash screen instead of the standard splash
screen. First, create a 16-color (any 16 colors) 640x480 bitmap and
save it in the Windows directory with the name Boot.bmp. Then
add "/bootlogo /noguiboot" to the boot.ini selection.

/BREAK Causes the hardware abstraction layer (HAL) to stop at a break-
point at HAL initialization. The first thing the Windows kernel does
when it initializes is to initialize the HAL, so this breakpoint is the
earliest one possible. The HAL will wait indefinitely at the break-
point until a kernel-debugger connection is made. If the switch is
used without the /DEBUG switch, the system will elicit a blue
screen with a STOP code of 0x00000078 (PHASE0_ EXCEPTION).

/BURNMEMORY= Specifies an amount of memory Windows can’t use (similar to
the /MAXMEM switch). The value is specified in megabytes.
Example: /BURNMEMORY=128 would indicate that Windows
can’t use 128 MB of the total physical memory on the machine.

258 Microsoft Windows Internals, Fourth Edition
/CHANNEL= Used in conjunction with /DEBUGPORT=1394 to specify the IEEE
1394 channel through which kernel debugging communications
will flow. This can be any number between 0 and 62 and defaults
to 0 if not set.

/CLKLVL Causes the standard x86 multiprocessor HAL (Halmps.dll) to
configure itself for a level-sensitive system clock rather than an
edge-triggered clock. Level-sensitive and edge-triggered are
terms used to describe hardware interrupt types.

/CMDCONS Passed when booting into the Recovery Console (described later
in this chapter).

/CRASHDEBUG Causes the kernel debugger to be loaded when the system
boots, but to remain inactive unless a crash occurs. This allows
the serial port that the kernel debugger would use to be avail-
able for use by the system until the system crashes (vs. /DEBUG,
which causes the kernel debugger to use the serial port for the
life of the system session).

/DEBUG Enables kernel-mode debugging.

/DEBUGPORT= Enables kernel-mode debugging, and specifies an override for the
default serial (usually COM2 on systems with at least two serial
ports) to which a remote kernel-debugger host is connected.
Windows XP and Windows Server 2003 also support debugging
through accepted IEEE 1394 ports. Examples:
/DEBUGPORT=COM2, /DEBUGPORT=1394.

/EXECUTE Disables no-execute protection. See the /NOEXECUTE switch for
more information.

/FASTDETECT Default boot option for Windows. Replaces the Windows NT 4
switch /NOSERIALMICE. The reason the qualifier exists (vs. just
having NTDETECT perform this operation by default) is so that
NTDETECT can support booting Windows NT 4. Windows Plug
and Play device drivers perform detection of parallel and serial
devices, but Windows NT 4 expects NTDETECT to perform the
detection. Thus, specifying /FASTDETECT causes NTDETECT to
skip parallel and serial device enumeration (actions that are not
required when booting Windows), whereas omitting the switch
causes NTDETECT to perform this enumeration (which is re-
quired for booting Windows NT 4).

/INTAFFINITY Directs the standard x86 multiprocessor HAL (Halmps.dll) to set
interrupt affinities such that only the highest numbered proces-
sor will receive interrupts. Without the switch, the HAL defaults
to its normal behavior of letting all processors receive interrupts.

Table 5-2 Boot Options

Boot Qualifier Meaning

Chapter 5: Startup and Shutdown 259
/KERNEL= /HAL= Enables you to override Ntldr’s default filename for the kernel
image (Ntoskrnl.exe) and/or the HAL (Hal.dll). These options are
useful for alternating between a checked kernel environment
and a free (retail) kernel environment or even to manually select
a different HAL. If you want to boot a checked environment that
consists solely of the checked kernel and HAL, which is typically
all that is needed to test drivers, follow these steps on a system
installed with the free build:

1. Copy the checked versions of the kernel images from the
checked build CD to your \Windows\System32 directory,
giving the images different names than the default. For
example, if you’re on a uniprocessor, copy Ntoskrnl.exe to
Ntoschk.exe and Ntkrnlpa.exe to Ntoschkpa.exe. If you’re
on a multiprocessor, copy Ntkrnlmp.exe to Ntoschk.exe
and Ntkrpamp.exe to Ntoschkpa.exe. The kernel filename
must be an 8.3-style short name.

2. Copy the checked version of the appropriate HAL needed
for your system from \I386\Driver.cab on the checked
build CD to your \Windows\System32 directory, naming it
Halchk.dll. To determine which HAL to copy, open \Win-
dows\Repair\Setup.log and search for Hal.dll; you’ll find a
line like \WINDOWS\system32\ hal.dll="halac-
pi.dll","1d8a1". The name immediately to the right of the
equals sign is the name of the HAL you should copy. The
HAL filename must be an 8.3-style short name.

3. Make a copy of the default line in the system’s Boot.ini file.

4. In the string description of the boot selection, add some-
thing that indicates that the new selection will be for a
checked build environment (for example, “Windows XP
Professional Checked”).

5. Add the following to the end of the new selection’s line:
/KERNEL=NTOSCHK.EXE /HAL= HALCHK.DLL

Now when the selection menu appears during the boot process,
you can select the new entry to boot a checked environment or
select the entry you were using to boot the free build.

/LASTKNOWNGOOD Causes the system to boot as if the LastKnownGood boot option
was selected.

/MAXMEM= Limits Windows to ignore (not use) physical memory beyond the
amount indicated. The number is interpreted in megabytes. Ex-
ample: /MAXMEM=32 would limit the system to using the first
32 MB of physical memory even if more were present.

Table 5-2 Boot Options

Boot Qualifier Meaning

260 Microsoft Windows Internals, Fourth Edition
/MAXPROCSPERCLUSTER= For the standard x86 multiprocessor HAL (Halmps.dll), forces
cluster-mode Advanced Programmable Interrupt Controller
(APIC) addressing (not supported on systems with an 82489DX
external APIC interrupt controller).

/MININT This option is used by Windows PE (Preinstallation Environment)
and causes the Configuration Manager to load the Registry
SYSTEM hive as a volatile hive such that changes made to it in
memory are not saved back to the hive image.

/NODEBUG Prevents kernel-mode debugging from being initialized. Over-
rides the specification of any of the three debug-related switches,
/DEBUG, /DEBUGPORT, and /BAUDRATE.

/NOEXECUTE This option is available only on 32-bit versions of Windows when
running on AMD64 processors and only when PAE (explained
further in the /PAE switch entry) is also enabled. It enables no-
execute protection, which results in the Memory Manager mark-
ing pages containing data as no-execute so that they cannot be
executed as code. This can be useful for preventing malicious
code from exploiting buffer overflow bugs with unexpected pro-
gram input in order to execute arbitrary code. No-execute pro-
tection is always enabled on 64-bit versions of Windows on
AMD64 processors. There are 4 modifiers that can be specified
to the /NOEXECUTE switch:

=OPTIN,=OPTOUT,=ALWAYSON,=ALWAYSOFF. See Chapter 7
for a description of their behavior.

/NOGUIBOOT Instructs Windows not to initialize the VGA video driver
responsible for presenting bitmapped graphics during the
boot process. The driver is used to display boot progress infor-
mation, so disabling it will disable the ability of Windows to
show this information.

/NOLOWMEM Requires that the /PAE switch be present and that the system have
more than 4 GB of physical memory. If these conditions are met,
the PAE-enabled version of the Windows kernel, Ntkrnlpa.exe,
won’t use the first 4 GB of physical memory. Instead, it will load all
applications and device drivers, and allocate all memory pools,
from above that boundary. This switch is useful only to test
device-driver compatibility with large memory systems.

/NOPAE Forces Ntldr to load the non–Physical Address Extension (PAE)
version of the Windows kernel, even if the system is detected as
supporting x86 PAEs and has more than 4 GB of physical memory.

/NOSERIALMICE=[COMx |
COMx,y,z...]

Obsolete Windows NT 4 qualifier—replaced by the absence of the
/FASTDETECT switch. Disables serial mouse detection of the
specified COM ports. This switch was used if you had a device
other than a mouse attached to a serial port during the startup
sequence. Using /NOSERIALMICE without specifying a COM port
disables serial mouse detection on all COM ports. See Microsoft
Knowledge Base article Q131976 for more information.

Table 5-2 Boot Options

Boot Qualifier Meaning

Chapter 5: Startup and Shutdown 261
/NUMPROC= Specifies the number of CPUs that can be used on a multipro-
cessor system. Example: /NUMPROC=2 on a four-way system
will prevent Windows from using two of the four processors.

/ONECPU Causes Windows to use only one CPU on a multiprocessor
system.

/PAE Causes Ntldr to load Ntkrnlpa.exe, which is the version of the x86
kernel that is able to take advantage of x86 PAEs. The PAE
version of the kernel presents 64-bit physical addresses to device
drivers, so this switch is helpful for testing device driver support
for large memory systems.

/PCILOCK Stops Windows from dynamically assigning IO/IRQ resources to
PCI devices and leaves the devices configured by the BIOS. See
Microsoft Knowledge Base article Q148501 for more informa-
tion.

/RDPATH= Specifies the path to a System Disk Image (SDI) file, which can be
on the network, that the system will use to boot from. Often
used in conjunction with the /RDIMAGEOFFSET= flag to indicate
to NTLDR where in the file the system image starts.

/REDIRECT Introduced with Windows Server 2003. Used to cause Windows to
enable Emergency Management Services (EMS), which reports
boot information and accepts system management commands
through a serial port. Specify serial port and baudrate used in
conjunction with EMS with redirect= and redirectbaudrate= lines
in the [boot loader] section of the Boot.ini file.

/SAFEBOOT: Specifies options for a safe mode boot. You should never have
to specify this option manually because Ntldr specifies it for
you when you use the F8 menu to perform a safe mode boot.
(A safe mode boot is a boot in which Windows loads only
drivers and services that are specified by name or group under
the Minimal or Network registry keys under HKLM\SYSTEM\
CurrentControlSet\Control\SafeBoot.) Following the colon in
the option, you must specify one of three additional switches:
MINIMAL, NETWORK, or DSREPAIR. The MINIMAL and
NETWORK flags correspond to safe mode boot with no network
and safe mode boot with network support, respectively. The
DSREPAIR (Directory Services Repair) switch causes Windows to
boot into a mode in which the Active Directory directory service
is offline and the active directory database unopened. This allows
an administrator to perform diagnostic, repair, or restore func-
tions on the database. An additional option you can append is
(ALTERNATESHELL), which tells Windows to use the program
specified by the HKLM\SYSTEM\CurrentControlSet\SafeBoot\
AlternateShell value as the graphical shell rather than to use the
default, which is Windows Explorer.

Table 5-2 Boot Options

Boot Qualifier Meaning

262 Microsoft Windows Internals, Fourth Edition
/SCSIORDINAL: Directs Windows to the SCSI ID of the controller. (Adding a new
SCSI device to a system with an on-board SCSI controller can
cause the controller’s SCSI ID to change.) See Microsoft
Knowledge Base article Q103625 for more information.

/SDIBOOT= Used in Windows XP Embedded systems to have Windows boot
from a RAM disk image stored in the specified System Disk
Image (SDI) file.

/SOS Causes Windows to list the device drivers marked to load at boot
time and then to display the system version number (including
the build number), amount of physical memory, and number of
processors.

/TIMERES= Sets the resolution of the system timer on the standard x86 mul-
tiprocessor HAL (Halmps.dll). The argument is a number inter-
preted in hundreds of nanoseconds, but the rate is set to the
closest resolution the HAL supports that isn’t larger than the one
requested. The HAL supports the following resolutions:

Hundreds of nanoseconds Milliseconds (ms)
97660.98 195322.00
390633.90 781257.80

The default resolution is 7.8 ms. The system timer resolution
affects the resolution of waitable timers. Example:
/TIMERES=21000 would set the timer to a resolution of 2.0 ms.

/USERVA= This switch is supported only on Windows XP and Windows
Server 2003. Like the /3GB switch, this switch gives applications
a larger address space. Specify the amount in MB between 2048
and 3072. This switch has the same application requirements as
the /3GB switch and requires that the /3GB switch also be
present (applies to 32-bit systems only).

/WIN95 Directs Ntldr to boot the Consumer Windows boot sector stored
in Bootsect.w40. This switch is pertinent only on a triple-boot
system that has MS-DOS, Consumer Windows, and Windows
installed. See Microsoft Knowledge Base article Q157992 for
more information.

/WIN95DOS Directs Ntldr to boot the Consumer Windows boot sector stored
in Bootsect.w40. This switch is pertinent only on a triple-boot
system that has MS-DOS, Consumer Windows, and Windows
installed. See Microsoft Knowledge Base article Q157992 for
more information.

/YEAR= Instructs the Windows core time function to ignore the year that
the computer’s real-time clock reports and instead use the one
indicated. Thus, the year used in the switch affects every piece of
software on the system, including the Windows kernel. Example:
/YEAR=2001. (This switch was created to assist in Y2K testing.)

Table 5-2 Boot Options

Boot Qualifier Meaning

Chapter 5: Startup and Shutdown 263
If the user doesn’t select an entry from the selection menu within the timeout period the
Boot.ini file specifies, Ntldr chooses the default selection, which is the top-most entry in
boot.ini with a path matching the path specified in the “default=” line. Once the boot selection
has been made, Ntldr loads and executes Ntdetect.com, a 16-bit real-mode program that uses
a system’s BIOS to query the computer for basic device and configuration information. This
information includes the following:

■ The time and date information stored in the system’s CMOS (nonvolatile memory)

■ The types of buses (for example, ISA, PCI, EISA, Micro Channel Architecture [MCA]) on
the system and identifiers for devices attached to the buses

■ The number, size, and type of disk drives on the system

■ The types of mouse input devices connected to the system

■ The number and type of parallel ports configured on the system

■ The types of video adapters present on the system

This information is gathered into internal data structures that will be stored under the
HKLM\HARDWARE\DESCRIPTION registry key later in the boot.

On Windows 2000, Ntldr then clears the screen and displays the “Starting Windows”
progress bar. This progress bar remains empty until Ntldr begins loading boot drivers. (See
step 5 in the following list.) Below the progress bar is the message, “For troubleshooting and
advanced startup options for Windows, press F8.” If the user presses F8, the advanced boot
menu is presented, which allows the user to select such options as booting from last known
good, safe mode, debug mode, and so on. On Windows XP and Windows Server 2003, Ntldr
presents a logo splash screen instead of a progress bar.

If Ntldr is running on an x64 system and the kernel specified by the entry selected in the boot
menu is for x64, Ntldr switches the processor to long mode, where the native word size is 64-
bits. Next, Ntldr begins loading the files from the boot volume needed to start the kernel ini-
tialization. The boot volume is the volume that corresponds to the partition on which the sys-
tem directory (usually \Windows) of the installation being booted is located. The steps Ntldr
follows here include:

1. Loads the appropriate kernel and HAL images (Ntoskrnl.exe and Hal.dll by default). If
Ntldr fails to load either of these files, it prints the message “Windows could not start
because the following file was missing or corrupt”, followed by the name of the file.

2. Reads in the SYSTEM registry hive, \Windows\System32\Config\System, so that it can
determine which device drivers need to be loaded to accomplish the boot. (A hive is a file
that contains a registry subtree. You’ll find more details about the registry in Chapter 4)

3. Scans the in-memory SYSTEM registry hive and locates all the boot device drivers. Boot
device drivers are drivers necessary to boot the system. These drivers are indicated in
the registry by a start value of SERVICE_BOOT_START (0). Every device driver has a
registry subkey under HKLM\SYSTEM\CurrentControlSet\Services. For example,

264 Microsoft Windows Internals, Fourth Edition
Services has a subkey named Dmio for the Logical Disk Manager driver, which you can
see in Figure 5-2. (For a detailed description of the Services registry entries, see the sec-
tion “Services” in Chapter 4)

Figure 5-2 Logical Disk Manager driver service settings

4. Adds the file system driver that’s responsible for implementing the code for the type of
partition (FAT, FAT32, or NTFS) on which the installation directory resides to the list of
boot drivers to load. Ntldr must load this driver at this time; if it didn’t, the kernel would
require the drivers to load themselves, a requirement that would introduce a circular
dependency.

5. Loads the boot drivers, which should only be drivers that, like the file system driver for
the boot volume, would introduce a circular dependency if the kernel was required to
load them. To indicate the progress of the loading, Ntldr updates a progress bar dis-
played below the text “Starting Windows”. The progress bar moves for each driver
loaded. (It assumes there are 80 boot device drivers—each successful load moves the
progress bar by 1.25 percent.) If the /SOS switch is specified in the Boot.ini selection,
Ntldr doesn’t display the progress bar but instead displays the filenames of each boot
driver. Keep in mind that the drivers are loaded but not initialized at this time—they ini-
tialize later in the boot sequence.

6. Prepares CPU registers for the execution of Ntoskrnl.exe.

This action is the end of Ntldr’s role in the boot process. At this point, Ntldr calls the main
function in Ntoskrnl.exe to perform the rest of the system initialization.

The IA64 Boot Process

Table 5-3 lists the files involved in the IA64 boot process. IA64 systems conform to the Exten-
sible Firmware Interface (EFI) specification as defined by Intel. An EFI-compliant system has
firmware that runs boot loader code that’s been programmed into the system’s nonvolatile
RAM (NVRAM) by Windows Setup. The boot code reads the IA64-equivalent of the x86 and
x64 Boot.ini contents, which are also stored in NVRAM. Both Microsoft EFI tools runnable in
the EFI console and Bootcfg.exe, a tool included with Windows, allow for modification of the
NVRAM boot selections and switches.

Chapter 5: Startup and Shutdown 265
Hardware detection occurs next, where the boot loader uses EFI interfaces to determine the
number and type of the following devices:

■ Network adapters

■ Video adapters

■ Keyboards

■ Disk controllers

■ Storage devices

Just as Ntldr does on x86 and x64 systems, the boot loader then presents a menu of boot
selections with an optional timeout. Once a boot selection is made, the loader navigates to the
subdirectory on the EFI System partition corresponding to the selection and loads several
other files required to continue the boot: Fpswa.efi and Ia64ldr.efi. The EFI specification
requires that the system have a partition designated as the EFI System partition that is format-
ted with the FAT file system and that is between 100 MB and 1 GB in size or up to one percent
of the size of the disk, and each Windows installation has a subdirectory on the EFI System
partition under EFI\Microsoft. The first installation is assigned the folder Winnt50, the sec-
ond Winnt50.1, and each subsequent installation has a unique index number following the
period in the folder name. Ia64ldr.efi is responsible for loading Ntoskrnl.exe, Hal.dll, and the
boot-start drivers, after which the boot proceeds through the same steps as for x86 and x64.

Table 5-3 IA64 Boot Process Components

Component Location Responsibilities

Fpswa.efi EFI\Microsoft\Winnt50.x on
the EFI System partition

A file that contains support for EFI
floating-point operations

Ia64ldr.efi EFI\Microsoft\Winnt50.x on
the EFI System partition

Loads Ntoskrnl.exe, Hal.dll, and boot
drivers

Ntoskrnl.exe \Windows\System32 Initializes executive subsystems and
boot and system-start device driv-
ers, prepares the system for running
native applications, and runs
Smss.exe

Hal.dll \Windows\System32 Kernel-mode DLL that interfaces
Ntoksnrl and drivers to the hardware

Service control manager
(SCM)

\Windows\System32 Loads and initializes auto-start de-
vice drivers and Windows services

Smss \Windows\System32 Loads Windows subsystem, includ-
ing Win32k.sys and Csrss.exe, and
starts Winlogon process

Winlogon \Windows\System32 Starts the service control manager
(SCM), the Local Security Authority
Subsystem (LSASS), and presents the
interactive logon dialog box

266 Microsoft Windows Internals, Fourth Edition
Initializing the Kernel and Executive Subsystems

When Ntldr calls Ntoskrnl, it passes a data structure that contains a copy of the line in
Boot.ini that represents the selected menu option for this boot, a pointer to the memory tables
Ntldr generated to describe the physical memory on the system, a pointer to the in-memory
copy of the HARDWARE and SYSTEM registry hives, and a pointer to the list of boot drivers
Ntldr loaded.

Ntoskrnl then begins the first of its two-phase initialization process, called phase 0 and phase
1. Most executive subsystems have an initialization function that takes a parameter that iden-
tifies which phase is executing.

During phase 0, interrupts are disabled. The purpose of this phase is to build the rudimentary
structures required to allow the services needed in phase 1 to be invoked. Ntoskrnl’s main
function calls KiSystemStartup, which in turn calls HalInitializeProcessor and KiInitializeKernel
for each CPU. KiInitializeKernel, if running on the boot CPU, performs systemwide kernel ini-
tialization, such as initializing internal listheads and other data structures that all CPUs share.
Each instance of KiInitializeKernel then calls the function responsible for orchestrating phase
0, ExpInitializeExecutive.

ExpInitializeExecutive starts by calling the HAL function HalInitSystem, which gives the HAL a
chance to gain system control before Windows performs significant further initialization. One
responsibility of HalInitSystem is to prepare the system interrupt controller of each CPU for
interrupts and to configure the interval clock timer interrupt, which is used for CPU time
accounting. (See the section “Quantum Accounting” in Chapter 6 for more on CPU time
accounting.)

Only on the boot processor does ExpInitializeExecutive perform initialization other than call-
ing HalInitSystem. When HalInitSystem returns control, ExpInitializeExecutive on the boot CPU
proceeds by processing the /BURNMEMORY Boot.ini switch (if the switch is present in the
line from the Boot.ini file that corresponds to the menu selection the user made when choos-
ing which installation to boot) and discarding the amount of memory the switch specifies.

Next, ExpInitializeExecutive calls the phase 0 initialization routines for the memory manager,
object manager, security reference monitor, process manager, and Plug and Play manager.
These components perform the following initialization steps:

1. The memory manager constructs page tables and internal data structures that are nec-
essary to provide basic memory services. The memory manager also builds and reserves
an area for the system file cache and creates memory areas for the paged and nonpaged
pools. The other executive subsystems, the kernel, and the device drivers use these two
memory pools for allocating their data structures.

2. During the object manager initialization, the objects that are necessary to construct the
object manager namespace are defined so that other subsystems can insert objects into
it. A handle table is created so that resource tracking can begin.

Chapter 5: Startup and Shutdown 267
3. The security reference monitor initializes the token type object and then uses the object
to create and prepare the first local system account token for assignment to the initial
process. (See Chapter 8 for a description of the local system account.)

4. The process manager performs most of its initialization in phase 0, defining the process
and thread object types and setting up lists to track active processes and threads. The
process manager also creates a process object for the initial process and names it Idle. As
its last step, the process manager creates the System process and a system thread to exe-
cute the routine Phase1Initialization. This thread doesn’t start running right away
because interrupts are still disabled.

5. The Plug and Play manager’s phase 0 initialization then takes place, which involves sim-
ply initializing an executive resource used to synchronize bus resources.

When control returns to the KiInitializeKernel function on each processor, control proceeds to
the Idle loop, which then causes the system thread created in step 4 of the previous process
description to begin executing phase 1. (Secondary processors wait to begin their initializa-
tion until step 5 of phase 1, described in the following list.) Phase 1 consists of the following
steps. The boot splash screen of Windows 2000 systems includes a progress bar, and the
steps at which the progress bar on the screen is updated are included in this list:

1. HalInitSystem is called to prepare the system to accept interrupts from devices and to
enable interrupts.

2. The boot video driver (\Windows\System32\Bootvid.dll) is called, which in turn dis-
plays the Windows startup screen. (On Windows XP and Windows Server 2003 sys-
tems, the driver presents the same graphic that Ntldr placed on the screen earlier in the
boot.)

3. The power manager’s initialization is called.

4. The system time is initialized (by calling HalQueryRealTimeClock) and then stored as the
time the system booted.

5. On a multiprocessor system, the remaining processors are initialized and execution
starts.

6. The progress bar is set to 5 percent.

7. The object manager creates the namespace root directory (\), \ObjectTypes directory,
and the DOS device name mapping directory (\?? on Windows 2000, and \Global?? on
Windows XP and Windows Server 2003). It then creates the \DosDevices symbolic link
that points at the DOS device name mapping directory.

8. The executive is called to create the executive object types, including semaphore, mutex,
event, and timer.

9. The kernel initializes scheduler (dispatcher) data structures and the system service dis-
patch table.

268 Microsoft Windows Internals, Fourth Edition
10. The security reference monitor creates the \Security directory in the object manager
namespace and initializes auditing data structures if auditing is enabled.

11. The progress bar is set to 10 percent.

12. The memory manager is called to create the section object and the memory manager’s
system worker threads (which are explained in Chapter 7).

13. National language support (NLS) tables are mapped into system space.

14. Ntdll.dll is mapped into the system address space.

15. The cache manager initializes the file system cache data structures and creates its worker
threads.

16. The configuration manager creates the \Registry key object in the object manager
namespace and copies the initial registry data passed by Ntldr into the HARDWARE and
SYSTEM hives.

17. Global file system driver data structures are initialized.

18. The Plug and Play manager calls the Plug and Play BIOS.

19. The progress bar is set to 20 percent.

20. The local procedure call (LPC) subsystem initializes the LPC port type object.

21. If the system was booted with boot logging (/BOOTLOG), the boot log file is initialized.

22. The progress bar is set to 25 percent.

23. The I/O manager initialization now takes place. This stage is a complex phase of system
startup that accounts for 50 percent of the “progress” reported in the progress bar. The
I/O manager considers each successful driver load to be another 2 percent of progress
for the boot. (If there are more than 25 drivers to load, the progress bar stops at 75 per-
cent.)

The I/O manager first initializes various internal structures and creates the driver and
device object types. It then calls the Plug and Play manager, power manager, and HAL to
begin the various stages of dynamic device enumeration and initialization. (Because this
process is complex and specific to the I/O system, we’ll save the details for Chapter 9.)
Then the Windows Management Instrumentation (WMI) subsystem is initialized,
which provides WMI support for device drivers. (See the section “Windows Manage-
ment Instrumentation” in Chapter 4 for more information.) Next, all the boot-start driv-
ers are called to perform their driver-specific initialization, and the system-start device
drivers are loaded and initialized. (Details on the processing of the driver load control
information on the registry are also covered in Chapter 9.) Finally, the MS-DOS device
names are created as symbolic links in the object manager’s namespace.

24. The progress bar is set to 75 percent.

Chapter 5: Startup and Shutdown 269
25. If the computer is booting in safe mode, this fact is recorded in the registry.

26. Unless explicitly disabled in the registry, paging of kernel-mode code (in Ntoskrnl and
drivers) is enabled.

27. The progress bar is set to 80 percent.

28. The power manager is called to initialize various power management structures.

29. The progress bar is set to 85 percent.

30. The security reference monitor is called to create the Command Server Thread that com-
municates with Lsass. (See the section “Security System Components” in Chapter 8 for
more on how security is enforced in Windows.)

31. The progress bar is set to 90 percent.

32. The last step is to create the Session Manager subsystem (Smss) process (introduced in
Chapter 2). Smss is responsible for creating the user-mode environment that provides
the visible interface to Windows—its initialization steps are covered in the next section.

33. The progress bar is (finally) set to 100%.

As a final step before considering the executive and kernel initialization complete, the phase 1
initialization thread waits for the handle to the Session Manager process with a timeout value
of 5 seconds. If the Session Manager process exits before the 5 seconds elapse, the system
crashes itself with a SESSION5_ INITIALIZATION_FAILED bug check code.

If the 5-second wait times out (that is, if 5 seconds elapse), the Session Manager is assumed to
have started successfully, and the phase 1 initialization function calls the memory manager’s
zero page thread function (explained in Chapter 7). Thus, this system thread becomes the
zero page thread for the remainder of the life of the system.

Smss, Csrss, and Winlogon

Smss is like any other user-mode process except for two differences: First, Windows considers
Smss a trusted part of the operating system. Second, Smss is a native application. Because it’s
a trusted operating system component, Smss can perform actions few other processes can
perform, such as creating security tokens. Because it’s a native application, Smss doesn’t use
Windows APIs—it uses only core executive APIs known collectively as the Windows native
API. Smss doesn’t use the Windows APIs because the Windows subsystem isn’t executing
when Smss launches. In fact, one of Smss’s first tasks is to start the Windows subsystem.

Smss then calls the configuration manager executive subsystem to finish initializing the regis-
try, fleshing the registry out to include all its keys. The configuration manager is programmed
to know where the core registry hives are stored on disk (excluding hives corresponding to
user profiles), and it records the paths to the hives it loads in the HKLM\SYSTEM\Current-
ControlSet\Control\hivelist key.

270 Microsoft Windows Internals, Fourth Edition
The main thread of Smss performs the following initialization steps:

1. Creates an LPC port object (\SmApiPort) and two threads to wait for client requests
(such as to load a new subsystem or create a session).

2. Defines the symbolic links for MS-DOS device names (such as COM1 and LPT1).

3. If Terminal Services is installed, creates the \Sessions directory in the object manager’s
namespace (for multiple sessions).

4. Runs any programs defined in HKLM\SYSTEM\CurrentControlSet\Control\Session
Manager\BootExecute. Typically, this value contains one command to run Autochk (the
boot-time version of Chkdsk).

5. Performs delayed file rename and delete operations as directed by HKLM\SYS-
TEM\CurrentControlSet\Control\Session Manager\PendingFileRenameOperations
and HKLM\SYSTEM\CurrentControlSet\Control\Session Man-
ager\PendingFileRenameOperations2.

6. Opens known DLLs, and creates section objects for them in the \Knowndlls directory
of the Object Manager namespace. The list of DLLs considered known is located in
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Session Man-
ager\KnownDLLs, and the path to the directory in which the DLLs are located is stored
in the Dlldirectory value of the key. See Chapter 6 for information on how the Known
DLLs sections are used during DLL loading.

7. Creates additional paging files. Paging file configuration is stored under
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Session Man-
ager\Memory Management\PagingFiles.

8. Initializes the registry. The configuration manager fleshes out the registry by loading the
registry hives for the HKLM\SAM, HKLM\SECURITY, and HKLM\SOFTWARE keys.
Although HKLM\SYSTEM\CurrentControlSet\Control\hivelist locates the hive files on
disk, the configuration manager is coded to look for them in \Win-
dows\System32\Config.

9. Creates system environment variables that are defined in HKLM\System\CurrentCon-
trolSet\Session Manager\Environment.

10. Loads the kernel-mode part of the Windows subsystem (Win32k.sys). Smss determines
the location of Win32k.sys and other components it loads by looking for their paths in
HKLM\SYSTEM\CurrentControlSet\Control\Session Manager. The initialization code
in Win32k.sys uses the video driver to switch the screen to the resolution defined by the
default profile, so this is the point at which the screen changes from the VGA mode the
boot video driver uses to the default resolution chosen for the system.

11. Starts the subsystem processes, including Csrss. (As noted in Chapter 2, on Windows
2000 the POSIX and OS/2 subsystems are defined to start on demand.)

Chapter 5: Startup and Shutdown 271
12. Starts the logon process (Winlogon). The startup steps of Winlogon are described
shortly.

13. Creates LPC ports for debug event messages (DbgSsApiPort and DbgUiApiPort) and
threads to listen on those ports.

Pending File Rename Operations
The fact that executable images and DLLs are memory-mapped when they are used
makes it impossible to update core system files after Windows has finished booting.
The MoveFileEx Windows API has an option to specify that a file move be delayed
until the next boot. Service Packs and hotfixes that must update in-use memory-
mapped files install replacement files onto a system in temporary locations and use the
MoveFileEx API to have them replace otherwise in-use files. When used with that option,
MoveFileEx simply records commands in the PendingFileRenameOperations and
PendingFileRenameOperations2 values under HKLM\SYSTEM\CurrentControlSet\
Control\Session Manager. These registry values are of type MULTI_SZ, where each
operation is specified in pairs of file names: the first file name is the source location,
and the second is the target location. Delete operations use an empty string as their
target path. You can use the Pendmoves utility from www.sysinternals.com to view reg-
istered delayed rename and delete commands.

After performing these initialization steps, the main thread in Smss waits forever for the pro-
cess handles to Csrss and Winlogon. If either of these processes terminates unexpectedly,
Smss crashes the system, because Windows relies on their existence. (In Windows XP and
later, if Csrss exits for any reason, the kernel crashes the system, not the Smss.)

Winlogon then performs its startup steps, such as creating the initial window station and
desktop objects. If a DLL is specified in HKLM\Software\Microsoft\Windows NT\Current
Version\WinLogon\GinaDLL, Winlogon uses that DLL as the GINA; otherwise, it uses the
Microsoft default GINA, Msgina (\Windows\System32\Msgina.dll), which displays the stan-
dard Windows logon dialog box. Winlogon then creates the service control manager (SCM)
process (\Windows\System32\Services.exe), which loads all services and device drivers
marked for auto-start, and the local security authentication subsystem (Lsass) process (\Win-
dows\System32\Lsass.exe). (For more details on the startup sequence for Winlogon and
Lsass, see the section “Winlogon Initialization” in Chapter 8.)

After the SCM initializes the auto-start services and drivers and a user has successfully logged
on at the console, the SCM deems the boot successful. The registry last known good control
set (as indicated by HKLM\SYSTEM\Select\LastKnownGood) is updated to match \Current-
ControlSet.

272 Microsoft Windows Internals, Fourth Edition
Note Because noninteractive servers might never have an interactive logon, they might not
get LastKnownGood updated to reflect the control set used for a successful boot.

You can override the definition of a successful boot by setting HKLM\Software\Microsoft\Win-
dows NT\CurrentVersion\Winlogon\ReportBootOk to 0, writing a custom boot verification
program that calls the NotifyBootConfigStatus Windows API when a boot is successful, and
entering the path to the verification program in HKLM\System\CurrentControlSet\Con-
trol\BootVerificationProgram.

After launching the SCM, Winlogon waits for an interactive logon notification from the GINA.
When it receives a logon and validates the logon (a process for which you can find more infor-
mation in the section “User Logon Steps” in Chapter 8), Winlogon loads the registry hive from
the profile of the user logging in and maps it to HKCU. It then sets the user’s environment vari-
ables that are stored in HKCU\Environment and notifies the Winlogon notification packages
registered in HKLM\Software\Microsoft\Windows NT\CurrentVersion\Winlogon\Notify
that a logon has occurred.

Winlogon next tells the GINA to start the shell. In response to this request, Msgina
launches the executable or executables specified in HKLM\Software\Microsoft\Windows
NT\CurrentVersion\WinLogon\Userinit (with multiple executables separated by com-
mas) that by default points at \Windows\System32\Userinit.exe. Userinit.exe performs the
following steps:

1. Processes the user scripts specified in HKCU\Software\Policies\Microsoft\Win-
dows\System\Scripts and the machine logon scripts in HKLM\Software\Poli-
cies\Microsoft\Windows\System\Scripts. (Because machine scripts run after user
scripts, they can override user settings.)

2. If group policy specifies a user profile quota, starts \Windows\System32\Proquota.exe
to enforce the quota for the current user.

3. Launches the comma-separated shell or shells specified in HKCU\Soft-
ware\Microsoft\Windows NT\CurrentVersion\Winlogon\Shell. If that value doesn’t
exist, Userinit.exe launches the shell or shell specified in HKLM\Soft-
ware\Microsoft\Windows NT\CurrentVersion\Winlogon\Shell, which is by default
Explorer.exe.

Winlogon then notifies registered network providers that a user has logged in. The Microsoft
network provider, Multiple Provider Router (\Windows\System32\Mpr.dll), restores the
user’s persistent drive letter and printer mappings stored in HCU\Network and HKCU\
Printers, respectively. Figure 5-3 shows the process tree as seen in Process Explorer during a
login before Userinit has exited.

Chapter 5: Startup and Shutdown 273
Figure 5-3 Process tree during logon

Images that Start Automatically

In addition to the Userinit and Shell registry values in Winlogon’s key, there are many other reg-
istry locations and directories that default system components check and process for automatic
process startup during the boot and logon process. The Msconfig utility (included in Windows
XP and Windows Server 2003 in \Windows\System32\Msconfig.exe) displays the images con-
figured by several of the locations. Sysinternals’ Autoruns tool, which you can download from
www.sysinternals.com and that is shown in Figure 5-4, examines more locations than Msconfig and
displays more information about the images configured to automatically run. By default, Auto-
runs shows only the locations that are configured to automatically execute at least one image, but
checking the Include Empty Locations entry in the View menu causes Autoruns to show all the
locations it inspects. The View menu also has selections to direct Autoruns to display information
about other types of autostarting images, such as Windows services and Explorer add-ons.

Figure 5-4 The Autoruns tool available from www.sysinternals.com

274 Microsoft Windows Internals, Fourth Edition
EXPERIMENT: Autoruns
Many users are unaware of how many programs execute as part of their logon. Original
equipment manufacturers (OEMs) often configure their systems with add-on utilities
that execute in the background using registry values or file system directories processed
for automatic execution and so are not normally visible. See what programs are config-
ured to start automatically on your computer by running the Autoruns utility from
www.sysinternals.com. Compare the list shown in Autoruns with that shown in Msconfig
(available on Windows XP and Windows Server 2003), and identify any differences.
Then ensure that you understand the purpose of each program.

Troubleshooting Boot and Startup Problems
This section presents approaches to solving problems that can occur during the Windows
startup process as a result of hard disk corruption, file corruption, missing files, and third-
party driver bugs. First, we describe three Windows boot-problem recovery modes: last
known good, safe mode, and the Recovery Console. Then we present common boot prob-
lems, their causes, and approaches to solving them. The solutions refer to last known good,
safe mode, the Recovery Console, and other tools that ship with Windows.

Last Known Good

Last known good (LKG) is a useful mechanism for getting a system that crashes during the
boot process back to a bootable state. Because the system’s configuration settings are stored
in HKLM\System\CurrentControlSet\Control and driver and service configuration is stored
in HKLM\System\CurrentControlSet\Services, changes to these parts of the registry can ren-
der a system unbootable. For example, if you install a device driver that has a bug that crashes
the system during the boot, you can press the F8 key during the boot and select last known
good from the resulting menu. The system marks the control set that it was using to boot the
system as failed by setting the Failed value of HKLM\System\Select and then changes
HKLM\System\Select\Current to the value stored in HKLM\System\Select\LastKnown-
Good. It also updates the symbolic link HKLM\System\CurrentControlSet to point at the
LastKnownGood control set. Because the new driver’s key is not present in the Services sub-
key of the LastKnownGood control set, the system will boot successfully.

Safe Mode

Perhaps the most common reason Windows systems become unbootable is that a device
driver crashes the machine during the boot sequence. Because software or hardware config-
urations can change over time, latent bugs can surface in drivers at any time. Windows
offers a way for an administrator to attack the problem: booting in safe mode. Safe mode is a
concept Windows borrows from Consumer Windows—a boot configuration that consists of

Chapter 5: Startup and Shutdown 275
the minimal set of device drivers and services. By relying on only the drivers and services
that are necessary for booting, Windows avoids loading third-party and other nonessential
drivers that might crash.

When Windows boots, you press the F8 key to enter a special boot menu that contains the
safe-mode boot options. You typically choose from three safe-mode variations: Safe Mode, Safe
Mode With Networking, and Safe Mode With Command Prompt. Standard safe mode com-
prises the minimum number of device drivers and services necessary to boot successfully.
Networking-enabled safe mode adds network drivers and services to the drivers and services
that standard safe mode includes. Finally, safe mode with command prompt is identical to
standard safe mode except that Windows runs the command prompt application (Cmd.exe)
instead of Windows Explorer as the shell when the system enables GUI mode.

Windows includes a fourth safe mode-Directory Services Restore mode—which is different
from the standard and networking—enabled safe modes. You use Directory Services Restore
mode to boot the system into a mode where the Active Directory directory service of a domain
controller is offline and unopened. This allows you to perform repair operations on the data-
base or restore it from backup media. All drivers and services, with the exception of the Active
Directory service, load during a Directory Services Restore mode boot. In cases where you
can’t log in a system because of Active Directory database corruption, this mode enables you
to repair the corruption.

Driver Loading in Safe Mode

How does Windows know which device drivers and services are part of standard and net-
working-enabled safe mode? The answer lies in the HKLM\SYSTEM\CurrentControlSet\
Control\SafeBoot registry key. This key contains the Minimal and Network subkeys. Each
subkey contains more subkeys that specify the names of device drivers or services or of
groups of drivers. For example, the vga.sys subkey identifies the VGA display device driver
that the startup configuration includes. The VGA display driver provides basic graphics ser-
vices for any PC-compatible display adapter. The system uses this driver as the safe-mode dis-
play driver in lieu of a driver that might take advantage of an adapter’s advanced hardware
features but that might also prevent the system from booting. Each subkey under the SafeBoot
key has a default value that describes what the subkey identifies; the vga.sys subkey’s default
value is “Driver”.

The Boot file system subkey has as its default value “Driver Group”. When developers design
a device driver’s installation script, they can specify that the device driver belongs to a driver
group. The driver groups that a system defines are listed in the List value of the HKLM\SYS-
TEM\CurrentControlSet\Control\ServiceGroupOrder key. A developer specifies a driver as a
member of a group to indicate to Windows at what point during the boot process the driver
should start. The ServiceGroupOrder key’s primary purpose is to define the order in which
driver groups load; some driver types must load either before or after other driver types. The
Group value beneath a driver’s configuration registry key associates the driver with a group.

276 Microsoft Windows Internals, Fourth Edition
Driver and service configuration keys reside beneath HKLM\SYSTEM\CurrentControlSet\
Services. If you look under this key, you’ll find the VgaSave key for the VGA display device
driver, which you can see in the registry is a member of the Video Save group. Any file system
drivers that Windows requires for access to the Windows system drive are in the Boot file sys-
tem group. If the system drive is NTFS, the NTFS driver is part of this group. (The value of
Group under the Ntfs key is Boot file system.) Otherwise, the Fastfat file system driver (which
supports FAT12, FAT16, and FAT32 drives in Windows) is part of this group. Other file sys-
tem drivers are part of the File system group, which the standard and networking-enabled
safe-mode configurations also include.

When you boot into a safe-mode configuration, the boot loader (Ntldr) passes an associated
switch to the kernel (Ntoskrnl.exe) as a command-line parameter, along with any switches
you’ve specified in the Boot.ini file for the installation you’re booting. If you boot into any safe
mode, Ntldr passes the /SAFEBOOT: switch. Ntldr appends one or more additional strings to
/SAFEBOOT:, depending on which type of safe mode you select. For standard safe mode,
Ntldr appends MINIMAL, and for networking-enabled safe mode, it adds NETWORK. Ntldr
adds MINIMAL(ALTERNATESHELL) for safe mode with command prompt and DSREPAIR
for Directory Services Restore mode.

The Windows kernel scans boot parameters in search of the safe-mode switches early during the
boot and sets the internal variable InitSafeBootMode to a value that reflects the switches the ker-
nel finds. The kernel writes the InitSafeBootMode value to the registry value HKLM\SYSTEM\
CurrentControlSet\Control\SafeBoot\Option\OptionValue so that user-mode compo-
nents, such as the SCM, can determine what boot mode the system is in. In addition, if the
system is booting safe mode with command prompt, the kernel sets the HKLM\SYSTEM\
CurrentControlSet\Control\SafeBoot\Option\UseAlternateShell value to 1. The kernel records
the parameters that Ntldr passes to it in the value HKLM\SYSTEM\CurrentControlSet\
Control\SystemStartOptions.

When the I/O manager kernel subsystem loads device drivers that HKLM\SYSTEM\Current-
ControlSet\Services specifies, the I/O manager executes the function IopLoadDriver. When
the Plug and Play manager detects a new device and wants to dynamically load the device
driver for the detected device, the Plug and Play manager executes the function IopCallDriver-
AddDevice. Both these functions call the function IopSafeBootDriverLoad before they load the
driver in question. IopSafeBootDriverLoad checks the value of InitSafeBootMode and deter-
mines whether the driver should load. For example, if the system boots in standard safe
mode, IopSafeBootDriverLoad looks for the driver’s group, if the driver has one, under the Min-
imal subkey. If IopSafeBootDriverLoad finds the driver’s group listed, IopSafeBootDriverLoad
indicates to its caller that the driver can load. Otherwise, IopSafeBootDriverLoad looks for the
driver’s name under the Minimal subkey. If the driver’s name is listed as a subkey, the driver
can load. If IopSafeBootDriverLoad can’t find the driver group or driver name subkeys, the
driver can’t load. If the system boots in networking-enabled safe mode, IopSafeBootDriverLoad
performs the searches on the Network subkey. If the system doesn’t boot in safe mode, Iop-
SafeBootDriverLoad lets all drivers load.

Chapter 5: Startup and Shutdown 277
An exception loophole exists regarding the drivers that safe mode excludes from a boot: Ntldr,
rather than the kernel, loads any drivers with a Start value of 0 in their registry key, which
specifies loading the drivers at boot time. Ntldr doesn’t check the SafeBoot registry key
because it assumes that any driver with a Start value of 0 is required for the system to boot suc-
cessfully. Because Ntldr doesn’t check the SafeBoot registry key to identify which drivers to
load, Ntldr therefore loads all boot-start drivers (and later Ntoskrnl starts them).

Safe-Mode-Aware User Programs

When the service control manager (SCM) user-mode component (which Services.exe imple-
ments) initializes during the boot process, the SCM checks the value of HKLM\SYSTEM\
CurrentControlSet\Control\SafeBoot\Option\OptionValue to determine whether the system
is performing a safe mode boot. If so, the SCM mirrors the actions of IopSafeBootDriverLoad.
Although the SCM processes the services listed under HKLM\SYSTEM\CurrentControlSet\
Services, it loads only services that the appropriate safe-mode subkey specifies by name. You can
find more information on the SCM initialization process in the section “Services” in Chapter 4.

Userinit (\Windows\System32\Userinit.exe) is another user-mode component that needs to
know whether the system is booting in safe mode. Userinit, the component that initializes a
user’s environment when the user logs on, checks HKLM\SYSTEM\CurrentControlSet\Con-
trol\SafeBoot\Option\UseAlternateShell. If this value is set, Userinit runs the program speci-
fied as the user’s shell in the value HKLM\SYSTEM\CurrentControlSet\Control\SafeBoot\
AlternateShell rather than executing Explorer.exe. Windows writes the program name Cmd.exe
to the AlternateShell value during installation, making the Windows command prompt the
default shell for safe mode with command prompt. Even though command prompt is the shell,
you can type Explorer.exe at the command prompt to start Windows Explorer, and you can run
any other GUI program from the command prompt as well.

How does an application determine whether the system is booting in safe mode? By calling
the Windows GetSystemMetrics(SM_CLEANBOOT) function. Batch scripts that need to per-
form certain operations when the system boots in safe mode look for the SAFEBOOT_
OPTION environment variable because the system defines this environment variable only
when booting in safe mode.

Boot Logging in Safe Mode

When you direct the system to boot into safe mode, Ntldr hands the string specified by the
/BOOTLOG option to the Windows kernel as a parameter, together with the parameter that
requests safe mode. When the kernel initializes, it checks for the presence of the boot log
parameter, whether or not any safe-mode parameter is present. If the kernel detects a boot log
string, the kernel records the action the kernel takes on every device driver it considers for
loading. For example, if IopSafeBootDriverLoad tells the I/O manager not to load a driver, the

278 Microsoft Windows Internals, Fourth Edition
I/O manager calls IopBootLog to record that the driver wasn’t loaded. Likewise, after IopLoad-
Driver successfully loads a driver that is part of the safe-mode configuration, IopLoadDriver
calls IopBootLog to record that the driver loaded. You can examine boot logs to see which
device drivers are part of a boot configuration.

Because the kernel wants to avoid modifying the disk until Chkdsk executes, late in the boot
process, IopBootLog can’t simply dump messages into a log file. Instead, IopBootLog records
messages in the HKLM\SYSTEM\CurrentControlSet\BootLog registry value. As the first
user-mode component to load during a boot, the Session Manager (\Windows\System32\
Smss.exe) executes Chkdsk to ensure the system drives’ consistency and then completes reg-
istry initialization by executing the NtInitializeRegistry system call. The kernel takes this action
as a cue that it can safely open a log file on the disk, which it does, invoking the function Iop-
CopyBootLogRegistryToFile. This function creates the file Ntbtlog.txt in the Windows system
directory (\Windows by default) and copies the contents of the BootLog registry value to the
file. IopCopyBootLogRegistryToFile also sets a flag for IopBootLog that lets IopBootLog know that
writing directly to the log file, rather than recording messages in the registry, is now OK. The
following output shows the partial contents of a sample boot log:

Service Pack 1 3 30 2004 14:05:21.500

Loaded driver \WINDOWS\system32\ntoskrnl.exe

Loaded driver \WINDOWS\system32\hal.dll

Loaded driver \WINDOWS\system32\KDCOM.DLL

Loaded driver \WINDOWS\system32\BOOTVID.dll

Loaded driver ACPI.sys

Loaded driver \WINDOWS\System32\DRIVERS\WMILIB.SYS

Loaded driver pci.sys

Loaded driver isapnp.sys

Loaded driver intelide.sys

Loaded driver \WINDOWS\System32\DRIVERS\PCIIDEX.SYS

Loaded driver MountMgr.sys

Loaded driver ftdisk.sys

Loaded driver dmload.sys

Loaded driver dmio.sys Microsoft (R) Windows 2000 (R) Version 5.0 (Build 2195)

2 11 2000 10:53:27.500

Loaded driver \WINNT\System32\ntoskrnl.exe

Loaded driver \WINNT\System32\hal.dll

Loaded driver \WINNT\System32\BOOTVID.DLL

Loaded driver ACPI.sys

Loaded driver \WINNT\System32\DRIVERS\WMILIB.SYS

Loaded driver pci.sys

Loaded driver isapnp.sys

Loaded driver compbatt.sys

Loaded driver \WINNT\System32\DRIVERS\BATTC.SYS

Loaded driver intelide.sys

Loaded driver \WINNT\System32\DRIVERS\PCIIDEX.SYS

Loaded driver pcmcia.sys

Loaded driver ftdisk.sys

Loaded driver Diskperf.sys

Loaded driver dmload.sys

Loaded driver dmio.sys

Chapter 5: Startup and Shutdown 279
§

Did not load driver \SystemRoot\System32\Drivers\lbrtfdc.SYS

Did not load driver \SystemRoot\System32\Drivers\Sfloppy.SYS

Did not load driver \SystemRoot\System32\Drivers\i2omgmt.SYSDid not load driver Media Contro

l Devices

Did not load driver Communications Port

Did not load driver Audio Codecs

§

Recovery Console

Safe mode is a satisfactory fallback for systems that become unbootable because a device
driver crashes during the boot sequence, but in some situations a safe-mode boot won’t help
the system boot. For example, if a driver that prevents the system from booting is a member
of a Safe group, safe-mode boots will fail. Another example of a situation in which safe mode
won’t help the system boot is when a third-party driver, such as a virus scanner driver, that
loads at the boot prevents the system from booting. (Boot-start drivers load whether or not
the system is in safe mode.) Other situations in which safe-mode boots will fail are when a sys-
tem module or critical device driver file that is part of a safe-mode configuration becomes cor-
rupt or when the system drive’s Master Boot Record (MBR) is damaged. You can get around
these problems by using the Windows Recovery Console. The Recovery Console allows you
to boot into a limited command-line shell from the Windows CD or boot disks to repair an
installation without having to boot the installation.

When you boot a system from the Windows CD or boot disks, you eventually see a screen that
gives you the choice of either installing Windows or repairing an existing installation. If you
choose to repair an installation, the system prompts you to insert the Windows CD (if it isn’t
already loaded in the system’s CD drive) and then to choose among two repair options: to
start the Recovery Console or to initiate the emergency repair process. If you press the F10 key
at the Setup Welcome screen, you bypass the menu options and take a shortcut directly to the
Recovery Console.

When you start the Recovery Console, it gives you a list of Windows NT and Windows instal-
lations to choose from that it compiled when it scanned the computer’s hard disks. After you
make a selection, the system prompts you to enter the Administrator account password to log
on to the installation as the administrator. If you successfully log on, the system puts you into
a command shell that is similar to an MS-DOS environment. The command set is flexible and
lets you perform simple file operations (such as copy, rename, and delete), enable and disable
services and drivers, and even repair MBRs and boot records. However, the Recovery Console
won’t let you access directories other than root directories, the system directory of the instal-
lation you logged on to, or directories on removable drives such as CDs and 3.5-inch floppy
disks unless local security policy settings stored in the SECURITY hive of the Registry of the
installation into which you log in permit it. This prohibition provides a certain level of security
for data that an administrator might not usually be able to access. You can override this restric-
tion by using the Local Security Policy editor (secpol.msc) to configure the Recovery Console
settings in the Security Options folder of Local Policies when the system is booted normally.

280 Microsoft Windows Internals, Fourth Edition
The Recovery Console uses the native Windows system call interface to perform file I/O to
support commands such as Cd, Rename, and Move. The Enable and Disable commands, which
let you change the startup modes of device drivers and services, work differently. For example,
when you tell the Recovery Console that you want to disable a device driver, it reaches into the
installation’s Services key and manipulates the Start value of the specified driver’s key, chang-
ing the value to SERVICE_DISABLED. The next time the installation boots, that device driver
won’t load. (The Recovery Console also loads the SYSTEM hive [\Windows\System32\Con-
fig\System] for the installation you log on to. This hive contains the information stored in the
HKLM\SYSTEM\CurrentControlSet\Services registry key.)

When you boot from the Windows CD or the boot disks, by the time the system gives you the
choice to install or repair Windows, the CD has booted a copy of the Windows kernel, includ-
ing all necessary supporting device drivers (for example, NTFS or FAT drivers, SCSI drivers, a
video driver). On x86 systems, the Txtsetup.sif file in the I386 directory of the Windows CD
guides the boot from the CD; the file contains directives that identify which files need to load
and where the files are located on the CD. Just as when you boot Windows from a hard disk,
the first user-mode program the kernel executes is Session Manager (Smss.exe), located in the
I386\System32 folder. The Session Manager that Windows Setup uses differs from the stan-
dard-installation Session Manager. The former component presents you with the menus that
let you install or repair Windows and the menu that asks you what type of repair you want to
perform. If you’re installing Windows, Session Manager is the component that guides you
through choosing a partition to install to and copies files to the hard disk.

When you run the Recovery Console, Session Manager loads and starts two device drivers
that implement the Recovery Console: Spcmdcon.sys and Setupdd.sys. Spcmdcon.sys presents
an interactive command prompt and performs high-level command processing. Setupdd.sys is a
support driver that gives Spcmdcon.sys a set of functions that let Spcmdcon.sys manage disk
partitions, load registry hives, and display and manage video output. Setupdd.sys also commu-
nicates with disk drivers to manage disk partitions and uses basic video support built into the
Windows kernel to display messages on the screen.

When you choose an installation to log on to and the Recovery Console accepts your pass-
word, the Recovery Console must validate your logon attempt, even though the installation’s
Windows security subsystem isn’t up and running. Thus, the Recovery Console alone must
determine whether your password matches the system’s Administrator account. The Recovery
Console’s first step in this process is to use Setupdd.sys to load the installation’s Security
Accounts Manager (SAM) registry hive, which stores password information, from the hard
disk. The SAM hive resides in \Windows\System32\Config\Sam. After loading the hive, the
Recovery Console locates the system key in the installation’s registry and uses the system key
to decrypt the in-memory copy of the SAM. SAM hive encryption is a feature introduced in
Windows NT 4 Service Pack 3 that adds protection against MS-DOS-based password snoop-
ers who try to read passwords directly out of a hive file.

Chapter 5: Startup and Shutdown 281
Next, the Recovery Console (Spcmdcon.sys) locates the Administrator account password in
the SAM, and in the final authentication step, the Recovery Console uses the MD5 hash algo-
rithm—the same algorithm that the Windows logon process uses—to hash the password
entered and compares the hash against the hashed password that the SAM stores. If the Recov-
ery Console finds a match, the system considers you logged on. If the Recovery Console
doesn’t find a match, the system denies you access to the Recovery Console.

Solving Common Boot Problems

This section describes problems that can occur during the boot process, describing their
symptoms, causes, and approaches to solving them. To help you locate a problem that you
might encounter, they are organized according to the place in the boot at which they occur.

MBR Corruption

■ Symptoms A system that has Master Boot Record (MBR) corruption will execute the
BIOS power-on self test (POST), display BIOS version information or OEM branding,
switch to a black screen, and then hang. Depending on the type of corruption the MBR
has experienced, you might see one of the following messages: “Invalid Partition Table,”
“Error Loading Operating System,” or “Missing Operating System.”

■ Cause The MBR can become corrupt because of hard-disk errors, disk corruption as a
result of a driver bug while Windows is running, or intentional scrambling as a result of
a virus.

■ Resolution Boot into the Recovery Console and execute the fixmbr command. This
command replaces the executable code in the MBR. Unfortunately, it does not repair the
partition table. The only way to restore a damaged partition table is to restore it from a
backup copy or to use a third-party disk-corruption repair tool.

Boot Sector Corruption

■ Symptoms Boot sector corruption can look like MBR corruption where the system
hangs after BIOS POST at a black screen, or you might see the messages “A disk read
error occurred,” “NTLDR is missing,” or “NTLDR is compressed” displayed in a black
screen.

■ Cause The MBR can become corrupt because of hard disk errors, disk corruption as a
result of a driver bug while Windows is running, or intentional scrambling as a result of
a virus.

■ Resolution Boot into the Recovery Console and execute the fixboot command. This
command rewrites the boot sector of the volume that you specify. You should execute
the command on both the system and boot volumes if they are different.

282 Microsoft Windows Internals, Fourth Edition
Boot.ini Misconfiguration

■ Symptom After BIOS POST, you’ll see a message that begins “Windows could not start
because of a computer disk hardware configuration problem,” “Could not read from
selected boot disk,” or “Check boot path and disk hardware.”

■ Cause The Boot.ini file has been deleted, is corrupted, or no longer references the boot
volume because the addition of a partition has changed the Advanced RISC Computing
(ARC) name of the volume.

■ Resolution Boot into the Recovery Console, and execute the “bootcfg /rebuild”. This
command has the Recovery Console scan each volume looking for Windows installa-
tions. When it discovers an installation, it asks you whether it should add it to Boot.ini
as a boot option and what name it should display for the installation in the boot menu.

System File Corruption

■ Symptoms There are several ways the corruption of system files—which include execut-
ables, drivers, or DLLs—can manifest. One way is with a message on a black screen after
BIOS POST that says, “Windows could not start because the following file is missing or
corrupt,” followed by the name of a file and a request to re-install the file. Another way
is with a blue screen crash during the boot with the text, “STOP: 0xC0000135 {Unable
to Locate Component}.”

■ Causes The volume on which a system file is located is corrupt or one or more system
files have been deleted or become corrupt.

■ Resolution Boot into the Recovery Console, and execute the chkdsk command. Chkdsk
will attempt to repair volume corruption. If Chkdsk does not report any problems,
obtain a backup copy of the system file in question. One place to check is in the \Win-
dows\System32\DllCache directory, in which Windows places copies of many system
files for access by Windows File Protection. (See the “Windows File Protection” sidebar.)
If you cannot find a copy of the file there, see if you can locate a copy from another sys-
tem in the network. Note that the backup file must be from the same Service Pack or hot
fix as the file that you are replacing.

In some cases, multiple system files are deleted or become corrupt, so the repair process can
involve multiple reboots and boot failures as you repair the files one by one. If you believe the
system file corruption to be extensive, you should consider restoring the system from a
backup image, such as one generated by Automated System Recovery (ASR). When you run
Windows Backup (located in the System folder under Accessories in the Start menu), you can
generate an ASR backup image, which includes all the files on the system and boot volumes,
plus a floppy disk on which it stores information about the system’s disks and volumes. To
restore a system from an ASR, back up boot from the Windows setup media and press F2
when prompted.

If you do not have a backup from which to restore, a last resort is to execute a Windows
repair install: boot from the Windows setup media, and follow the wizard as if you were

Chapter 5: Startup and Shutdown 283
going to perform a new installation. The wizard will ask you whether you want to perform
a repair or fresh install. When you tell it that you want to repair, Setup reinstalls all system
files, leaving your application data and registry settings intact.

Windows File Protection
In addition to its role as the interactive logon interface and Session Manager, Winlogon
also implements Windows File Protection (WFP). WFP, which is implemented in the two
DLLs \Windows\System32\Sfc.dll and \Windows\System32\Sfc_os.dll, monitors sev-
eral directories for changes to key drivers, executables, and DLLs, including most subdi-
rectories under \Windows, using the native API version of ReadDirectoryChangesW. When
WFP sees that a change has occurred to a system file listed in \Windows\System32\
Sfcfiles.Dll (and you can use the Strings utility from www.sysinternals.com to see the files
listed in Sfcfiles.dll), it checks to see whether the file is digitally signed by Microsoft (a
process for which you can find more information in the “Driver Installation” section of
Chapter 9). If the file is digitally signed by Microsoft, WFP allows the change and copies
the file to the WFP backup directory. By default, the backup directory is \Windows\
System32\DllCache, although that can be overridden by defining the Registry value
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows NT\CurrentVersion\
Winlogon\SFCDllCacheDir. Hot fixes and service packs always install Microsoft-
signed system files.

If the file modification doesn’t result in a file that isn’t Microsoft-signed, WFP replaces
the modification with the backup version of the file from the DLLCache subdirectory. If
Winlogon can’t find a backup version in that directory, it checks in the network install
path if the system was installed using a network install or in the setup media (prompt-
ing for insertion) if the install was from local media.

System Hive Corruption

■ Symptoms If the System registry hive (which is discussed along with hive files in the
“Registry” section of Chapter 4) is missing or corrupted, NTLDR will display the mes-
sage, “Windows could not start because the following file is missing or corrupt:
\WINDOWS\SYSTEM32\CONFIG\SYSTEM,” on a black screen after the BIOS POST.

■ Causes The System registry hive, which contains configuration information necessary
for the system to boot, has become corrupt or has been deleted.

■ Resolution Boot into the Recovery Console, and execute the chkdsk command on the
boot volume to correct any volume corruption. If the problem is not corrected, obtain a
backup of the System registry hive. If you have made ASR backups of the system or have
used the Windows Backup utility to make backups of system state (an option in the
backup UI), copies of the registry hives from the most recent backup are stored in
\Windows\Repair, so copy the file named System to \Windows\System32\Config.

284 Microsoft Windows Internals, Fourth Edition
If you’re running Windows XP and System Restore is enabled (System Restore is discussed in
Chapter 12) , you can often obtain a more recent backup of the registry hives, including the
System hive, from the most recent restore point. However, you may not be able to access the
directory in which restores points are stored, \System Volume Information, from within the
Recovery Console. Windows XP Service Pack 1 Versions of the Recovery Console allow access
to that directory, but older versions do not unless the system’s local security policy allows it.
You can override the restriction if necessary by using the Local Security Policy Editor to
change Recovery Console settings, as described earlier. You can also use third-party tools to
gain access to other directories. If you can access the restore point directories, you can follow
these steps to get at their registry hives:

1. Navigate to the directory whose name begins with “_restore” under the \System Volume
Information directory of the boot volume.

2. Locate the RP subdirectory with the highest number as its suffix (for example, “RP173”).

3. Copy the file named _REGISTRY_MACHINE_SYSTEM from the snapshot subdirectory
to \Windows\System32\Config\System.

4. Reboot.

Another option is to try and repair the corruption using the Microsoft ChkReg tool. The tool
attempts to automatically repair registry corruption, and it works by running off of the
Windows XP setup floppy disks. You can find the tool and instructions on how to use it at
http://www.microsoft.com/downloads/details.aspx?displaylang=en&familyid=56d3c201-2c68-
4de8-9229-ca494362419c.

If you haven’t made backups, don’t have access to restore points, and the ChkReg tool doesn’t
fix the corruption (or the hives are missing), you can use the copy of the System hive stored
in \Windows\Repair as a last resort. Windows Setup makes a copy of the System hive after it
completes an installation, so you will lose system configuration changes and device driver
installations made since then.

Post–Splash Screen Crash or Hang

■ Symptoms Problems that occur after the Windows splash screen displays, the desktop
appears, or you log in fall into this category and can appear as a blue screen crash or a
hang, where the entire system is frozen or the mouse cursor tracks the mouse but the
system is otherwise unresponsive.

■ Causes These problems are almost always a result of a bug in a device driver, but they
can sometimes be the result of corruption of a registry hive other than the System hive.

■ Resolution You can take several steps to try and correct the problem. The first thing
you should try is the last known good configuration. Last known good (LKG), which is
described earlier in this chapter and in the “Services” section of Chapter 4, consists of
the registry control set that was last used to boot the system successfully. Because a con-
trol set includes core system configuration and the device driver and services

Chapter 5: Startup and Shutdown 285
registration database, using a version that does not reflect changes or newly installed
drivers or services might avoid the source of the problem. You access last known good
by pressing the F8 key early in the boot process to access the same menu from which
you can boot into safe mode.

As stated earlier in the chapter, when you boot into LKG, the system saves the control set that
you are avoiding and labels it as the failed control set. You can leverage the failed control set in
cases where LKG makes a system bootable to determine what was causing the system to fail to
boot by exporting the contents of the current control set of the successful boot and the failed
control set to .reg files. You do this by using the Regedit’s export functionality, which you
access under the File menu (or under the Registry menu if you are running Windows 2000):

1. Run Regedit, and select HKLM\System\CurrentControlSet.

2. Select Export from the File menu, and save to a file named good.reg.

3. Open HKLM\System\Select, read the value of Failed, and select the subkey named
HKLM\System\ControlXXX, where XXX is the value of Failed.

4. Export the contents of the control set to bad.reg.

5. Use Wordpad (which is found under Accessories in the Start menu) to globally replace
all instances of “CurrentControlSet” in good.reg with “ControlSet”.

6. Use Wordpad to change all instances of “ControlXXX” (replacing XXX with the value of
the Failed control set) in bad.reg with “ControlSet”.

7. Run Windiff from the Support Tools, and compare the two files.

The differences between a failed control set and a good one can be numerous, so you should
focus your examination on changes beneath the Control subkey as well as under the Parame-
ters subkeys of drivers and services registered in the Services subkey. Ignore changes made to
Enum subkeys of driver registry keys in the Services branch of the control set.

If the problem you’re experiencing is caused by a driver or service that was present on the sys-
tem since before the last successful boot, LKG will not make the system bootable. Similarly, if
a problematic configuration setting changed outside the control set or was made before the
last successful boot, LKG will not help. In those cases, the next option to try is safe mode
(described earlier in this section). If the system boots successfully in safe mode and you know
that particular driver was causing the normal boot to fail, you can disable the driver by using
the Device Manager (accessible from the Hardware tab of the System Control Panel applet).
To do so, select the driver in question and choose Disable from the Action menu. If you’re run-
ning Windows XP or Windows Server 2003, you recently updated the driver, and believe that
the update introduced a bug, you can choose to roll back the driver to its previous version
instead, also with the Device Manager. To restore a driver to its previous version, double-click
on the driver to open its properties dialog box and press Roll Back Driver on the Drivers tab.

On Windows XP systems with System Restore enabled, an option when LKG fails is to roll
back all system state (as defined by System Restore) to a previous point in time. Safe mode

286 Microsoft Windows Internals, Fourth Edition
detects the existence of restore points, and when they are present it will ask you whether you
want to log in to the installation to perform a manual diagnosis and repair or launch the Sys-
tem Restore Wizard. Using System Restore to make a system bootable again is attractive when
you know the cause of a problem and want the repair to be automatic or when you don’t know
the cause but do not want to invest time to determine the cause.

If System Restore is not an option or you want to determine the cause of a crash during the
normal boot and the system boots successfully in safe mode, attempt to obtain a boot log
from the unsuccessful boot by pressing F8 to access the special boot menu and choosing the
boot logging option. As described earlier in this chapter, Session Manager (\Windows\
System32\Smss.exe) saves a log of the boot that includes a record of device drivers that the
system loaded and chose not to load to \Windows\ntbtlog.txt, so you’ll obtain a boot log if
the crash or hang occurs after Session Manager initializes. When you reboot into safe mode,
the system appends new entries to the existing boot log. Extract the portions of the log file
that refer to the failed attempt, and safe mode boots into separate files. Strip out lines that con-
tain the text “Did not load driver”, and then compare them with a text comparison tool such
as Windiff. One by one, disable the drivers that loaded during the normal boot but not in the
safe-mode boot until the system boots successfully again. (Then re-enable the drivers that
were not responsible for the problem.)

If you cannot obtain a boot log from the normal boot (for instance, because the system is
crashing before Session Manager initializes), if the system also crashes during the safe-mode
boot, or if a comparison of boot logs from the normal and safe-mode boots do not reveal any
significant differences (for example, when the driver that’s crashing the normal boot starts
after Session Manager initializes), the next tool to try is the Driver Verifier combined with
crash dump analysis. (See Chapter 14 for more information on both these topics.)

Shutdown
If someone is logged on and a process initiates a shutdown by calling the Windows ExitWin-
dowsEx function, a message is sent to Csrss instructing it to perform the shutdown. Csrss in
turn impersonates the caller and sends a Windows message to a hidden window owned by
Winlogon, telling it to perform a system shutdown. Winlogon then impersonates the cur-
rently logged-on user (who might or might not have the same security context as the user who
initiated the system shutdown) and calls ExitWindowsEx with some special internal flags.
Again, this call causes a message to be sent to Csrss requesting a system shutdown.

This time, Csrss sees that the request is from Winlogon and loops through all the processes in
the logon session of the interactive user (again, not the user who requested a shutdown) in
reverse order of their shutdown level. A process can specify a shutdown level, which indicates
to the system when they want to exit with respect to other processes, by calling SetProcessShut-
downParameters. Valid shutdown levels are in the range 0 through 1023, and the default level
is 640. Explorer, for example, sets its shutdown level to 2 and Task Manager specifies 1. For each
process that owns a top-level window, Csrss sends the WM_QUERYENDSESSION message to

Chapter 5: Startup and Shutdown 287
each thread in the process that has a Windows message loop. If the thread returns TRUE, the
system shutdown can proceed. Csrss then sends the WM_ENDSESSION Windows message to
the thread to request it to exit. Csrss waits the number of seconds defined in HKCU\Control
Panel\Desktop\HungAppTimeout for the thread to exit. (The default is 5000 milliseconds.)

If the thread doesn’t exit before the timeout, Csrss displays the hung-program dialog box
shown in Figure 5-5. (You can disable this dialog box by changing the registry value
HKCU\Control Panel\Desktop\AutoEndTasks to 1.) This dialog box indicates that a pro-
gram isn’t shutting down in a timely manner and gives the user a choice of either killing the
process or aborting the shutdown. (There is no timeout on this dialog box, which means that
a shutdown request could wait forever at this point.)

Figure 5-5 Hung program dialog box

If the thread does exit before the timeout, Csrss continues sending the WM_QUERYEND-
SESSION/WM_ENDSESSION message pairs to the other threads in the process that own win-
dows. Once all the threads that own windows in the process have exited, Csrss terminates the
process and goes on to the next process in the interactive session.

EXPERIMENT: Witnessing the HungAppTimeout
You can see the use of the HungAppTimeout registry value by running Notepad, enter-
ing text into its editor, and then logging off. After the amount of time specified by the
HungAppTimeout registry value has expired, Csrss.exe presents a dialog box that asks
you whether or not you want to end the Notepad process, which has not exited because
it’s waiting for you to tell it whether or not to save the entered text to a file. If you press
the Cancel button on the dialog box, Csrss.exe aborts the shutdown.

If Csrss finds a console application, it invokes the console control handler by sending the
CTRL_LOGOFF_EVENT event. (Only service processes receive the CTRL_SHUTDOWN_
EVENT event on shutdown.) If the handler returns FALSE, Csrss kills the process. If the
handler returns TRUE or doesn’t respond by the number of seconds defined by HKCU\Con-
trol Panel\Desktop\WaitToKillAppTimeout (the default is 20,000 milliseconds), Csrss dis-
plays the hung-program dialog box shown in Figure 5-5.

288 Microsoft Windows Internals, Fourth Edition
Next, Winlogon calls ExitWindowsEx to have Csrss terminate any COM processes that are part
of the interactive user’s session.

At this point, all the processes in the interactive user’s session have been terminated.
Winlogon calls ExitWindowsEx again, but this time in the system process context, which again
sends a message to Csrss, which looks at all the processes belonging to the system context
and performs and sends the WM_ QUERYENDSESSION/WM_ENDSESSION messages to
GUI threads (as before). Instead of sending CTRL_LOGOFF_EVENT, however, it sends
CTRL_ SHUTDOWN_EVENT to console applications that have registered control handlers.
Note that the SCM is a console program that does register a control handler. When it receives
the shutdown request, it in turn sends the service shutdown control message to all services
that registered for shutdown notification. For more details on service shutdown (such as the
shutdown timeout Csrss uses for the SCM), see the “Services” section in Chapter 4.

Although Csrss performs the same timeouts as when it was terminating the user processes, it
doesn’t display any dialog boxes and doesn’t kill any processes. (The registry values for the
system process timeouts are taken from the default user profile.) These timeouts simply allow
system processes a chance to clean up and exit before the system shuts down. Therefore,
many system processes are in fact still running when the system shuts down, such as Smss,
Winlogon, the SCM, and Lsass.

Once Csrss has finished its pass notifying system processes that the system is shutting down,
Winlogon finishes the shutdown process by calling the executive subsystem function NtShut-
downSystem. This function calls the function NtSetSystemPowerState to orchestrate the shut-
down of drivers and the rest of the executive subsystems (Plug and Play manager, power
manager, executive, I/O manager, configuration manager, and memory manager).

For example, NtSetSystemPowerState calls the I/O manager to send shutdown I/O packets to
all device drivers that have requested shutdown notification. This action gives device drivers a
chance to perform any special processing their device might require before Windows exits.
The configuration manager flushes any modified registry data to disk, and the memory man-
ager writes all modified pages containing file data back to their respective files. If the option to
clear the paging file at shutdown is enabled, the memory manager clears the paging file at this
time. The I/O manager is called a second time to inform the file system drivers that the system
is shutting down. System shutdown ends in the power manager. The action the power man-
ager takes depends on whether the user specified a shutdown, a reboot, or a power down.

Conclusion
In this chapter, we’ve examined the detailed steps involved in starting and shutting down
Windows (both normally and in error cases). So far, we’ve examined the overall structure of
Windows and the core system mechanisms that get the system going, keep it running, and
eventually shut it down. With this foundation laid, we’re ready to explore the individual exec-
utive components in more detail, starting with processes and threads.

Chapter 6

Processes, Threads, and Jobs

In this chapter, we’ll explain the data structures and algorithms that deal with processes,
threads, and jobs in Microsoft Windows. The first section focuses on the internal structures
that make up a process. The second section outlines the steps involved in creating a process
(and its initial thread). The internals of threads and thread scheduling are then described. The
chapter concludes with a description of the job object.

Where relevant performance counters or kernel variables exist, they are mentioned. Although
this book isn’t a Windows programming book, the pertinent process, thread, and job Win-
dows functions are listed so that you can pursue additional information on their use.

Because processes and threads touch so many components in Windows, a number of terms
and data structures (such as working sets, objects and handles, system memory heaps, and so
on) are referred to in this chapter but are explained in detail elsewhere in the book. To fully
understand this chapter, you need to be familiar with the terms and concepts explained in
chapters 1 and 2, such as the difference between a process and a thread, the Windows virtual
address space layout, and the difference between user mode and kernel mode.

Process Internals
This section describes the key Windows process data structures. Also listed are key kernel
variables, performance counters, and functions and tools that relate to processes.

Data Structures

Each Windows process is represented by an executive process (EPROCESS) block. Besides
containing many attributes relating to a process, an EPROCESS block contains and points to
a number of other related data structures. For example, each process has one or more threads
represented by executive thread (ETHREAD) blocks. (Thread data structures are explained in
the section “Thread Internals” later in this chapter.) The EPROCESS block and its related data
structures exist in system space, with the exception of the process environment block (PEB),
which exists in the process address space (because it contains information that is modified by
user-mode code).
289

290 Microsoft Windows Internals, Fourth Edition
In addition to the EPROCESS block, the Windows subsystem process (Csrss) maintains a par-
allel structure for each Windows process that executes a Windows program. Also, the kernel-
mode part of the Windows subsystem (Win32k.sys) has a per-process data structure that is
created the first time a thread calls a Windows USER or GDI function that is implemented in
kernel mode.

Figure 6-1 is a simplified diagram of the process and thread data structures. Each data struc-
ture shown in the figure is described in detail in this chapter.

Figure 6-1 Data structures associated with processes and threads

First let’s focus on the process block. (We’ll get to the thread block in the section “Thread
Internals” later in the chapter.) Figure 6-2 shows the key fields in an EPROCESS block.

Thread
environment

block

Process
environment

block

Process
block

Windows process block

Handle table

Thread
block

System address space

Process address space

…

Chapter 6: Processes, Threads, and Jobs 291
Figure 6-2 Structure of an executive process block

EXPERIMENT: Displaying the Format of an EPROCESS Block
For a list of the fields that make up an EPROCESS block and their offsets in hexadeci-
mal, type dt _eprocess in the kernel debugger. (See Chapter 1 for more information on
the kernel debugger and how to perform kernel debugging on the local system.) The
output (truncated for the sake of space) looks like this:

lkd> dt _eprocess

nt!_EPROCESS

+0x000 Pcb : _KPROCESS

+0x06c ProcessLock : _EX_PUSH_LOCK

+0x070 CreateTime : _LARGE_INTEGER

+0x078 ExitTime : _LARGE_INTEGER

+0x080 RundownProtect : _EX_RUNDOWN_REF

+0x084 UniqueProcessId : Ptr32 Void

+0x088 ActiveProcessLinks : _LIST_ENTRY

+0x090 QuotaUsage : [3] Uint4B

+0x09c QuotaPeak : [3] Uint4B

+0x0a8 CommitCharge : Uint4B

+0x0ac PeakVirtualSize : Uint4B

+0x0b0 VirtualSize : Uint4B

+0x0b4 SessionProcessLinks : _LIST_ENTRY

+0x0bc DebugPort : Ptr32 Void

+0x0c0 ExceptionPort : Ptr32 Void

+0x0c4 ObjectTable : Ptr32 _HANDLE_TABLE

Kernel process block (or PCB)

Process ID

Parent process ID

Exit status

Create and exit times

Active process link

Primary access token

EPROCESS

Handle table

Quota block

Memory management information

Exception port

Debugger port

Device map

Process environment block

Image filename

Image base address

Process priority class

Job object

Windows process block

PsActiveProcessHead

292 Microsoft Windows Internals, Fourth Edition
+0x0c8 Token : _EX_FAST_REF

+0x0cc WorkingSetLock : _FAST_MUTEX

+0x0ec WorkingSetPage : Uint4B

+0x0f0 AddressCreationLock : _FAST_MUTEX

+0x110 HyperSpaceLock : Uint4B

+0x114 ForkInProgress : Ptr32 _ETHREAD

+0x118 HardwareTrigger : Uint4B

Note that the first field (Pcb) is actually a substructure, the kernel process block (KPRO-
CESS), which is where scheduling-related information is stored. To display the format of
the kernel process block, type dt_kprocess:

lkd> dt _kprocess

nt!_KPROCESS

+0x000 Header : _DISPATCHER_HEADER

+0x010 ProfileListHead : _LIST_ENTRY

+0x018 DirectoryTableBase : [2] Uint4B

+0x020 LdtDescriptor : _KGDTENTRY

+0x028 Int21Descriptor : _KIDTENTRY

+0x030 IopmOffset : Uint2B

+0x032 Iopl : UChar

+0x033 Unused : UChar

+0x034 ActiveProcessors : Uint4B

+0x038 KernelTime : Uint4B

+0x03c UserTime : Uint4B

+0x040 ReadyListHead : _LIST_ENTRY

+0x048 SwapListEntry : _SINGLE_LIST_ENTRY

+0x04c VdmTrapcHandler : Ptr32 Void

+0x050 ThreadListHead : _LIST_ENTRY

+0x058 ProcessLock : Uint4B

+0x05c Affinity : Uint4B

+0x060 StackCount : Uint2B

+0x062 BasePriority : Char

+0x063 ThreadQuantum : Char

+0x064 AutoAlignment : UChar

+0x065 State : UChar

+0x066 ThreadSeed : UChar

+0x067 DisableBoost : UChar

+0x068 PowerState : UChar

+0x069 DisableQuantum : UChar

+0x06a IdealNode : UChar

+0x06b Spare : UChar

An alternate way to see the KPROCESS (and other substructures in the EPROCESS) is
to use the recursion (-r) switch of the dt command. For example, typing dt _eprocess –
r1 will recurse and display all substructures one level deep.

The dt command shows the format of a process block, not its contents. To show an
instance of an actual process, you can specify the address of an EPROCESS structure as
an argument to the dt command. You can get the address of all the EPROCESS blocks in
the system by using the !process 0 0 command. An annotated example of the output from
this command is included later in this chapter.

Chapter 6: Processes, Threads, and Jobs 293
Table 6-1 explains some of the fields in the preceding experiment in more detail and includes
references to other places in the book where you can find more information about them. As
we’ve said before and will no doubt say again, processes and threads are such an integral part
of Windows that it’s impossible to talk about them without referring to many other parts of
the system. To keep the length of this chapter manageable, however, we’ve covered those
related subjects (such as memory management, security, objects, and handles) elsewhere.

Table 6-1 Contents of the EPROCESS Block

Element Purpose Additional Reference

Kernel process (KPROCESS)
block

Common dispatcher object header,
pointer to the process page directory,
list of kernel thread (KTHREAD)
blocks belonging to the process, de-
fault base priority, quantum, affinity
mask, and total kernel and user time
for the threads in the process.

Thread Scheduling
(Chapter 6)

Process identification Unique process ID, creating process
ID, name of image being run, win-
dow station process is running on.

Quota block Limits on nonpaged pool, paged
pool, and page file usage plus cur-
rent and peak process nonpaged
and paged pool usage. (Note: Sever-
al processes can share this structure:
all the system processes point to the
single systemwide default quota
block; all the processes in the inter-
active session share a single quota
block that Winlogon sets up.)

Virtual address descriptors
(VADs)

Series of data structures that de-
scribes the status of the portions of
the address space that exist in the
process.

Virtual Address
Descriptors
(Chapter 7)

Working set information Pointer to working set list (MMWSL
structure); current, peak, minimum,
and maximum working set size; last
trim time; page fault count; memory
priority; outswap flags; page fault
history.

Working Sets
(Chapter 7)

Virtual memory information Current and peak virtual size, page
file usage, hardware page table en-
try for process page directory.

Chapter 7

Exception local procedure call
(LPC) port

Interprocess communication chan-
nel to which the process manager
sends a message when one of the
process’s threads causes an excep-
tion.

Exception Dispatching
(Chapter 3)

294 Microsoft Windows Internals, Fourth Edition
The kernel process (KPROCESS) block, which is part of the EPROCESS block, and the pro-
cess environment block (PEB), which is pointed to by the EPROCESS block, contain addi-
tional details about the process object. The KPROCESS block (which is sometimes called the
PCB, or process control block) is illustrated in Figure 6-3. It contains the basic information
that the Windows kernel needs to schedule threads. (Page directories are covered in
Chapter 7, and kernel thread blocks are described in more detail later in this chapter.)

The PEB, which lives in the user process address space, contains information needed by the
image loader, the heap manager, and other Windows system DLLs that need to modify it from
user mode. (The EPROCESS and KPROCESS blocks are accessible only from kernel mode.)
The basic structure of the PEB is illustrated in Figure 6-4 and is explained in more detail later
in this chapter.

Debugging LPC port Interprocess communication chan-
nel to which the process manager
sends a message when one of the
process’s threads causes a debug
event.

Local Procedure Calls
(LPCs) (Chapter 3)

Access token (ACCESS_TOKEN) Executive object describing the se-
curity profile of this process.

Chapter 8

Handle table Address of per-process handle ta-
ble.

Object Handles and the
Process Handle Table
(Chapter 3)

Device map Address of object directory to re-
solve device name references in
(supports multiple users).

Object Names
(Chapter 3)

Process environment block
(PEB)

Image information (base address,
version numbers, module list), pro-
cess heap information, and thread-
local storage utilization. (Note: The
pointers to the process heaps start
at the first byte after the PEB.)

Chapter 6

Windows subsystem process
block (W32PROCESS)

Process details needed by the ker-
nel-mode component of the Win-
dows subsystem.

Table 6-1 Contents of the EPROCESS Block

Element Purpose Additional Reference

Chapter 6: Processes, Threads, and Jobs 295
Figure 6-3 Structure of the executive process block

Figure 6-4 Fields of the process environment block

Dispatcher header

Kernel time

Process spinlock

Processor affinity

Resident kernel stack count

Process base priority

Default thread quantum

Process state

Thread seed

Disable boost flag

User time

Inswap/Outswap list entry

Process page directory

KTHREAD …

Image base address

Module list

Thread-local storage data

Code page data

Critical section timeout

Number of heaps

Heap size information

GDI shared handle table

Image version information

Image process affinity mask

Process heap

Operating system version number information

296 Microsoft Windows Internals, Fourth Edition
EXPERIMENT: Examining the PEB
You can dump the PEB structure with the !peb command in the kernel debugger. To get
the address of the PEB, use the !process command as follows:

lkd> !process

PROCESS 8575f030 SessionId: 0 Cid: 08d0 Peb: 7ffdf000 ParentCid: 0360

DirBase: 1a81b000 ObjectTable: e12bd418 HandleCount: 66.

Image: windbg.exe

Then specify that address to the !peb command as follows:

lkd> !peb 7ffdf000

PEB at 7ffdf000

InheritedAddressSpace: No

ReadImageFileExecOptions: No

BeingDebugged: No

ImageBaseAddress: 01000000

Ldr 00181e90

Ldr.Initialized: Yes

Ldr.InInitializationOrderModuleList: 00181f28 . 00183188

Ldr.InLoadOrderModuleList: 00181ec0 . 00183178

Ldr.InMemoryOrderModuleList: 00181ec8 . 00183180

Base TimeStamp Module

1000000 40478dbd Mar 04 15:12:45 2004 C:\Program Files\Debugging Tools for

Windows\windbg.exe

77f50000 3eb1b41a May 01 19:56:10 2003 C:\WINDOWS\System32\ntdll.dll

77e60000 3d6dfa28 Aug 29 06:40:40 2002 C:\WINDOWS\system32\kernel32.dll

2000000 40476db2 Mar 04 12:56:02 2004 C:\Program Files\Debugging Tools for

Windows\dbgeng.dll

 .

SubSystemData: 00000000

ProcessHeap: 00080000

ProcessParameters: 00020000

WindowTitle: 'C:\Documents and Settings\All Users\Start Menu\Programs\Debugging

Tools for Windows\WinDbg.lnk'

ImageFile: 'C:\Program Files\Debugging Tools for Windows\windbg.exe'

CommandLine: '"C:\Program Files\Debugging Tools for Windows\windbg.exe" '

DllPath: 'C:\Program Files\Debugging Tools for Windows;C:\WINDOWS\System32;C:

\WINDOWS\system;C:\WINDOWS;.;C:\Program Files\Windows Resource Kits\Tools\;C:\WINDOWS\

system32;C:\WINDOWS;C:\WINDOWS\System32\Wbem;C:\Program Files\Support Tools\;c:\sysint

;C:\Program Files\ATI Technologies\ATI Control Panel;C:\Program Files\Resource Kit\;C:

\PROGRA~1\CA\Common\SCANEN~1;C:\PROGRA~1\CA\eTrust\ANTIVI~1;C:\Program Files\Common

Files\Roxio Shared\DLLShared;C:\SFU\common\'

Environment: 00010000

=::=::\

ALLUSERSPROFILE=C:\Documents and Settings\All Users

APPDATA=C:\Documents and Settings\dsolomon\Application Data

.

.

.

Chapter 6: Processes, Threads, and Jobs 297
Kernel Variables

A few key kernel global variables that relate to processes are listed in Table 6-2. These variables
are referred to later in the chapter, when the steps in creating a process are described.

Performance Counters

Windows maintains a number of counters with which you can track the processes running on
your system; you can retrieve these counters programmatically or view them with the Perfor-
mance tool. Table 6-3 lists the performance counters relevant to processes (except for mem-
ory management and I/O-related counters, which are described in Chapters 7 and 9,
respectively).

Table 6-2 Process-Related Kernel Variables

Variable Type Description

PsActiveProcessHead Queue header List head of process blocks

PsIdleProcess EPROCESS Idle process block

PsInitialSystemProcess Pointer to EPROCESS Pointer to the process block
of the initial system process
that contains the system
threads

PspCreateProcessNotifyRoutine Array of pointers Array of pointers to routines
to be called on process cre-
ation and deletion (maxi-
mum of eight)

PspCreateProcessNotifyRoutineCount DWORD Count of registered process
notification routines

PspLoadImageNotifyRoutine Array of pointers Array of pointers to routines
to be called on image load

PspLoadImageNotifyRoutineCount DWORD Count of registered image-
load notification routines

PspCidTable Pointer to
HANDLE_TABLE

Handle table for process
and thread client IDs

Table 6-3 Process-Related Performance Counters

Object: Counter Function

Process: % Privileged Time Describes the percentage of time that the threads in the process
have run in kernel mode during a specified interval.

Process: % Processor Time Describes the percentage of CPU time that the threads in the
process have used during a specified interval. This count is the
sum of % Privileged Time and % User Time.

Process: % User Time Describes the percentage of time that the threads in the process
have run in user mode during a specified interval.

298 Microsoft Windows Internals, Fourth Edition
Relevant Functions

For reference purposes, some of the Windows functions that apply to processes are described
in Table 6-4. For further information, consult the Windows API documentation in the MSDN
Library.

Process: Elapsed Time Describes the total elapsed time in seconds since this process was
created.

Process: ID Process Returns the process ID. This ID applies only while the process ex-
ists because process IDs are reused.

Process: Creating Process ID Returns the process ID of the creating process. This value isn’t up-
dated if the creating process exits.

Process: Thread Count Returns the number of threads in the process.

Process: Handle Count Returns the number of handles open in the process.

Table 6-3 Process-Related Performance Counters

Object: Counter Function

Table 6-4 Process-Related Functions

Function Description

CreateProcess Creates a new process and thread using the caller’s security
identification

CreateProcessAsUser Creates a new process and thread with the specified alternate
security token

CreateProcessWithLogonW Creates a new process and thread to run under the credentials
of the specified username and password

CreateProcessWithTokenW Creates a new process and thread with the specified alternate
security token, with additional options such as allowing the user
profile to be loaded

OpenProcess Returns a handle to the specified process object

ExitProcess Ends a process, and notifies all attached DLLs

TerminateProcess Ends a process without notifying the DLLs

FlushInstructionCache Empties the specified process’s instruction cache

GetProcessTimes Obtains a process’s timing information, describing how much
time the process has spent in user and kernel mode

GetExitCodeProcess Returns the exit code for a process, indicating how and why the
process shut down

GetCommandLine Returns a pointer to the command-line string passed to the cur-
rent process

GetCurrentProcess Returns a pseudo handle for the current process

GetCurrentProcessId Returns the ID of the current process

Chapter 6: Processes, Threads, and Jobs 299
EXPERIMENT: Using the Kernel Debugger !process Command
The kernel debugger !process command displays a subset of the information in an EPRO-
CESS block. This output is arranged in two parts for each process. First you see the infor-
mation about the process, as shown here (when you don’t specify a process address or
ID, !process lists information for the active process on the current CPU):

lkd> !process

PROCESS 8575f030 SessionId: 0 Cid: 08d0 Peb: 7ffdf000 ParentCid: 0360

DirBase: 1a81b000 ObjectTable: e12bd418 HandleCount: 65.

Image: windbg.exe

VadRoot 857f05e0 Vads 71 Clone 0 Private 1152. Modified 98. Locked 1.

DeviceMap e1e96c88

Token e1f5b8a8

ElapsedTime 1:23:06.0219

UserTime 0:00:11.0897

KernelTime 0:00:07.0450

QuotaPoolUsage[PagedPool] 38068

QuotaPoolUsage[NonPagedPool] 2840

Working Set Sizes (now,min,max) (2552, 50, 345) (10208KB, 200KB, 1380KB)

PeakWorkingSetSize 2715

VirtualSize 41 Mb

PeakVirtualSize 41 Mb

PageFaultCount 3658

MemoryPriority BACKGROUND

BasePriority 8

CommitCharge 1566

After the basic process output comes a list of the threads in the process. That output is
explained in the “Experiment: Using the Kernel Debugger !thread Command” section
later in the chapter. Other commands that display process information include !handle,
which dumps the process handle table (which is described in more detail in the section
“Object Handles and the Process Handle Table” in Chapter 3). Process and thread secu-
rity structures are described in Chapter 8.

GetProcessVersion Returns the major and minor versions of the Windows version on
which the specified process expects to run

GetStartupInfo Returns the contents of the STARTUPINFO structure specified
during CreateProcess

GetEnvironmentStrings Returns the address of the environment block

GetEnvironmentVariable Returns a specific environment variable

Get/SetProcessShutdownParame-
ters

Defines the shutdown priority and number of retries for the cur-
rent process

GetGuiResources Returns a count of User and GDI handles

Table 6-4 Process-Related Functions

Function Description

300 Microsoft Windows Internals, Fourth Edition
Flow of CreateProcess
So far in this chapter, you’ve seen the structures that are part of a process and the API func-
tions with which you (and the operating system) can manipulate processes. You’ve also found
out how you can use tools to view how processes interact with your system. But how did those
processes come into being, and how do they exit once they’ve fulfilled their purpose? In the
following sections, you’ll discover how a Windows process comes to life.

A Windows process is created when an application calls one of the process creation functions,
such as CreateProcess, CreateProcessAsUser, CreateProcessWithTokenW, or CreateProcessWith-
LogonW. Creating a Windows process consists of several stages carried out in three parts of
the operating system: the Windows client-side library Kernel32.dll, the Windows executive,
and the Windows subsystem process (Csrss). Because of the multiple environment subsystem
architecture of Windows, creating a Windows executive process object (which other subsystems
can use) is separated from the work involved in creating a Windows process. So, although the
following description of the flow of the Windows CreateProcess function is complicated, keep in
mind that part of the work is specific to the semantics added by the Windows subsystem as
opposed to the core work needed to create a Windows executive process object.

The following list summarizes the main stages of creating a process with the Windows Cre-
ateProcess function. The operations performed in each stage are described in detail in the sub-
sequent sections.

Note Many steps of CreateProcess are related to the setup of the process virtual address
space and therefore refer to many memory management terms and structures that are defined
in Chapter 7.

1. Open the image file (.exe) to be executed inside the process.

2. Create the Windows executive process object.

3. Create the initial thread (stack, context, and Windows executive thread object).

4. Notify the Windows subsystem of the new process so that it can set up for the new pro-
cess and thread.

5. Start execution of the initial thread (unless the CREATE_ SUSPENDED flag was speci-
fied).

6. In the context of the new process and thread, complete the initialization of the address
space (such as load required DLLs) and begin execution of the program.

Figure 6-5 shows an overview of the stages Windows follows to create a process.

Chapter 6: Processes, Threads, and Jobs 301
Figure 6-5 The main stages of process creation

Before opening the executable image to run, CreateProcess performs the following steps:

■ In CreateProcess, the priority class for the new process is specified as independent bits in
the CreationFlags parameter. Thus, you can specify more than one priority class for a sin-
gle CreateProcess call. Windows resolves the question of which priority class to assign to
the process by choosing the lowest-priority class set.

■ If no priority class is specified for the new process, the priority class defaults to Normal
unless the priority class of the process that created it is Idle or Below Normal, in which
case the priority class of the new process will have the same priority as the creating class.

■ If a Real-time priority class is specified for the new process and the process’s caller
doesn’t have the Increase Scheduling Priority privilege, the High priority class is used
instead. In other words, CreateProcess doesn’t fail just because the caller has insufficient
privileges to create the process in the Real-time priority class; the new process just won’t
have as high a priority as Real-time.

■ All windows are associated with desktops, the graphical representation of a workspace.
If no desktop is specified in CreateProcess, the process is associated with the caller’s cur-
rent desktop.

Open EXE and
create section

object

Set up for new
process and

thread

Final
process/image
initialization

Create
Windows

process object

Create
Windows

thread object

Notify
Windows
subsystem

Start execution
of the initial

thread

Return
to caller!

Start execution
at entry point

to image

Creating process

Stage 1

Stage 2

Stage 3

Stage 4

Stage 5

Windows subsystem

New process

Stage 6

302 Microsoft Windows Internals, Fourth Edition
Stage 1: Opening the Image to Be Executed

As illustrated in Figure 6-6, the first stage in CreateProcess is to find the appropriate Windows
image that will run the executable file specified by the caller and to create a section object to
later map it into the address space of the new process. If no image name is specified, the first
token of the command line (defined to be the first part of the command-line string ending
with a space or tab that is a valid file specification) is used as the image filename.

On Windows XP and Windows Server 2003, CreateProcess checks whether software restric-
tion policies on the machine prevent the image from being run. (See Chapter 8 for a complete
description of software restriction policies.)

If the executable file specified is a Windows .exe, it is used directly. If it’s not a Windows .exe
(for example, if it’s an MS-DOS, Win16, or a POSIX application), CreateProcess goes through a
series of steps to find a Windows support image to run it. This process is necessary because
non-Windows applications aren’t run directly—Windows instead uses one of a few special
support images that in turn are responsible for actually running the non-Windows program.
For example, if you attempt to run a POSIX application, CreateProcess identifies it as such and
changes the image to be run on the Windows executable file Posix.exe. If you attempt to run
an MS-DOS or a Win16 executable, the image to be run becomes the Windows executable
Ntvdm.exe. In short, you can’t directly create a process that is not a Windows process. If Win-
dows can’t find a way to resolve the activated image as a Windows process (as shown in Table
6-5), CreateProcess fails.

Figure 6-6 Choosing a Windows image to activate

Run Cmd.exe Run Ntvdm.exe Use .exe directly

What kind of
application is it?

Win16 Windows
MS-DOS .bat

or .cmd

OS/2 1.x POSIX
MS-DOS .exe,
.com, or .pif

Run Os2.exe Run Posix.exe Run Ntvdm.exe

Chapter 6: Processes, Threads, and Jobs 303
Specifically, the decision tree that CreateProcess goes through to run an image is as follows:

■ If the image is an MS-DOS application with an .exe, a .com, or a .pif extension, a message
is sent to the Windows subsystem to check whether an MS-DOS support process
(Ntvdm.exe, specified in the registry value HKLM\SYSTEM\CurrentControlSet\Con-
trol\WOW\ cmdline) has already been created for this session. If a support process has
been created, it is used to run the MS-DOS application. (The Windows subsystem sends
the message to the VDM [Virtual DOS Machine] process to run the new image.) Then
CreateProcess returns. If a support process hasn’t been created, the image to be run
changes to Ntvdm.exe and CreateProcess restarts at Stage 1.

■ If the file to run has a .bat or a .cmd extension, the image to be run becomes Cmd.exe,
the Windows command prompt, and CreateProcess restarts at Stage 1. (The name of the
batch file is passed as the first parameter to Cmd.exe.)

■ If the image is a Win16 (Windows 3.1) executable, CreateProcess must decide whether a
new VDM process must be created to run it or whether it should use the default session-
wide shared VDM process (which might not yet have been created). The CreateProcess
flags CREATE_SEPARATE_WOW_VDM and CREATE_SHARED_WOW_VDM control
this decision. If these flags aren’t specified, the registry value HKLM\SYSTEM\Current-
ControlSet\Control\WOW\ DefaultSeparateVDM dictates the default behavior. If the
application is to be run in a separate VDM, the image to be run changes to the value of
HKLM\SYSTEM\CurrentControlSet\Control\WOW\wowcmdline and CreateProcess
restarts at Stage 1. Otherwise, the Windows subsystem sends a message to see whether
the shared VDM process exists and can be used. (If the VDM process is running on a dif-
ferent desktop or isn’t running under the same security as the caller, it can’t be used and
a new VDM process must be created.) If a shared VDM process can be used, the Win-
dows subsystem sends a message to it to run the new image and CreateProcess returns. If
the VDM process hasn’t yet been created (or if it exists but can’t be used), the image to
be run changes to the VDM support image and CreateProcess restarts at Stage 1.

Table 6-5 Decision Tree for Stage 1 of CreateProcess

If the image is a/an And this will happen This image will run

POSIX executable file Posix.exe CreateProcess restarts Stage 1.

MS-DOS application with an .exe,
a .com, or a .pif extension

Ntvdm.exe CreateProcess restarts Stage 1.

Win16 application Ntvdm.exe CreateProcess restarts Stage 1.

Command procedure (application with
a .bat or a .cmd extension)

Cmd.exe CreateProcess restarts Stage 1.

304 Microsoft Windows Internals, Fourth Edition
At this point, CreateProcess has successfully opened a valid Windows executable file and
created a section object for it. The object isn’t mapped into memory yet, but it is open. Just
because a section object has been successfully created doesn’t mean that the file is a valid
Windows image, however; it could be a DLL or a POSIX executable. If the file is a POSIX
executable, the image to be run changes to Posix.exe and CreateProcess restarts from the begin-
ning of Stage 1. If the file is a DLL, CreateProcess fails.

Now that CreateProcess has found a valid Windows executable image, it looks in the registry
under HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Image File Execution
Options to see whether a subkey with the filename and extension of the executable image
(but without the directory and path information—for example, Image.exe) exists there. If it
does, CreateProcess looks for a value named Debugger for that key. If this is present, the image
to be run becomes the string in that value and CreateProcess restarts at Stage 1.

Tip You can take advantage of this CreateProcess behavior and debug the startup code of
Windows service processes before they start rather than attach the debugger after starting the
service, which doesn’t allow you to debug the startup code.

Stage 2: Creating the Windows Executive Process Object

At this point, CreateProcess has opened a valid Windows executable file and created a section
object to map it into the new process address space. Next it creates a Windows executive pro-
cess object to run the image by calling the internal system function NtCreateProcess. Creating
the executive process object (which is done by the creating thread) involves the following sub-
stages:

■ Setting up the EPROCESS block

■ Creating the initial process address space

■ Initializing the kernel process block (KPROCESS)

■ Concluding the setup of the process address space (which includes initializing the
working set list and virtual address space descriptors and mapping the image into
address space)

■ Setting up the PEB

■ Completing the setup of the executive process object

Note The only time there won’t be a parent process is during system initialization. After that
point, a parent process is always required to provide a security context for the new process.

Chapter 6: Processes, Threads, and Jobs 305
Stage 2A: Setting Up the EPROCESS Block

This substage involves nine steps:

1. Allocate and initialize the Windows EPROCESS block.

2. Inherit the process affinity mask from the parent process.

3. The process minimum and maximum working set size are set to the values of PsMini-
mumWorkingSet and PsMaximumWorkingSet, respectively.

4. Set the new process’s quota block to the address of its parent process’s quota block, and
increment the reference count for the parent’s quota block.

5. Inherit the Windows device name space (including the definition of drive letters, COM
ports, and so on).

6. Store the parent process’s process ID in the InheritedFromUniqueProcessId field in the
new process object.

7. Create the process’s primary access token (a duplicate of its parent’s primary token).
New processes inherit the security profile of their parents. If the CreateProcessAsUser
function is being used to specify a different access token for the new process, the token
is then changed appropriately.

8. The process handle table is initialized. If the inherit handles flag is set for the parent pro-
cess, any inheritable handles are copied from the parent’s object handle table into the
new process. (For more information about object handle tables, see Chapter 3.)

9. Set the new process’s exit status to STATUS_PENDING.

Stage 2B: Creating the Initial Process Address Space

The initial process address space consists of the following pages:

■ Page directory (and it’s possible there’ll be more than one for systems with page tables
more than two levels, such as x86 systems in PAE mode or 64-bit systems)

■ Hyperspace page

■ Working set list

To create these three pages, the following steps are taken:

1. Page table entries are created in the appropriate page tables to map the initial pages.

The number of pages is deducted from the kernel variable MmTotalCommittedPages and
added to MmProcessCommit.

2. The systemwide default process minimum working set size (PsMinimumWorkingSet) is
deducted from MmResidentAvailablePages.

3. The page table pages for the nonpaged portion of system space and the system cache are
mapped into the process.

306 Microsoft Windows Internals, Fourth Edition
Stage 2C: Creating the Kernel Process Block

The next stage of CreateProcess is the initialization of the KPROCESS block, which contains a
pointer to a list of kernel threads. (The kernel has no knowledge of handles, so it bypasses the
object table.) The kernel process block also points to the process’s page table directory (which
is used to keep track of the process’s virtual address space), the total time the process’s
threads have executed, the process’s default base-scheduling priority (which starts as Normal,
or 8, unless the parent process was set to Idle or Below Normal, in which case the setting is
inherited), the default processor affinity for the threads in the process, and the initial value of
the process default quantum (which is described in more detail in the “Thread Scheduling”
section later in the chapter), which is taken from the value of PspForegroundQuantum[0], the
first entry in the systemwide quantum array.

Note The default initial quantum differs between Windows client and server systems. For more
information on thread quantums, turn to their discussion in the section “Thread Scheduling.”

Stage 2D: Concluding the Setup of the Process Address Space

Setting up the address space for a new process is somewhat complicated, so let’s look at what’s
involved one step at a time. To get the most out of this section, you should have some familiarity
with the internals of the Windows memory manager, which are described in Chapter 7.

■ The virtual memory manager sets the value of the process’s last trim time to the current
time. The working set manager (which runs in the context of the balance set manager
system thread) uses this value to determine when to initiate working set trimming.

■ The memory manager initializes the process’s working set list—page faults can now be
taken.

■ The section (created when the image file was opened) is now mapped into the new pro-
cess’s address space, and the process section base address is set to the base address of
the image.

■ Ntdll.dll is mapped into the process.

■ The systemwide national language support (NLS) tables are mapped into the process’s
address space.

Note POSIX processes clone the address space of their parents, so they don’t have to go
through these steps to create a new address space. In the case of POSIX applications, the new
process’s section base address is set to that of its parent process and the parent’s PEB is cloned
for the new process.

Chapter 6: Processes, Threads, and Jobs 307
Stage 2E: Setting Up the PEB

CreateProcess allocates a page for the PEB and initializes a number of fields, which are
described in Table 6-6.

If the image file specifies explicit Windows version values, this information replaces the initial
values shown in Table 6-6. The mapping from image version information fields to PEB fields
is described in Table 6-7.

Stage 2F: Completing the Setup of the Executive Process Object

Before the handle to the new process can be returned, a few final setup steps must be completed:

1. If systemwide auditing of processes is enabled (either as a result of local policy settings
or group policy settings from a domain controller), the process’s creation is written to
the Security event log.

Table 6-6 Initial Values of the Fields of the PEB

Field Initial Value

ImageBaseAddress Base address of section

NumberOfProcessors KeNumberProcessors kernel variable

NtGlobalFlag NtGlobalFlag kernel variable

CriticalSectionTimeout MmCriticalSectionTimeout kernel variable

HeapSegmentReserve MmHeapSegmentReserve kernel variable

HeapSegmentCommit MmHeapSegmentCommit kernel variable

HeapDeCommitTotalFreeThreshold MmHeapDeCommitTotalFreeThreshold kernel variable

HeapDeCommitFreeBlockThreshold MmHeapDeCommitFreeBlockThreshold kernel variable

NumberOfHeaps 0

MaximumNumberOfHeaps (Size of a page - size of a PEB) / 4

ProcessHeaps First byte after PEB

OSMajorVersion NtMajorVersion kernel variable

OSMinorVersion NtMinorVersion kernel variable

OSBuildNumber NtBuildNumber kernel variable & 0x3FFF

OSPlatformId 2

Table 6-7 Windows Replacements for Initial PEB Values

Field Name Value Taken from Image Header

OSMajorVersion OptionalHeader.Win32VersionValue & 0xFF

OSMinorVersion (OptionalHeader.Win32VersionValue >> 8) & 0xFF

OSBuildNumber (OptionalHeader.Win32VersionValue >> 16) & 0x3FFF

OSPlatformId (OptionalHeader.Win32VersionValue >> 30) ^ 0x2

308 Microsoft Windows Internals, Fourth Edition
2. If the parent process was contained in a job, the new process is added to the job. (Jobs
are described at the end of this chapter.)

3. If the image header characteristic’s IMAGE_FILE_UP_SYSTEM_ ONLY flag is set (indi-
cating that the image can run only on a uniprocessor system), a single CPU is chosen for
all the threads in this new process to run on. This choosing process is done by simply
cycling through the available processors—each time this type of image is run, the next
processor is used. In this way, these types of images are spread out across the processors
evenly.

4. If the image specifies an explicit processor affinity mask (for example, a field in the con-
figuration header), this value is copied to the PEB and later set as the default process
affinity mask.

5. CreateProcess inserts the new process block at the end of the Windows list of active pro-
cesses (PsActiveProcessHead).

6. The process’s creation time is set, the handle to the new process is returned to the caller
(CreateProcess in Kernel32.dll).

Stage 3: Creating the Initial Thread and Its Stack and Context

At this point, the Windows executive process object is completely set up. It still has no thread,
however, so it can’t do anything yet. Before the thread can be created, it needs a stack and a
context in which to run, so these are set up now. The stack size for the initial thread is taken
from the image—there’s no way to specify another size.

Now the initial thread can be created, which is done by calling NtCreateThread. The thread
parameter (which can’t be specified in CreateProcess but can be specified in CreateThread) is
the address of the PEB. This parameter will be used by the initialization code that runs in the
context of this new thread (as described in Stage 6). However, the thread won’t do anything
yet—it is created in a suspended state and isn’t resumed until the process is completely initial-
ized (as described in Stage 5). NtCreateThread calls PspCreateThread (a function also used to
create system threads) and performs the following steps:

1. The thread count in the process object is incremented.

2. An executive thread block (ETHREAD) is created and initialized.

3. A thread ID is generated for the new thread.

4. The TEB is set up in the user-mode address space of the process.

5. The user-mode thread start address is stored in the ETHREAD. For Windows threads, this
is the system-supplied thread startup function in Kernel32.dll (BaseProcessStart for the
first thread in a process and BaseThreadStart for additional threads). The user’s specified
Windows start address is stored in the ETHREAD block in a different location so that the
system-supplied thread startup function can call the user-specified startup function.

Chapter 6: Processes, Threads, and Jobs 309
6. KeInitThread is called to set up the KTHREAD block. The thread’s initial and current base
priorities are set to the process’s base priority, and its affinity and quantum are set to that
of the process. This function also sets the initial thread ideal processor. (See the section
“Ideal and Last Processor” for a description of how this is chosen.) KeInitThread next allo-
cates a kernel stack for the thread and initializes the machine-dependent hardware con-
text for the thread, including the context, trap, and exception frames. The thread’s context
is set up so that the thread will start in kernel mode in KiThreadStartup. Finally, KeInit-
Thread sets the thread’s state to Initialized and returns to PspCreateThread.

7. Any registered systemwide thread creation notification routines are called.

8. The thread’s access token is set to point to the process access token, and an access check
is made to determine whether the caller has the right to create the thread. This check
will always succeed if you’re creating a thread in the local process, but it might fail if
you’re using CreateRemoteThread to create a thread in another process and the process
creating the thread doesn’t have the debug privilege enabled.

9. Finally, the thread is readied for execution.

Stage 4: Notifying the Windows Subsystem about the New Process

If software restriction policies dictate, a restricted token is created for the new process. At this
point, all the necessary executive process and thread objects have been created. Kernel32.dll
next sends a message to the Windows subsystem so that it can set up for the new process and
thread. The message includes the following information:

■ Process and thread handles

■ Entries in the creation flags

■ ID of the process’s creator

■ Flag indicating whether the process belongs to a Windows application (so that Csrss
can determine whether or not to show the startup cursor)

The Windows subsystem performs the following steps when it receives this message:

1. CreateProcess duplicates a handle for the process and thread. In this step, the usage
count of the process and the thread is incremented from 1 (which was set at creation
time) to 2.

2. If a process priority class isn’t specified, CreateProcess sets it according to the algorithm
described earlier in this section.

3. The Csrss process block is allocated.

4. The new process’s exception port is set to be the general function port for the Windows
subsystem so that the Windows subsystem will receive a message when an exception
occurs in the process. (For further information on exception handling, see Chapter 3.)

310 Microsoft Windows Internals, Fourth Edition
5. If the process is being debugged (that is, if it is attached to a debugger process), the pro-
cess debug port is set to the Windows subsystem’s general function port. This setting
ensures that Windows will send debug events that occur in the new process (such as
thread creation and deletion, exceptions, and so on) as messages to the Windows sub-
system so that it can then dispatch the events to the process that is acting as the new
process’s debugger.

6. The Csrss thread block is allocated and initialized.

7. CreateProcess inserts the thread in the list of threads for the process.

8. The count of processes in this session is incremented.

9. The process shutdown level is set to 0x280 (the default process shutdown level—see Set-
ProcessShutdownParameters in the MSDN Library documentation for more information).

10. The new process block is inserted into the list of Windows subsystemwide processes.

11. The per-process data structure used by the kernel-mode part of the Windows subsystem
(W32PROCESS structure) is allocated and initialized.

12. The application start cursor is displayed. This cursor is the familiar arrow with an hour-
glass attached—the way that Windows says to the user, “I’m starting something, but you
can use the cursor in the meantime.” If the process doesn’t make a GUI call after 2 sec-
onds, the cursor reverts to the standard pointer. If the process does make a GUI call in
the allotted time, CreateProcess waits 5 seconds for the application to show a window.
After that time, CreateProcess will reset the cursor again.

Stage 5: Starting Execution of the Initial Thread

At this point, the process environment has been determined, resources for its threads to use
have been allocated, the process has a thread, and the Windows subsystem knows about the
new process. Unless the caller specified the CREATE_ SUSPENDED flag, the initial thread is
now resumed so that it can start running and perform the remainder of the process initializa-
tion work that occurs in the context of the new process (Stage 6).

Stage 6: Performing Process Initialization in the Context of the New
Process

The new thread begins life running the kernel-mode thread startup routine KiThreadStartup.
KiThreadStartup lowers the thread’s IRQL level from DPC/dispatch level to APC level and
then calls the system initial thread routine, PspUserThreadStartup. The user-specified thread
start address is passed as a parameter to this routine.

On Windows 2000, PspUserThreadStartup first enables working set expansion. If the process
being created is a debuggee, all threads in the process are suspended. (Threads might have been
created during Stage 3.) A create process message is then sent to the process’s debug port
(which is the Windows subsystem function port, because this is a Windows process) so that the

Chapter 6: Processes, Threads, and Jobs 311
subsystem can deliver the process startup debug event (CREATE_PROCESS_DEBUG_INFO) to
the appropriate debugger process. PspUserThreadStartup then waits for the Windows subsystem
to get the reply from the debugger (via the ContinueDebugEvent function). When the Windows
subsystem replies, all the threads are resumed.

On Windows XP and Windows Server 2003, PspUserThreadStartup checks whether applica-
tion prefetching is enabled on the system and, if so, calls the logical prefetcher to process the
prefetch instruction file (if it exists) and prefetch pages referenced during the first 10 seconds
the process started last time. (For details on the prefetcher, see Chapter 3.) Finally, PspUser-
ThreadStartup queues a user-mode APC to run the image loader initialization routine (LdrIni-
tializeThunk in Ntdll.dll). The APC will be delivered when the thread attempts to return to
user mode.

When PspUserThreadStartup returns to KiThreadStartup, it returns from kernel mode, the APC is
delivered, and LdrInitializeThunk is called. The LdrInitializeThunk routine initializes the loader,
heap manager, NLS tables, thread-local storage (TLS) array, and critical section structures. It
then loads any required DLLs and calls the DLL entry points with the DLL_PROCESS_
ATTACH function code. (See the sidebar “Side-by-Side Assemblies” for a description of a
mechanism introduced in Windows XP to address DLL versioning problems.)

Finally, the image begins execution in user mode when the loader initialization returns to the
user mode APC dispatcher, which then calls the thread’s start function that was pushed on
the user stack when the user APC was delivered.

Side-by-Side Assemblies
A problem that has long plagued Windows users is “DLL hell.” You enter DLL hell when
you install an application that replaces one or more core system DLLs, such as those for
common controls, the Microsoft Visual Basic runtime, or MFC. Application installation
programs make these replacements to ensure that the application runs properly, but at
the same time, updated DLLs might have incompatibilities with other already-installed
applications.

Windows 2000 partly addressed DLL hell by preventing the modification of core
system DLLs with the Windows File Protection feature, and by allowing applications to
use private copies of these core DLLs. To use a private copy of a DLL instead of the one
in the system directory, an application’s installation must include a file named
Application.exe.local (where Application is the name of the application’s executable),
which directs the loader to first look for DLLs in that directory. This type of DLL redirec-
tion avoids application/DLL incompatibility problems, but it does so at the expense of
sharing DLLs, which is one of the points of DLLs in the first place. In addition, any DLLs
that are loaded from the list of KnownDLLs (DLLs that are permanently mapped into
memory) or that are loaded by those DLLs cannot be redirected using this mechanism.

312 Microsoft Windows Internals, Fourth Edition
To further address application and DLL compatibility while allowing sharing, Windows
XP introduces shared assemblies. An assembly consists of a group of resources, includ-
ing DLLs, and an XML manifest file that describes the assembly and its contents. An
application references an assembly through the existence of its own XML manifest. The
manifest can be a file in the application’s installation directory that has the same name
as the application with “.manifest” appended (for example, application.exe.manifest), or
it can be linked into the application as a resource. The manifest describes the application
and its dependence on assemblies.

There are two types of assemblies: private and shared. The difference between the two is
that shared assemblies are digitally signed so that corruption or modification of their
contents can be detected. In addition, shared assemblies are stored under the \Win-
dows\Winsxs directory, whereas private assemblies are stored in an application’s instal-
lation directory. Thus, shared assemblies also have an associated catalog file (.cat) that
contains its digital signature information. Shared assemblies can be “side-by-side”
assemblies because multiple versions of a DLL can reside on a system simultaneously,
with applications dependent on a particular version of a DLL always using that particu-
lar version.

An assembly’s manifest file typically has a name that includes the name of the assembly,
version information, some text that represents a unique signature, and the extension
“.manifest”. The manifests are stored in \Windows\Winsxs\Manifests, and the rest of
the assembly’s resources are stored in subdirectories of \Windows\Winsxs that have
the same name as the corresponding manifest files, with the exception of the trailing
.manifest extension.

An example of a shared assembly is version 6 of the Windows common controls DLL,
comctl32.dll, which is new to Windows XP. Its manifest file is named \Windows\Win-
sxs\Manifest\x86_Microsoft.Windows.Common-
Controls_6595b64144ccf1df_6.0.0.0_x-ww_1382d70a.manifest. It has an associated
catalog file (which is the same name with the .cat extension) and a subdirectory of Win-
sxs that includes comctl32.dll.

Version 6 of Comctl32.dll includes integration with Windows XP themes, and because
applications not written with themes-support in mind might not appear correctly with
the new DLL, it’s available only to applications that explicitly reference the shared
assembly containing it—the version of Comctl32.dll installed in \Windows\System32 is
an instance of version 5.x, which is not theme aware. When an application loads, the
loader looks for the application’s manifest, and if one exists, loads the DLLs from the
assemblies specified. DLLs not included in assemblies referenced in the manifest are
loaded in the traditional way. Legacy applications, therefore, link against the version in
\Windows\System32, whereas theme-aware applications can specify the new version in
their manifest.

Chapter 6: Processes, Threads, and Jobs 313
You can see the effect of a manifest that directs the system to use the new common con-
trol library on Windows XP by running the User State Migration Wizard (\Win-
dows\System32\Usmt\Migwiz.exe) with and without its manifest file:

1. Run it, and notice the Windows XP themes on the buttons in the wizard.

2. Open the Migwiz.exe.manifest file in Notepad, and locate the inclusion of the ver-
sion 6 common control library.

3. Rename the Migwiz.exe.manifest to Migwiz.exe.manifest.bak.

4. Rerun the wizard, and notice the unthemed buttons.

5. Restore the manifest file to its original name.

A final advantage that shared assemblies have is that a publisher can issue a publisher
configuration, which can redirect all applications that use a particular assembly to use
an updated version. Publishers would do this if they were preserving backward compat-
ibility while addressing bugs. Ultimately, however, because of the flexibility inherent in
the assembly model, an application could decide to override the new setting and con-
tinue to use an older version.

Thread Internals
Now that we’ve dissected processes, let’s turn our attention to the structure of a thread.
Unless explicitly stated otherwise, you can assume that anything in this section applies to
both user-mode threads and kernel-mode system threads (which are described in Chapter 2).

Data Structures

At the operating-system level, a Windows thread is represented by an executive thread
(ETHREAD) block, which is illustrated in Figure 6-7. The ETHREAD block and the structures
it points to exist in the system address space, with the exception of the thread environment
block (TEB), which exists in the process address space. In addition, the Windows subsystem
process (Csrss) maintains a parallel structure for each thread created in a Windows process.
Also, for threads that have called a Windows subsystem USER or GDI function, the kernel-
mode portion of the Windows subsystem (Win32k.sys) maintains a per-thread data structure
(called the W32THREAD structure) that the ETHREAD block points to.

314 Microsoft Windows Internals, Fourth Edition
Figure 6-7 Structure of the executive thread block

Most of the fields illustrated in Figure 6-7 are self-explanatory. The first field is the kernel
thread (KTHREAD) block. Following that are the thread identification information, the pro-
cess identification information (including a pointer to the owning process so that its environ-
ment information can be accessed), security information in the form of a pointer to the access
token and impersonation information, and finally, fields relating to LPC messages and pend-
ing I/O requests. As you can see in Table 6-8, some of these key fields are covered in more
detail elsewhere in this book. For more details on the internal structure of an ETHREAD
block, you can use the kernel debugger dt command to display the format of the structure.

Let’s take a closer look at two of the key thread data structures referred to in the preceding
text: the KTHREAD block and the TEB. The KTHREAD block contains the information that

Table 6-8 Key Contents of the Executive Thread Block

Element Description Additional Reference

KTHREAD See Table 6-9.

Thread time Thread create and exit time
information.

Process identification Process ID and pointer to
EPROCESS block of the process
that the thread belongs to.

Start address Address of thread start routine.

Impersonation information Access token and impersonation
level (if the thread is imperson-
ating a client).

Chapter 8

LPC information Message ID that the thread is
waiting for and address of
message.

Local procedure calls
(Chapter 3)

I/O information List of pending I/O request
packets (IRPs).

I/O system (Chapter 9)

KTHREAD

Create and exit times

Process ID

Thread start address

Impersonation information

Timer information

Access token

EPROCESS

TEB

Pending I/O requests

LPC message information

Chapter 6: Processes, Threads, and Jobs 315
the Windows kernel needs to access to perform thread scheduling and synchronization on
behalf of running threads. Its layout is illustrated in Figure 6-8.

Figure 6-8 Structure of the kernel thread block

The key fields of the KTHREAD block are described briefly in Table 6-9.

Table 6-9 Key Contents of the KTHREAD Block

Element Description Additional Reference

Dispatcher header Because the thread is an object that
can be waited on, it starts with a stan-
dard kernel dispatcher object header.

Kernel Dispatcher objects
(Chapter 3)

Execution time Total user and kernel CPU time.

Pointer to kernel stack
information

Base and upper address of the kernel
stack.

Memory management
(Chapter 7)

Pointer to system service
table

Each thread starts out with this field
service table pointing to the main
system service table
(KeServiceDescriptorTable). When a
thread first calls a Windows GUI ser-
vice, its system service table is changed
to one that includes the GDI and USER
services in Win32k.sys.

System Service Dispatch-
ing (Chapter 3)

Scheduling information Base and current priority, quantum, af-
finity mask, ideal processor, scheduling
state, freeze count, and suspend count.

Thread Scheduling

Wait blocks The thread block contains four built-in
wait blocks so that wait blocks don’t
have to be allocated and initialized
each time the thread waits for some-
thing. (One wait block is dedicated to
timers.)

Synchronization
(Chapter 3)

Dispatcher header

Total user time

Total kernel time

Thread-scheduling information

Trap frame

Synchronization information

Timer block and wait block

List of objects thread is waiting on

Thread-local storage array

Kernel stack information

System service table

List of pending APCs

TEB

316 Microsoft Windows Internals, Fourth Edition
EXPERIMENT: Displaying ETHREAD and KTHREAD Structures
The ETHREAD and KTHREAD structures can be displayed with the dt command in the
kernel debugger. The following output shows the format of an ETHREAD:

lkd> dt nt!_ethread

nt!_ETHREAD

+0x000 Tcb : _KTHREAD

+0x1c0 CreateTime : _LARGE_INTEGER

+0x1c0 NestedFaultCount : Pos 0, 2 Bits

+0x1c0 ApcNeeded : Pos 2, 1 Bit

+0x1c8 ExitTime : _LARGE_INTEGER

+0x1c8 LpcReplyChain : _LIST_ENTRY

+0x1c8 KeyedWaitChain : _LIST_ENTRY

+0x1d0 ExitStatus : Int4B

+0x1d0 OfsChain : Ptr32 Void

+0x1d4 PostBlockList : _LIST_ENTRY

+0x1dc TerminationPort : Ptr32 _TERMINATION_PORT

+0x1dc ReaperLink : Ptr32 _ETHREAD

+0x1dc KeyedWaitValue : Ptr32 Void

+0x1e0 ActiveTimerListLock : Uint4B

+0x1e4 ActiveTimerListHead : _LIST_ENTRY

+0x1ec Cid : _CLIENT_ID

+0x1f4 LpcReplySemaphore : _KSEMAPHORE

+0x1f4 KeyedWaitSemaphore : _KSEMAPHORE

+0x208 LpcReplyMessage : Ptr32 Void

+0x208 LpcWaitingOnPort : Ptr32 Void

+0x20c ImpersonationInfo : Ptr32 _PS_IMPERSONATION_INFORMATION

+0x210 IrpList : _LIST_ENTRY

+0x218 TopLevelIrp : Uint4B

+0x21c DeviceToVerify : Ptr32 _DEVICE_OBJECT

+0x220 ThreadsProcess : Ptr32 _EPROCESS

Wait information List of objects the thread is waiting for,
wait reason, and time at which the
thread entered the wait state.

Synchronization
(Chapter 3)

Mutant list List of mutant objects the thread owns. Synchronization
(Chapter 3)

APC queues List of pending user-mode and kernel-
mode APCs, and alertable flag.

Aynchronous Procedure
Call (APC) Interrrupts
(Chapter 3)

Timer block Built-in timer block (also a corre-
sponding wait block).

Queue list Pointer to queue object that the
thread is associated with.

Synchronization
(Chapter 3)

Pointer to TEB Thread ID, TLS information, PEB point-
er, and GDI and OpenGL information.

Table 6-9 Key Contents of the KTHREAD Block

Element Description Additional Reference

Chapter 6: Processes, Threads, and Jobs 317
+0x224 StartAddress : Ptr32 Void

+0x228 Win32StartAddress : Ptr32 Void

+0x228 LpcReceivedMessageId : Uint4B

+0x22c ThreadListEntry : _LIST_ENTRY

+0x234 RundownProtect : _EX_RUNDOWN_REF

+0x238 ThreadLock : _EX_PUSH_LOCK

+0x23c LpcReplyMessageId : Uint4B

+0x240 ReadClusterSize : Uint4B

+0x244 GrantedAccess : Uint4B

+0x248 CrossThreadFlags : Uint4B

+0x248 Terminated : Pos 0, 1 Bit

+0x248 DeadThread : Pos 1, 1 Bit

+0x248 HideFromDebugger : Pos 2, 1 Bit

+0x248 ActiveImpersonationInfo : Pos 3, 1 Bit

+0x248 SystemThread : Pos 4, 1 Bit

+0x248 HardErrorsAreDisabled : Pos 5, 1 Bit

+0x248 BreakOnTermination : Pos 6, 1 Bit

+0x248 SkipCreationMsg : Pos 7, 1 Bit

+0x248 SkipTerminationMsg : Pos 8, 1 Bit

+0x24c SameThreadPassiveFlags : Uint4B

+0x24c ActiveExWorker : Pos 0, 1 Bit

+0x24c ExWorkerCanWaitUser : Pos 1, 1 Bit

+0x24c MemoryMaker : Pos 2, 1 Bit

+0x250 SameThreadApcFlags : Uint4B

+0x250 LpcReceivedMsgIdValid : Pos 0, 1 Bit

+0x250 LpcExitThreadCalled : Pos 1, 1 Bit

+0x250 AddressSpaceOwner : Pos 2, 1 Bit

+0x254 ForwardClusterOnly : UChar

+0x255 DisablePageFaultClustering : UChar

The KTHREAD can be displayed with a similar command:

lkd> dt nt!_kthread

nt!_KTHREAD

+0x000 Header : _DISPATCHER_HEADER

+0x010 MutantListHead : _LIST_ENTRY

+0x018 InitialStack : Ptr32 Void

+0x01c StackLimit : Ptr32 Void

+0x020 Teb : Ptr32 Void

+0x024 TlsArray : Ptr32 Void

+0x028 KernelStack : Ptr32 Void

+0x02c DebugActive : UChar

+0x02d State : UChar

+0x02e Alerted : [2] UChar

+0x030 Iopl : UChar

+0x031 NpxState : UChar

+0x032 Saturation : Char

+0x033 Priority : Char

+0x034 ApcState : _KAPC_STATE

+0x04c ContextSwitches : Uint4B

+0x050 IdleSwapBlock : UChar

+0x051 Spare0 : [3] UChar

+0x054 WaitStatus : Int4B

318 Microsoft Windows Internals, Fourth Edition
EXPERIMENT: Using the Kernel Debugger !thread Command
The kernel debugger !thread command dumps a subset of the information in the thread
data structures. Some key elements of the information the kernel debugger displays
can’t be displayed by any utility: internal structure addresses; priority details; stack
information; the pending I/O request list; and, for threads in a wait state, the list of
objects the thread is waiting for.

To display thread information, use either the !process command (which displays all the
thread blocks after displaying the process block) or the !thread command to dump a
specific thread. The output of the thread information, along with some annotations of
key fields, is shown here:

EXPERIMENT: Viewing Thread Information
The following output is the detailed display of a process produced by using the Tlist util-
ity in the Windows Debugging Tools. Notice that the thread list shows the
“Win32StartAddress.” This is the address passed to the CreateThread function by the

THREAD 83160f0 Cid: 9f.3d Teb: 7ffdc000 Win32Thread: e153d2c8
WAIT: (WrUserRequest) UserMode Non-Alertable

808e9d60 SynchronizationEvent

Not imersonating

Owning Process 81b44880

Wait Time (seconds)

Context Switch Count

UserTime

KernelTime

Start Address kernal32!BaseProcessStart (0x77e8f268)

Win32 Start Address 0x020d9d98

Stack Init f7818000 Current f7817bb0 Base f7818000 Limit f7812000 Call 0

Priority 14 BasePriority 9 PriorityDecrement 6 DecrementCount 13

953945

2697 LargeStack

0:00:00.0289

0:00:04.0644

ChildEBP RetAddr Args to Child

F7817bb0 8008f430 00000001 00000000 00000000 ntoskrnl!KiSwapThreadExit

F7817c50 de0119ec 00000001 00000000 00000000 ntoskrnl!KeWaitForSingleObject+0x2a0

F7817cc0 de0123f4 00000001 00000000 00000000 win32k!xxxSleepThread+0x23c

F7817d10 de01f2f0 00000001 00000000 00000000 win32k!xxxInternalGetMessage+0x504

F7817d80 800bab58 00000001 00000000 00000000 win32k!NtUserGetMessage+0x58

F7817df0 77d887d0 00000001 00000000 00000000 ntoskrnl!KiSystemServiceEndAddress+0x4

0012fef0 00000000 00000001 00000000 00000000 user32!GetMessageW+0x30

Address of
ETHREAD Thread ID

Address of thread
environment block

Priority
information

Address of user thread function

Actual thread
start address

Thread state

Objects being waited on

Address of EPROCESS for owning process

Stack dump

Kernal stack not resident.

Chapter 6: Processes, Threads, and Jobs 319
application. All the other utilities, except Process Explorer, that show the thread start
address show the actual start address (a function in Kernel32.dll), not the application-
specified start address.

C:\> tlist winword

155 WINWORD.EXE Document1 - Microsoft Word

CWD: C:\book\

CmdLine: "C:\Program Files\Microsoft Office\Office\WINWORD.EXE"

VirtualSize: 64448 KB PeakVirtualSize: 106748 KB

WorkingSetSize: 1104 KB PeakWorkingSetSize: 6776 KB

NumberOfThreads: 2

156 Win32StartAddr:0x5032cfdb LastErr:0x00000000 State:Waiting

167 Win32StartAddr:0x00022982 LastErr:0x00000000 State:Waiting

0x50000000 WINWORD.EXE

5.0.2163.1 shp 0x77f60000 ntdll.dll

5.0.2191.1 shp 0x77f00000 KERNEL32.dll

§ list of DLLs loaded in process

The TEB, illustrated in Figure 6-9, is the only data structure explained in this section that
exists in the process address space (as opposed to the system space).

The TEB stores context information for the image loader and various Windows DLLs. Because
these components run in user mode, they need a data structure writable from user mode.
That’s why this structure exists in the process address space instead of in the system space,
where it would be writable only from kernel mode. You can find the address of the TEB with
the kernel debugger !thread command.

Figure 6-9 Fields of the thread environment block

Exception list

Stack base

Stack limit

Thread ID

Active RPC handle

LastError value

Current locale

User32 client information

Subsystem thread information block (TIB)

Fiber information

Winsock data

Count of owned critical sections

OpenGL information

TLS array

GDI32 information

PEB

320 Microsoft Windows Internals, Fourth Edition
EXPERIMENT: Examining the TEB
You can dump the TEB structure with the !teb command in the kernel debugger. The
output looks like this:

kd> !teb

TEB at 7ffde000

ExceptionList: 0006b540

StackBase: 00070000

StackLimit: 00065000

SubSystemTib: 00000000

FiberData: 00001e00

ArbitraryUserPointer: 00000000

Self: 7ffde000

EnvironmentPointer: 00000000

ClientId: 00000254 . 000007ac

RpcHandle: 00000000

Tls Storage: 00000000

PEB Address: 7ffdf000

LastErrorValue: 2

LastStatusValue: c0000034

Count Owned Locks: 0 HardErrorMode: 0

Kernel Variables

As with processes, a number of Windows kernel variables control how threads run. Table 6-10
shows the kernel-mode kernel variables that relate to threads.

Table 6-10 Thread-Related Kernel Variables

Variable Type Description

PspCreateThreadNotifyRoutine Array of pointers Array of pointers to routines to
be called on during thread cre-
ation and deletion (maximum of
eight).

PspCreateThreadNotifyRoutineCount DWORD Count of registered thread-noti-
fication routines.

PspCreateProcessNotifyRoutine Array of pointers Array of pointers to routines to
be called on during process cre-
ation and deletion (maximum of
eight).

Chapter 6: Processes, Threads, and Jobs 321
Performance Counters

Most of the key information in the thread data structures is exported as performance
counters, which are listed in Table 6-11. You can extract much information about the internals
of a thread just by using the Performance tool in Windows.

Table 6-11 Thread-Related Performance Counters

Object: Counter Function

Process: Priority Base Returns the current base priority of the process. This is the
starting priority for threads created within this process.

Thread: % Privileged Time Describes the percentage of time that the thread has run in
kernel mode during a specified interval.

Thread: % Processor Time Describes the percentage of CPU time that the thread has
used during a specified interval. This count is the sum of %
Privileged Time and % User Time.

Thread: % User Time Describes the percentage of time that the thread has run in
user mode during a specified interval.

Thread: Context Switches/Sec Returns the number of context switches per second that the
system is executing.

Thread: Elapsed Time Returns the amount of CPU time (in seconds) that the thread
has consumed.

Thread: ID Process Returns the process ID of the thread’s process. This ID is valid
only during the process’s lifetime because process IDs are re-
used.

Thread: ID Thread Returns the thread’s thread ID. This ID is valid only during the
thread’s lifetime because thread IDs are reused.

Thread: Priority Base Returns the thread’s current base priority. This number might
be different from the thread’s starting base priority.

Thread: Priority Current Returns the thread’s current dynamic priority.

Thread: Start Address Returns the thread’s starting virtual address (Note: This ad-
dress will be the same for most threads.)

Thread: Thread State Returns a value from 0 through 7 relating to the current state
of the thread.

Thread: Thread Wait Reason Returns a value from 0 through 19 relating to the reason why
the thread is in a wait state.

322 Microsoft Windows Internals, Fourth Edition
Relevant Functions

Table 6-12 shows the Windows functions for creating and manipulating threads. This table
doesn’t include functions that have to do with thread scheduling and priorities—those are
included in the section “Thread Scheduling” later in this chapter.

Birth of a Thread

A thread’s life cycle starts when a program creates a new thread. The request filters down to
the Windows executive, where the process manager allocates space for a thread object and
calls the kernel to initialize the kernel thread block. The steps in the following list are taken
inside the Windows CreateThread function in Kernel32.dll to create a Windows thread.

1. CreateThread creates a user-mode stack for the thread in the process’s address space.

2. CreateThread initializes the thread’s hardware context (CPU architecture–specific). (For
further information on the thread context block, see the Windows API reference docu-
mentation on the CONTEXT structure.)

3. NtCreateThread is called to create the executive thread object in the suspended state. For
a description of the steps performed by this function, see the description of Stage 3 and
Stage 6 in the section “Flow of CreateProcess.”

4. CreateThread notifies the Windows subsystem about the new thread, and the subsystem
does some setup work for the new thread.

5. The thread handle and the thread ID (generated during step 3) are returned to the
caller.

Table 6-12 Windows Thread Functions

Function Description

CreateThread Creates a new thread

CreateRemoteThread Creates a thread in another process

OpenThread Opens an existing thread

ExitThread Ends execution of a thread normally

TerminateThread Terminates a thread

GetExitCodeThread Gets another thread’s exit code

GetThreadTimes Returns timing information for a thread

GetCurrentProcess Returns a pseudo handle for the current thread

GetCurrentProcessId Returns the thread ID of the current thread

GetThreadId Returns the thread ID of the specified thread

Get/SetThreadContext Returns or changes a thread’s CPU registers

GetThreadSelectorEntry Returns another thread’s descriptor table entry (applies only to x86
systems)

Chapter 6: Processes, Threads, and Jobs 323
6. Unless the caller created the thread with the CREATE_SUSPENDED flag set, the thread
is now resumed so that it can be scheduled for execution. When the thread starts run-
ning, it executes the steps described in the earlier section “Stage 6: Performing Process
Initialization in the Context of the New Process” before calling the actual user’s specified
start address.

Examining Thread Activity
Besides the Performance tool, several other tools expose various elements of the state of Win-
dows threads. (The tools that show thread-scheduling information are listed in the section
“Thread Scheduling.”) These tools are itemized in Figure 6-10.

Note To display thread details with Tlist, you must type tlist xxx, where xxx is a process
image name or window title. (Wildcards are supported.)

Figure 6-10 Thread-related tools and their functions

Process Explorer provides easy access to thread activity within a process. This is especially impor-
tant if you are trying to determine why a process is running that is hosting multiple services (such
as Svchost.exe, Dllhost.exe, Inetinfo.exe, or the System process) or why a process is hung.

Thread ID

Actual start address

Win32 start address

Current address

Number of context switches

Total user time

Total privileged time

Elapsed time

Thread state

Reason for wait state

Last error

Percentage of CPU time

Percentage of user time

Percentage of privileged time

Address of TEB

Address of ETHREAD

Objects waiting on

Object Perfmon Pviewer Pstat Qslice Tlist
KD

!thread
Process
Explorer Pslist

324 Microsoft Windows Internals, Fourth Edition
To view the threads in a process, select a process and open the process properties (double-
click on the process or click on the Process, Properties menu item). Then click on the Threads
tab. This tab shows a list of the threads in the process. For each thread it shows the percentage
of CPU consumed (based on the refresh interval configured), the number of context switches
to the thread, and the thread start address. You can sort by any of these three columns.

New threads that are created are highlighted in green, and threads that exit are highlighted in
red. (The highlight duration can be configured with the Options, Configure Highlighting
menu item.) This might be helpful to discover unnecessary thread creation occurring in a pro-
cess. (In general, threads should be created at process startup, not every time a request is pro-
cessed inside a process.)

As you select each thread in the list, Process Explorer displays the thread ID, start time, state,
CPU time counters, number of context switches, and the base and current priority. There is a
Kill button, which will terminate an individual thread, but this should be used with extreme
care.

The context switch delta represents the number of times that thread began running in
between the refreshes configured for Process Explorer. It provides a different way to deter-
mine thread activity than using the percentage of CPU consumed. In some ways it is better
because many threads run for such a short amount of time that they are seldom (if ever) the
currently running thread when the interval clock timer interrupt occurs, and therefore, are
not charged for their CPU time. For example, if you add the context switch delta column to
the process display and sort by that column, you will see processes that have threads running
but that also have a CPU time percentage of zero (or very small).

The thread start address is displayed in the form “module!function”, where module is the name
of the .exe or .dll. The function name relies on access to symbol files for the module. (See
“Experiment: Viewing Process Details with Process Explorer” in Chapter 1.) If you are unsure
what the module is, press the Module button. This opens an Explorer file properties window
for the module containing the thread’s start address (for example, the .exe or .dll).

Note For threads created by the Windows CreateThread function, Process Explorer displays
the function passed to CreateThread, not the actual thread start function. That is because all
Windows threads start at a common process or thread startup wrapper function (BasePro-
cessStart or BaseThreadStart in Kernel32.dll). If Process Explorer showed the actual start
address, most threads in processes would appear to have started at the same address, which
would not be helpful in trying to understand what code the thread was executing.

However, the thread start address displayed might not be enough information to pinpoint what
the thread is doing and which component within the process is responsible for the CPU con-
sumed by the thread. This is especially true if the thread start address is a generic startup
function (for example, if the function name does not indicate what the thread is actually doing).
In this case, examining the thread stack might answer the question. To view the stack for a

Chapter 6: Processes, Threads, and Jobs 325
thread, double-click on the thread of interest (or select it and click the Stack button). Process
Explorer displays the thread’s stack (both user and kernel, if the thread was in kernel mode).

Note While the user-mode debuggers (Windbg, Ntsd, and Cdb) permit you to attach to a
process and display the user stack for a thread, Process Explorer shows both the user and ker-
nel stack in one easy click of a button. You can also examine user and kernel thread stacks using
Livekd from www.sysinternals.com. However, it is more difficult to use. Note that running
Windbg in local kernel debugging mode, which is supported only on Windows XP or Windows
Server 2003, does not show thread stacks.

Viewing the thread stack can also help you determine why a process is hung. As an example,
on one system, Microsoft PowerPoint was hanging for one minute on startup. To determine
why it was hung, after starting PowerPoint, Process Explorer was used to examine the thread
stack of the one thread in the process. The result is shown in Figure 6-11.

Figure 6-11 Hung Thread Stack in PowerPoint

This thread stack shows that PowerPoint (line 10) called a function in Mso.dll (the central
Microsoft Office Dll), which called the OpenPrinterW function in Winspool.drv (a Dll used to
connect to printers). Winspool.drv then dispatched to a function OpenPrinterRPC, which then
called a function in the RPC runtime Dll, indicating it was sending the request to a remote
printer. So, without having to understand the internals of PowerPoint, the module and func-
tion names displayed on the thread stack indicate that the thread was waiting to connect to a
network printer. On this particular system, there was a network printer that was not respond-
ing, which explained the delay starting PowerPoint. (Microsoft Office applications connect to
all configured printers at process startup.) The connection to that printer was deleted from
the user’s system, and the problem went away.

Thread Scheduling
This section describes the Windows scheduling policies and algorithms. The first subsection
provides a condensed description of how scheduling works on Windows and a definition of
key terms. Then Windows priority levels are described from both the Windows API and the
Windows kernel points of view. After a review of the relevant Windows functions and

326 Microsoft Windows Internals, Fourth Edition
_Windows utilities and tools that relate to scheduling, the detailed data structures and algo-
rithms that make up the Windows scheduling system are presented, with uniprocessor sys-
tems examined first and then multiprocessor systems.

Overview of Windows Scheduling

Windows implements a priority-driven, preemptive scheduling system—the highest-priority
runnable (ready) thread always runs, with the caveat that the thread chosen to run might be
limited by the processors on which the thread is allowed to run, a phenomenon called proces-
sor affinity. By default, threads can run on any available processor, but you can alter processor
affinity by using one of the Windows scheduling functions listed in Table 6-13 (shown later in
the chapter) or by setting an affinity mask in the image header.

EXPERIMENT: Viewing Ready Threads
You can view the list of ready threads with the kernel debugger !ready command. This
command displays the thread or list of threads that are ready to run at each priority
level. In the following example, two threads are ready to run at priority 10 and six at pri-
ority 8. Because this output was generated using LiveKd on a uniprocessor system, the
current thread will always be the kernel debugger (Kd or WinDbg).

kd> !ready 1

Ready Threads at priority 10

THREAD 810de030 Cid 490.4a8 Teb: 7ffd9000 Win32Thread: e297e008 READY

THREAD 81110030 Cid 490.48c Teb: 7ffde000 Win32Thread: e29425a8 READY

Ready Threads at priority 8

THREAD 811fe790 Cid 23c.274 Teb: 7ffdb000 Win32Thread: e258cda8 READY

THREAD 810bec70 Cid 23c.50c Teb: 7ffd9000 Win32Thread: e2ccf748 READY

THREAD 8003a950 Cid 23c.550 Teb: 7ffda000 Win32Thread: e29a7ae8 READY

THREAD 85ac2db0 Cid 23c.5e4 Teb: 7ffd8000 Win32Thread: e297a9e8 READY

THREAD 827318d0 Cid 514.560 Teb: 7ffd9000 Win32Thread: 00000000 READY

THREAD 8117adb0 Cid 2d4.338 Teb: 7ffaf000 Win32Thread: 00000000 READY

When a thread is selected to run, it runs for an amount of time called a quantum. A quantum
is the length of time a thread is allowed to run before another thread at the same priority level
(or higher, which can occur on a multiprocessor system) is given a turn to run. Quantum val-
ues can vary from system to system and process to process for any of three reasons: system
configuration settings (long or short quantums), foreground/background status of the pro-
cess, or use of the job object to alter the quantum. (Quantums are described in more detail in
the “Quantum” section later in the chapter.) A thread might not get to complete its quantum,
however. Because Windows implements a preemptive scheduler, if another thread with a
higher priority becomes ready to run, the currently running thread might be preempted
before finishing its time slice. In fact, a thread can be selected to run next and be preempted
before even beginning its quantum!

Chapter 6: Processes, Threads, and Jobs 327
The Windows scheduling code is implemented in the kernel. There’s no single “scheduler”
module or routine, however—the code is spread throughout the kernel in which scheduling-
related events occur. The routines that perform these duties are collectively called the kernel’s
dispatcher. The following events might require thread dispatching:

■ A thread becomes ready to execute—for example, a thread has been newly created or has
just been released from the wait state.

■ A thread leaves the running state because its time quantum ends, it terminates, it yields
execution, or it enters a wait state.

■ A thread’s priority changes, either because of a system service call or because Windows
itself changes the priority value.

■ A thread’s processor affinity changes so that it will no longer run on the processor on
which it was running.

At each of these junctions, Windows must determine which thread should run next. When
Windows selects a new thread to run, it performs a context switch to it. A context switch is the
procedure of saving the volatile machine state associated with a running thread, loading
another thread’s volatile state, and starting the new thread’s execution.

As already noted, Windows schedules at the thread granularity. This approach makes sense
when you consider that processes don’t run but only provide resources and a context in
which their threads run. Because scheduling decisions are made strictly on a thread basis, no
consideration is given to what process the thread belongs to. For example, if process A has 10
runnable threads, process B has 2 runnable threads, and all 12 threads are at the same prior-
ity, each thread would theoretically receive one-twelfth of the CPU time—Windows wouldn’t
give 50 percent of the CPU to process A and 50 percent to process B.

Priority Levels

To understand the thread-scheduling algorithms, you must first understand the priority levels
that Windows uses. As illustrated in Figure 6-12, internally, Windows uses 32 priority levels,
ranging from 0 through 31. These values divide up as follows:

■ Sixteen real-time levels (16 through 31)

■ Fifteen variable levels (1 through 15)

■ One system level (0), reserved for the zero page thread

328 Microsoft Windows Internals, Fourth Edition
Figure 6-12 Thread priority levels

Thread priority levels are assigned from two different perspectives: those of the Windows API
and those of the Windows kernel. The Windows API first organizes processes by the priority
class to which they are assigned at creation (Real-time, High, Above Normal, Normal, Below
Normal, and Idle) and then by the relative priority of the individual threads within those pro-
cesses (Time-critical, Highest, Above-normal, Normal, Below-normal, Lowest, and Idle).

In the Windows API, each thread has a base priority that is a function of its process priority
class and its relative thread priority. The mapping from Windows priority to internal Win-
dows numeric priority is shown in Figure 6-13.

Whereas a process has only a single base priority value, each thread has two priority values:
current and base. Scheduling decisions are made based on the current priority. As explained
in the following section on priority boosting, the system under certain circumstances
increases the priority of threads in the dynamic range (1 through 15) for brief periods. Win-
dows never adjusts the priority of threads in the real-time range (16 through 31), so they
always have the same base and current priority.

A thread’s initial base priority is inherited from the process base priority. A process, by default,
inherits its base priority from the process that created it. This behavior can be overridden on
the CreateProcess function or by using the command-line START command. A process priority
can also be changed after being created by using the SetPriorityClass function or various tools
that expose that function such as Task Manager and Process Explorer (by right-clicking on the
process and choosing a new priority class). For example, you can lower the priority of a CPU-
intensive process so that it does not interfere with normal system activities. Changing the pri-
ority of a process changes the thread priorities up or down, but their relative settings remain
the same. It usually doesn’t make sense, however, to change individual thread priorities within
a process, because unless you wrote the program or have the source code, you don’t really
know what the individual threads are doing, and changing their relative importance might
cause the program not to behave in the intended fashion.

16 real-time levels

15 variable levels

1 system level
(Zero page thread, one per system)

31

16
15

1
0

Chapter 6: Processes, Threads, and Jobs 329
Figure 6-13 Mapping of Windows kernel priorities to the Windows API

Normally, the process base priority (and therefore the starting thread base priority) will
default to the value at the middle of each process priority range (24, 13, 10, 8, 6, or 4). How-
ever, some Windows system processes (such as the Session Manager, service controller, and
local security authentication server) have a base process priority slightly higher than the
default for the Normal class (8). This higher default value ensures that the threads in these
processes will all start at a higher priority than the default value of 8. These system processes
use an internal system call (NtSetInformationProcess) to set its process base priority to a
numeric value other than the normal default starting base priority.

Real-time
time critical

Real-time
Levels 16–31

Real-time idle
Dynamic time

critical

Dynamic
Levels 1–15

Dynamic idle

Used for zero page thread—not available to Win32 applications

Idle

Below
Normal

Normal

Above
Normal

High

Real-time

31

24

16

15

13

10

8

6

4

0

1

330 Microsoft Windows Internals, Fourth Edition
Windows Scheduling APIs

The Windows API functions that relate to thread scheduling are listed in Table 6-13. (For
more information, see the Windows API reference documentation.)

Table 6-13 Scheduling-Related APIs and Their Functions

API Function

Suspend/ResumeThread Suspends or resumes a paused thread from execution.

Get/SetPriorityClass Returns or sets a process’s priority class (base priority).

Get/SetThreadPriority Returns or sets a thread’s priority (relative to its process base
priority).

Get/SetProcessAffinityMask Returns or sets a process’s affinity mask.

SetThreadAffinityMask Sets a thread’s affinity mask (must be a subset of the pro-
cess’s affinity mask) for a particular set of processors, restrict-
ing it to running on those processors.

SetInformationJobObject Sets attributes for a job; some of the attributes affect sched-
uling, such as affinity and priority. (See the “Job Objects” sec-
tion later in the chapter for a description of the job object.)

GetLogicalProcessorInformation Returns details about processor hardware configuration (for
hyperthreaded and NUMA systems).

Get/SetThreadPriorityBoost Returns or sets the ability for Windows to boost the priority
of a thread temporarily. (This ability applies only to threads
in the dynamic range.)

SetThreadIdealProcessor Establishes a preferred processor for a particular thread, but
doesn’t restrict the thread to that processor.

Get/SetProcessPriorityBoost Returns or sets the default priority boost control state of the
current process. (This function is used to set the thread pri-
ority boost control state when a thread is created.)

SwitchToThread Yields execution to another thread (at priority 1 or higher)
that is ready to run on the current processor.

Sleep Puts the current thread into a wait state for a specified time
interval (figured in milliseconds [msec]). A zero value relin-
quishes the rest of the thread’s quantum.

SleepEx Causes the current thread to go into a wait state until either
an I/O completion callback is completed, an APC is queued
to the thread, or the specified time interval ends.

Chapter 6: Processes, Threads, and Jobs 331
Relevant Tools

The following table lists the tools related to thread scheduling. You can change (and view) the
base process priority with a number of different tools, such as Task Manager, Process
Explorer, Pview, or Pviewer. Note that you can kill individual threads in a process with Process
Explorer. This should be done, of course, with extreme care.

You can view individual thread priorities with the Performance tool, Process Explorer, Pslist,
Pview, Pviewer, and Pstat. While it might be useful to increase or lower the priority of a pro-
cess, it typically does not make sense to adjust individual thread priorities within a process
because only a person who thoroughly understands the program would understand the rela-
tive importance of the threads within the process.

The only way to specify a starting priority class for a process is with the start command in the
Windows command prompt. If you want to have a program start every time with a specific pri-
ority, you can define a shortcut to use the start command by beginning the command with
cmd /c. This runs the command prompt, executes the command on the command line, and
terminates the command prompt. For example, to run Notepad in the low-process priority,
the shortcut would be cmd /c start /low notepad.exe.

EXPERIMENT: Examining and Specifying Process and Thread
Priorities
Try the following experiment:

1. From the command prompt, type start /realtime notepad. Notepad should open.

2. Run either Process Explorer or the Process Viewer utility in the Support Tools
(Pviewer.exe), and select Notepad.exe from the list of processes, as shown here.
Notice that the dynamic priority of the thread in Notepad is 24. This matches the
real-time value shown in Figure 6-13.

Process priority class

Process base priority

Thread base priority

Thread current priority

Object Taskman Perfmon Pviewer Pview Pstat
KD

!thread
Process
Explorer

332 Microsoft Windows Internals, Fourth Edition
3. Task Manager can show you similar information. Press Ctrl+Shift+Esc to start Task
Manager, and go to the Processes tab. Right-click on the Notepad.exe process, and
select the Set Priority option. You can see that Notepad’s process priority class is
Realtime, as shown in the following dialog box.

Chapter 6: Processes, Threads, and Jobs 333
Windows System Resource Manager
Windows Server 2003, Enterprise Edition and Windows Server 2003, Datacenter Edi-
tion include an optionally installable component called Windows System Resource
Manager (WSRM). It permits the administrator to configure policies that specify CPU
utilization, affinity settings, and memory limits (both physical and virtual) for processes.
In addition, WSRM can generate resource utilization reports that can be used for
accounting and verification of service-level agreements with users.

Policies can be applied for specific applications (by matching the name of the image
with or without specific command-line arguments), users, or groups. The policies can
be scheduled to take effect at certain periods or can be enabled all the time.

After you have set a resource-allocation policy to manage specific processes, the WSRM
service monitors CPU consumption of managed processes and adjusts process base pri-
orities when those processes do not meet their target CPU allocations.

The physical memory limitation uses the function SetProcessWorkingSetSizeEx to set a
hard-working set maximum. The virtual memory limit is implemented by the service
checking the private virtual memory consumed by the processes. (See Chapter 7 for an
explanation of these memory limits.) If this limit is exceeded, WSRM can be configured
to either kill the processes or write an entry to the event log. This behavior could be
used to detect a process with a memory leak before it consumes all the available com-
mitted virtual memory on the system. Note that WSRM memory limits do not apply to
Address Windowing Extensions (AWE) memory, large page memory, or kernel memory
(nonpaged or paged pool).

Real-Time Priorities

You can raise or lower thread priorities within the dynamic range in any application; however,
you must have the increase scheduling priority privilege to enter the real-time range. Be aware
that many important Windows kernel-mode system threads run in the real-time priority
range, so if threads spend excessive time running in this range, they might block critical sys-
tem functions (such as in the memory manager, cache manager, or other device drivers).

Note As illustrated in the following figure showing the x86 Interrupt Request Levels (IRQLs),
although Windows has a set of priorities called real-time, they are not real-time in the common
definition of the term. This is because Windows doesn’t provide true real-time operating sys-
tem facilities, such as guaranteed interrupt latency or a way for threads to obtain a guaranteed
execution time. For more information, see the sidebar “Windows and Real-Time Processing” in
Chapter 3 as well as the MSDN Library article “Real-Time Systems and Microsoft Windows NT.”

334 Microsoft Windows Internals, Fourth Edition
Interrupt Levels vs. Priority Levels
As illustrated in the following figure, threads normally run at IRQL 0 or 1. (For a
description of how Windows uses interrupt levels, see Chapter 3.) User-mode threads
always run at IRQL 0. Because of this, no user-mode thread, regardless of its priority,
blocks hardware interrupts (although high-priority real-time threads can block the exe-
cution of important system threads). Only kernel-mode APCs execute at IRQL 1
because they interrupt the execution of a thread. (For more information on APCs, see
Chapter 3.) Threads running in kernel mode can raise IRQL to higher levels, though—
for example, while executing a system call that involves thread dispatching.

Thread States

Before you can comprehend the thread-scheduling algorithms, you need to understand the
various execution states that a thread can be in. Figure 6-14 illustrates the state transitions for
threads on Windows 2000 and Windows XP. (The numeric values shown represent the value
of the thread state performance counter.) More details on what happens at each transition are
included later in this section.

31

30

29

28

27

26

3

1

2

0
Thread priorities 0–31

Hardware interrupts

Software interrupts

IRQLs

Device 1

DPC/dispatch

APC

Passive

High

Power fail

Inter-processor interrupt

Clock

Profile

Device n

Chapter 6: Processes, Threads, and Jobs 335
Figure 6-14 Thread states on Windows 2000 and Windows XP

The thread states are as follows:

■ Ready A thread in the ready state is waiting to execute. When looking for a thread to
execute, the dispatcher considers only the pool of threads in the ready state.

■ Standby A thread in the standby state has been selected to run next on a particular pro-
cessor. When the correct conditions exist, the dispatcher performs a context switch to
this thread. Only one thread can be in the standby state for each processor on the sys-
tem. Note that a thread can be preempted out of the standby state before it ever executes
(if, for example, a higher priority thread becomes runnable before the standby thread
begins execution).

■ Running Once the dispatcher performs a context switch to a thread, the thread enters
the running state and executes. The thread’s execution continues until its quantum
ends (and another thread at the same priority is ready to run), it is preempted by a
higher priority thread, it terminates, it yields execution, or it voluntarily enters the wait
state.

■ Waiting A thread can enter the wait state in several ways: a thread can voluntarily wait
for an object to synchronize its execution, the operating system can wait on the thread’s
behalf (such as to resolve a paging I/O), or an environment subsystem can direct the
thread to suspend itself. When the thread’s wait ends, depending on the priority, the
thread either begins running immediately or is moved back to the ready state.

Ready (1) Running (2)

Waiting (5)

voluntary
switch

preemption,
quantum end

Init (0)

Terminate (4)Transition (6)

Standby (3)preempt

336 Microsoft Windows Internals, Fourth Edition
■ Transition A thread enters the transition state if it is ready for execution but its kernel
stack is paged out of memory. Once its kernel stack is brought back into memory, the
thread enters the ready state.

■ Terminated When a thread finishes executing, it enters the terminated state. Once the
thread is terminated, the executive thread block (the data structure in nonpaged pool
that describes the thread) might or might not be deallocated. (The object manager sets
policy regarding when to delete the object.)

■ Initialized This state is used internally while a thread is being created.

EXPERIMENT: Thread-Scheduling State Changes
You can watch thread-scheduling state changes with the Performance tool in Windows.
This utility can be useful when you’re debugging a multithreaded application if you’re
unsure about the state of the threads running in the process. To watch thread-schedul-
ing state changes by using the Performance tool, follow these steps:

1. Run the Microsoft Notepad utility (Notepad.exe).

2. Start the Performance tool by selecting Programs from the Start menu and then
selecting Performance from the Adminstrative Tools menu.

3. Select chart view if you’re in some other view.

4. Right-click on the graph, and choose Properties.

5. Click the Graph tab, and change the chart vertical scale maximum to 7. (As you’ll
see from the explanation text for the performance counter, thread states are num-
bered from 0 through 7.) Click OK.

6. Click the Add button on the toolbar to bring up the Add Counters dialog box.

7. Select the Thread performance object, and then select the Thread State counter.
Click the Explain button to see the definition of the values:

8. In the Instances box, scroll down until you see the Notepad process (notepad/0);
select it, and click the Add button.

9. Scroll back up in the Instances box to the Mmc process (the Microsoft Manage-
ment Console process running the System Monitor), select all the threads (mmc/
0, mmc/1, and so on), and add them to the chart by clicking the Add button.
Before you click Add, you should see something like the following dialog box.

Chapter 6: Processes, Threads, and Jobs 337
10. Now close the Add Counters dialog box by clicking Close.

11. You should see the state of the Notepad thread (the very top line in the following
figure) as a 5, which, as shown in the explanation text you saw under step 5, rep-
resents the waiting state (because the thread is waiting for GUI input):

12. Notice that one thread in the Mmc process (running the Performance tool snap-
in) is in the running state (number 2). This is the thread that’s querying the thread
states, so it’s always displayed in the running state.

13. You’ll never see Notepad in the running state (unless you’re on a multiprocessor
system) because Mmc is always in the running state when it gathers the state of
the threads you’re monitoring.

338 Microsoft Windows Internals, Fourth Edition
The state diagram for threads on Windows Server 2003 is shown in Figure 6-15. Notice the
new state called deferred ready. This state is used for threads that have been selected to run on
a specific processor but have not yet been scheduled. This new state exists so that the kernel
can minimize the amount of time the systemwide lock on the scheduling database is held.
(This process is explained further in the section “Multiprocessor Dispatcher Database.”)

Figure 6-15 Thread states on Windows Server 2003

Dispatcher Database

To make thread-scheduling decisions, the kernel maintains a set of data structures known col-
lectively as the dispatcher database, illustrated in Figure 6-16. The dispatcher database keeps
track of which threads are waiting to execute and which processors are executing which
threads.

Note The dispatcher database on a uniprocessor system has the same structure as on mul-
tiprocessor Windows 2000 and Windows XP systems, but is different on Windows Server 2003
systems. These differences, as well as the differences in the way Windows selects threads to run
on multiprocessor systems, are explained in the section “Multiprocessor Systems.”

Ready (1)

Deferred
Ready (7) Running (2)

Waiting (5)

voluntary
switch

preemption,
quantum end

Init (0)

Terminate (4)Transition (6)

Standby (3)preempt

Chapter 6: Processes, Threads, and Jobs 339
Figure 6-16 Dispatcher database (uniprocessor and Windows 2000/XP multiprocessor)

The dispatcher ready queues (KiDispatcherReadyListHead) contain the threads that are in the
ready state, waiting to be scheduled for execution. There is one queue for each of the 32 pri-
ority levels. To speed up the selection of which thread to run or preempt, Windows maintains
a 32-bit bit mask called the ready summary (KiReadySummary). Each bit set indicates one or
more threads in the ready queue for that priority level. (Bit 0 represents priority 0, and so on.)

Table 6-15 lists the kernel-mode kernel variables that are related to thread scheduling on uni-
processor systems.

On uniprocessor systems, the dispatcher database is synchronized by raising IRQL to DPC/
dispatch level and SYNCH_LEVEL (both of which are defined as level 2). (For an explanation
of interrupt priority levels, see the “Trap Dispatching” section in Chapter 3.) Raising IRQL in

Table 6-14 Thread-Scheduling Kernel Variables

Variable Type Description

KiReadySummary Bitmask (32 bits) Bitmask of priority levels that have
one or more ready threads

KiDispatcherReadyListHead Array of 32 list entries List heads for the 32 ready queues

Process

Thread 1 Thread 2

Process

Thread 3 Thread 4

Ready summary

Ready queues

31

0

31 0

340 Microsoft Windows Internals, Fourth Edition
this way prevents other threads from interrupting thread dispatching because threads normally
run at IRQL 0 or 1. On multiprocessor systems, more is required than raising IRQL because
each processor can, at the same time, raise to the same IRQL and attempt to operate on the dis-
patcher database. How Windows synchronizes access to the dispatcher database on multipro-
cessor systems is explained in the “Multiprocessor Systems” section later in the chapter.

Quantum

As mentioned earlier in the chapter, a quantum is the amount of time a thread gets to run
before Windows checks to see whether another thread at the same priority is waiting to run.
If a thread completes its quantum and there are no other threads at its priority, Windows per-
mits the thread to run for another quantum.

On Windows 2000 Professional and Windows XP, threads run by default for 2 clock intervals;
on Windows Server systems, by default, a thread runs for 12 clock intervals. (We’ll explain
how you can change these values later.) The rationale for the longer default value on server
systems is to minimize context switching. By having a longer quantum, server applications
that wake up as the result of a client request have a better chance of completing the request
and going back into a wait state before their quantum ends.

The length of the clock interval varies according to the hardware platform. The frequency of
the clock interrupts is up to the HAL, not the kernel. For example, the clock interval for most
x86 uniprocessors is about 10 milliseconds and for most x86 multiprocessors it is about 15
milliseconds. (The actual clock rate is not exactly a round number of milliseconds—see the fol-
lowing experiment for a way to check the actual clock interval.)

EXPERIMENT: Determining the Clock Interval Frequency
The Windows GetSystemTimeAdjustment function returns the clock interval. To deter-
mine the clock interval, download and run the Clockres program from www.sysinter-
nals.com. Here’s the output from a uniprocessor x86 system:

C:\>clockres

ClockRes - View the system clock resolution

By Mark Russinovich

SysInternals - www.sysinternals.com

The system clock interval is 10.014400 ms

Quantum Accounting

Each process has a quantum value in the kernel process block. This value is used when giving
a thread a new quantum. As a thread runs, its quantum is reduced at each clock interval. If
there is no remaining thread quantum, the quantum end processing is triggered. If there is

Chapter 6: Processes, Threads, and Jobs 341
another thread at the same priority waiting to run, a context switch occurs to the next thread
in the ready queue. Note that when the clock interrupt interrupts a DPC or another interrupt
that was in progress, the thread that was in the running state has its quantum deducted, even
if it hadn’t been running for a full clock interval. If this was not done and device interrupts or
DPCs occurred right before the clock interval timer interrupts, threads might not ever get
their quantum reduced.

Internally, the quantum value is stored as a multiple of three times the number of clock ticks.
This means that on Windows 2000 and Windows XP systems, threads, by default, have a
quantum value of 6 (2 * 3), and Windows Server systems have a quantum value of 36 (12 * 3).
Each time the clock interrupts, the clock-interrupt routine deducts a fixed value (3) from the
thread quantum.

The reason quantum is stored internally in terms of a multiple of 3 quantum units per clock
tick rather than as single units is to allow for partial quantum decay on wait completion.
When a thread that has a current priority less than 16 and a base priority less than 14 executes
a wait function (such as WaitForSingleObject or WaitForMultipleObjects) that is satisfied imme-
diately (for example, without having to wait), its quantum is reduced by 1 quantum unit. In
this way, threads that wait will eventually expire their quantum.

In the case where a wait is not satisfied immediately, threads below priority 16 also have their
quantum reduced by 1 unit (except if the thread is waking up to execute a kernel APC because
the wait code will charge the quantum after the wait is actually satisfied). However, before
doing the reduction, if the thread is at priority 14 or above, its quantum is reset to a full turn.
This is also done for threads running at less than 14 if they are not running with a special pri-
ority boost (such as is done for foreground processes or in the case of CPU starvation) and if
they are receiving a priority boost as a result of the unwait operation. (Priority boosting is
explained in the next section.)

This partial decay addresses the case in which a thread enters a wait state before the clock
interval timer fires. If this adjustment were not made, it would be possible for threads never to
have their quantums reduced. For example, if a thread ran, entered a wait state, ran again, and
entered another wait state but was never the currently running thread when the clock interval
timer fired, it would never have its quantum charged for the time it was running. Note that this
does not apply to zero timeout waits, but only wait operations that do not require waiting
because all the wait conditions are fulfilled at the time of the wait.

Controlling the Quantum

You can change the thread quantum for all processes, but you can choose only one of two set-
tings: short (2 clock ticks, the default for client machines) or long (12 clock ticks, the default
for server systems).

342 Microsoft Windows Internals, Fourth Edition
Note By using the job object on a system running with long quantums, you can select other
quantum values for the processes in the job. For more information on the job object, see the
“Job Objects” section later in the chapter.

To change this on Windows 2000, right click My Computer, Properties (or go to Control Panel
and open the System settings applet), click the Advanced tab, and then click the Performance
Options button. The dialog box you will see is shown in Figure 6-17.

Figure 6-17 Quantum Configuration on Windows 2000

To change this on Windows XP and Windows Server 2003, right click My Computer, Proper-
ties, click the Advanced tab, click the Settings button in the Performance section, and finally
click the Advanced tab. The dialog box displayed is slightly different for Windows XP and
Windows Server 2003. These are shown in Figure 6-18.

Figure 6-18 Quantum Configuration on Windows XP and Windows Server 2003

Chapter 6: Processes, Threads, and Jobs 343
The Programs setting (called “Applications” on Windows 2000) designates the use of short,
variable quantums—the default for Windows 2000 Professional and Windows XP. If you
install Terminal Services on Windows Server systems and configure the server as an applica-
tion server, this setting is selected so that the users on the terminal server will have the same
quantum settings that would normally be set on a desktop or client system. You might also
select this manually if you were running Windows Server as your desktop operating system.

The Background Services option designates the use of long, fixed quantums—the default for
Windows Server systems. The only reason why you might select this on a workstation system
is if you were using the workstation as a server system.

One additional difference between the Programs and Background Services settings is the
effect they have on the quantum of the threads in the foreground process. This is explained in
the next section.

Quantum Boosting

Prior to Windows NT 4.0, when a window was brought into the foreground on a workstation
or client system, all the threads in the foreground process (the process that owns the thread
that owns the window that’s in focus) received a priority boost of 2. This priority boost
remained in effect while any thread in the process owned the foreground window. The prob-
lem with this approach was that if you started a long-running, CPU-intensive process (such as
a spreadsheet recalculation) and then switched to another CPU-intensive process (such as a
computer-aided design tool, graphics editor, or a game), the process now running in the back-
ground would get little or no CPU time because the foreground process would have its
threads boosted by 2 (assuming the base priority of the threads in both processes are the
same) while it remained in the foreground.

This default behavior was changed as of Windows NT 4.0 Workstation to instead triple the
quantum of the threads in the foreground process. Thus, threads in the foreground process
run with a quantum of 6 clock ticks, whereas threads in other processes have the default
workstation quantum of 2 clock ticks. In this way, when you switch away from a CPU-inten-
sive process, the new foreground process will get proportionally more of the CPU, because
when its threads run they will have a longer turn that background threads (again, assuming
the thread priorities are the same in both the foreground and background processes).

Note that this adjustment of quantums applies only to processes with a priority higher than
Idle on systems configured to Programs (or Applications, in Windows 2000) in the Perfor-
mance Options settings described in the previous section. Thread quantums are not changed
for the foreground process on systems configured to Background Services (the default on
Windows Server systems).

344 Microsoft Windows Internals, Fourth Edition
Quantum Settings Registry Value

The user interface to control quantum settings described earlier modify the registry value
HKLM\SYSTEM\CurrentControlSet\Control\PriorityControl\Win32PrioritySeparation. In
addition to specifying the relative length of thread quantums (short or long), this registry
value also defines whether or not threads in the foreground process should have their quan-
tums boosted (and if so, the amount of the boost). This value consists of 6 bits divided into
the three 2-bit fields shown in Figure 6-19.

Figure 6-19 Fields of the Win32PrioritySeparation registry value

The fields shown in Figure 6-19 can be defined as follows:

■ Short vs. Long A setting of 1 specifies long, and 2 specifies short. A setting of 0 or 3
indicates that the default will be used (short for Windows 2000 Professional and Win-
dows XP, long for Windows Server systems).

■ Variable vs. Fixed A setting of 1 means to vary the quantum for the foreground process,
and 2 means that quantum values don’t change for foreground processes. A setting of 0
or 3 means that the default (which is variable for Windows 2000 Professional and Win-
dows XP and fixed for Windows Server systems) will be used.

■ Foreground Quantum Boost This field (stored in the kernel variable PsPrioritySepara-
tion) must have a value of 0, 1, or 2. (A setting of 3 is invalid and treated as 2.) It is used
as an index into a three-element byte array named PspForegroundQuantum to obtain the
quantum for the threads in the foreground process. The quantum for threads in back-
ground processes is taken from the first entry in this quantum table. Table 6-16 shows
the possible settings for PspForegroundQuantum.

Note that when you’re using the Performance Options dialog box described earlier, you can
choose from only two combinations: short quantums with foreground quantums tripled, or
long quantums with no quantum changes for foreground threads. However, you can select
other combinations by modifying the Win32PrioritySeparation registry value directly.

Table 6-15 Quantum Values

Short Long

Variable 6 12 18 12 24 36

Fixed 18 18 18 36 36 36

Foreground
Quantum Boost

Variable vs.
Fixed

Short vs.
Long

024

Chapter 6: Processes, Threads, and Jobs 345
Scheduling Scenarios

Windows bases the question of “Who gets the CPU?” on thread priority; but how does this
approach work in practice? The following sections illustrate just how priority-driven preemp-
tive multitasking works on the thread level.

Voluntary Switch

First a thread might voluntarily relinquish use of the processor by entering a wait state on
some object (such as an event, a mutex, a semaphore, an I/O completion port, a process, a
thread, a window message, and so on) by calling one of the Windows wait functions (such as
WaitForSingleObject or WaitForMultipleObjects). Waiting for objects is described in more detail
in Chapter 3.

Figure 6-20 illustrates a thread entering a wait state and Windows selecting a new thread to
run.

Figure 6-20 Voluntary switching

In Figure 6-20, the top block (thread) is voluntarily relinquishing the processor so that the
next thread in the ready queue can run (as represented by the halo it has when in the Running
column). Although it might appear from this figure that the relinquishing thread’s priority is
being reduced, it’s not—it’s just being moved to the wait queue of the objects the thread is
waiting for. What about any remaining quantum for the thread? The quantum value isn’t reset
when a thread enters a wait state—in fact, as explained earlier, when the wait is satisfied, the
thread’s quantum value is decremented by 1 quantum unit, equivalent to one-third of a clock
interval (except for threads running at priority 14 or higher, which have their quantum reset
after a wait to a full turn).

Priority

20

19

18

17

16

15

14

Running Ready

To wait state

346 Microsoft Windows Internals, Fourth Edition
Preemption

In this scheduling scenario, a lower-priority thread is preempted when a higher-priority thread
becomes ready to run. This situation might occur for a couple of reasons:

■ A higher-priority thread’s wait completes. (The event that the other thread was waiting
for has occurred.)

■ A thread priority is increased or decreased.

In either of these cases, Windows must determine whether the currently running thread
should still continue to run or whether it should be preempted to allow a higher-priority
thread to run.

Note Threads running in user mode can preempt threads running in kernel mode—the mode
in which the thread is running doesn’t matter. The thread priority is the determining factor.

When a thread is preempted, it is put at the head of the ready queue for the priority it was run-
ning at. Figure 6-21 illustrates this situation.

Figure 6-21 Preemptive thread scheduling

In Figure 6-21, a thread with priority 18 emerges from a wait state and repossesses the CPU,
causing the thread that had been running (at priority 16) to be bumped to the head of the
ready queue. Notice that the bumped thread isn’t going to the end of the queue but to the
beginning; when the preempting thread has finished running, the bumped thread can com-
plete its quantum.

Priority

18

17

16

15

14

13

Running Ready

From wait state

Chapter 6: Processes, Threads, and Jobs 347
Quantum End

When the running thread exhausts its CPU quantum, Windows must determine whether the
thread’s priority should be decremented and then whether another thread should be sched-
uled on the processor.

If the thread priority is reduced, Windows looks for a more appropriate thread to schedule.
(For example, a more appropriate thread would be a thread in a ready queue with a higher pri-
ority than the new priority for the currently running thread.) If the thread priority isn’t
reduced and there are other threads in the ready queue at the same priority level, Windows
selects the next thread in the ready queue at that same priority level and moves the previously
running thread to the tail of that queue (giving it a new quantum value and changing its state
from running to ready). This case is illustrated in Figure 6-22. If no other thread of the same
priority is ready to run, the thread gets to run for another quantum.

Figure 6-22 Quantum end thread scheduling

Termination

When a thread finishes running (either because it returned from its main routine, called Exit-
Thread, or was killed with TerminateThread), it moves from the running state to the terminated
state. If there are no handles open on the thread object, the thread is removed from the pro-
cess thread list and the associated data structures are deallocated and released.

Context Switching

A thread’s context and the procedure for context switching vary depending on the processor’s
architecture. A typical context switch requires saving and reloading the following data:

■ Instruction pointer

■ User and kernel stack pointers

■ A pointer to the address space in which the thread runs (the process’s page table direc-
tory)

Priority

14

13

15

12

11

Running Ready

348 Microsoft Windows Internals, Fourth Edition
The kernel saves this information from the old thread by pushing it onto the current (old
thread’s) kernel-mode stack, updating the stack pointer, and saving the stack pointer in the
old thread’s KTHREAD block. The kernel stack pointer is then set to the new thread’s kernel
stack, and the new thread’s context is loaded. If the new thread is in a different process, it loads
the address of its page table directory into a special processor register so that its address space
is available. (See the description of address translation in Chapter 7.) If a kernel APC that needs
to be delivered is pending, an interrupt at IRQL 1 is requested. Otherwise, control passes to the
new thread’s restored instruction pointer and the new thread resumes execution.

Idle Thread

When no runnable thread exists on a CPU, Windows dispatches the per-CPU idle thread.
Each CPU is allotted one idle thread because on a multiprocessor system one CPU can be exe-
cuting a thread while other CPUs might have no threads to execute.

Various Windows process viewer utilities report the idle process using different names. Task
Manager and Process Explorer call it “System Idle Process,” Process Viewer reports it as “Idle,”
Pstat calls it “Idle Process,” Process Explode and Tlist call it “System Process,” and Qslice calls
it “SystemProcess.” Windows reports the priority of the idle thread as 0. In reality, however,
the idle threads don’t have a priority level because they run only when there are no real
threads to run. (Remember, only one thread per Windows system is actually running at prior-
ity 0—the zero page thread, explained in Chapter 7.)

The idle loop runs at DPC/dispatch level, polling for work to do, such as delivering deferred
procedure calls (DPCs) or looking for threads to dispatch to. Although some details of the
flow vary between architectures, the basic flow of control of the idle thread is as follows:

1. Enables and disables interrupts (allowing any pending interrupts to be delivered).

2. Checks whether any DPCs (described in Chapter 3) are pending on the processor. If
DPCs are pending, clears the pending software interrupt and delivers them.

3. Checks whether a thread has been selected to run next on the processor, and if so, dis-
patches that thread.

4. Calls the HAL processor idle routine (in case any power management functions need to
be performed).

In Windows Server 2003, the idle thread also scans for threads waiting to run on other pro-
cessors. (This is explained in the upcoming multiprocessor scheduling section.)

Priority Boosts

In five cases, Windows can boost (increase) the current priority value of threads:

■ On completion of I/O operations

■ After waiting for executive events or semaphores

Chapter 6: Processes, Threads, and Jobs 349
■ After threads in the foreground process complete a wait operation

■ When GUI threads wake up because of windowing activity

■ When a thread that’s ready to run hasn’t been running for some time (CPU starvation)

The intent of these adjustments is to improve overall system throughput and responsiveness
as well as resolve potentially unfair scheduling scenarios. Like any scheduling algorithms,
however, these adjustments aren’t perfect, and they might not benefit all applications.

Note Windows never boosts the priority of threads in the real-time range (16 through 31).
Therefore, scheduling is always predictable with respect to other threads in the real-time
range. Windows assumes that if you’re using the real-time thread priorities, you know what
you’re doing.

Priority Boosting after I/O Completion

Windows gives temporary priority boosts upon completion of certain I/O operations so that
threads that were waiting for an I/O will have more of a chance to run right away and process
whatever was being waited for. Recall that 1 quantum unit is deducted from the thread’s remain-
ing quantum when it wakes up so that I/O bound threads aren’t unfairly favored. Although
you’ll find recommended boost values in the DDK header files (by searching for “#define IO” in
Wdm.h or Ntddk.h), the actual value for the boost is up to the device driver. (These values are
listed in Table 6-17.) It is the device driver that specifies the boost when it completes an I/O
request on its call to the kernel function IoCompleteRequest. In Table 6-17, notice that I/O
requests to devices that warrant better responsiveness have higher boost values.

The boost is always applied to a thread’s base priority, not its current priority. As illustrated in
Figure 6-23, after the boost is applied, the thread gets to run for one quantum at the elevated
priority level. After the thread has completed its quantum, it decays one priority level and then
runs another quantum. This cycle continues until the thread’s priority level has decayed back
to its base priority. A thread with a higher priority can still preempt the boosted thread, but
the interrupted thread gets to finish its time slice at the boosted priority level before it decays
to the next lower priority.

Table 6-16 Recommended Boost Values

Device Boost

Disk, CD-ROM, parallel, video 1

Network, mailslot, named pipe, serial 2

Keyboard, mouse 6

Sound 8

350 Microsoft Windows Internals, Fourth Edition
Figure 6-23 Priority boosting and decay

As noted earlier, these boosts apply only to threads in the dynamic priority range (0 through
15). No matter how large the boost is, the thread will never be boosted beyond level 15 into
the real-time priority range. In other words, a priority 14 thread that receives a boost of 5 will
go up to priority 15. A priority 15 thread that receives a boost will remain at priority 15.

Boosts after Waiting for Events and Semaphores

When a thread that was waiting for an executive event or a semaphore object has its wait satis-
fied (because of a call to the function SetEvent, PulseEvent, or ReleaseSemaphore), it receives a
boost of 1. (See the value for EVENT_ INCREMENT and SEMAPHORE_INCREMENT in the
DDK header files.) Threads that wait for events and semaphores warrant a boost for the same
reason that threads that wait for I/O operations do—threads that block on events are requesting
CPU cycles less frequently than CPU-bound threads. This adjustment helps balance the scales.

This boost operates the same as the boost that occurs after I/O completion, as described in
the previous section:

■ The boost is always applied to the base priority (not the current priority).

■ The priority will never be boosted over 15.

■ The thread gets to run at the elevated priority for its remaining quantum (as described
earlier, quantums are reduced by 1 when threads exit a wait) before decaying one prior-
ity level at a time until it reaches its original base priority.

A special boost is applied to threads that are awoken as a result of setting an event with the spe-
cial functions NtSetEventBoostPriority (used in Ntdll.dll for critical sections) and KeSetEvent-
BoostPriority (used for executive resources and push locks). If a thread waiting for an event is
woken up as a result of the special event boost function and its priority is 13 or below, it will
have its priority boosted to be the setting thread’s priority plus one. If its quantum is less than 4
quantum units, it is set to 4 quantum units. This boost is removed at quantum end.

Round-robin at
base priority

Boost upon
wait complete

Quantum

Priority decay at
quantum end

Preempt
(before quantum end)

RunRunWaitRun

Base
priority

Priority

Time

Chapter 6: Processes, Threads, and Jobs 351
Priority Boosts for Foreground Threads after Waits

Whenever a thread in the foreground process completes a wait operation on a kernel object,
the kernel function KiUnwaitThread boosts its current (not base) priority by the current value
of PsPrioritySeparation. (The windowing system is responsible for determining which process
is considered to be in the foreground.) As described in the section on quantum controls,
PsPrioritySeparation reflects the quantum-table index used to select quantums for the threads
of foreground applications. However, in this case, it is being used as a priority boost value.

The reason for this boost is to improve the responsiveness of interactive applications—by giv-
ing the foreground application a small boost when it completes a wait, it has a better chance
of running right away, especially when other processes at the same base priority might be run-
ning in the background.

Unlike other types of boosting, this boost applies to all Windows systems, and you can’t dis-
able this boost, even if you’ve disabled priority boosting using the Windows SetThreadPriori-
tyBoost function.

EXPERIMENT: Watching Foreground Priority Boosts and Decays
Using the CPU Stress tool (in the resource kit and the Platform SDK), you can watch pri-
ority boosts in action. Take the following steps:

1. Open the System utility in Control Panel (or right-click My Computer and select
Properties), click the Advanced tab, and click the Performance Options button.
Select the Applications option. This causes PsPrioritySeparation to get a value of 2.

2. Run Cpustres.exe.

3. Run the Windows NT 4 Performance Monitor (Perfmon4.exe in the Windows
2000 resource kits). This older version of the Performance tool is needed for this
experiment because it can query performance counter values at a frequency faster
than the Windows Performance tool (which has a maximum interval of once per
second).

4. Click the Add Counter toolbar button (or press Ctrl+I) to bring up the Add To
Chart dialog box.

5. Select the Thread object, and then select the Priority Current counter.

6. In the Instance box, scroll down the list until you see the cpustres process. Select
the second thread (thread 1). (The first thread is the GUI thread.) You should see
something like this:

352 Microsoft Windows Internals, Fourth Edition
7. Click the Add button, and then click the Done button.

8. Select Chart from the Options menu. Change the Vertical Maximum to 16 and the
Interval to 0.010, as follows, and click OK:

9. Now bring the Cpustres process to the foreground. You should see the priority of
the Cpustres thread being boosted by 2 and then decaying back to the base prior-
ity as follows:

Chapter 6: Processes, Threads, and Jobs 353
10. The reason Cpustres receives a boost of 2 periodically is because the thread you’re
monitoring is sleeping about 75 percent of the time and then waking up—the
boost is applied when the thread wakes up. To see the thread get boosted more fre-
quently, increase the Activity level from Low to Medium to Busy. If you set the
Activity level to Maximum, you won’t see any boosts because Maximum in
Cpustres puts the thread into an infinite loop. Therefore, the thread doesn’t
invoke any wait functions and therefore doesn’t receive any boosts.

11. When you’ve finished, exit Performance Monitor and CPU Stress.

Priority Boosts after GUI Threads Wake Up

Threads that own windows receive an additional boost of 2 when they wake up because of win-
dowing activity, such as the arrival of window messages. The windowing system (Win32k.sys)
applies this boost when it calls KeSetEvent to set an event used to wake up a GUI thread. The rea-
son for this boost is similar to the previous one—to favor interactive applications.

EXPERIMENT: Watching Priority Boosts on GUI Threads
You can also see the windowing system apply its boost of 2 for GUI threads that wake
up to process window messages by monitoring the current priority of a GUI application
and moving the mouse across the window. Just follow these steps:

1. Open the System utility in Control Panel (or right-click My Computer and select
Properties), click the Advanced tab, and click the Performance Options button. If
you’re running Windows XP or Windows Server 2003 select the Advanced tab
and ensure that the Programs option is selected; if you’re running Windows 2000
ensure that the Applications option is selected. This causes PsPrioritySeparation to
get a value of 2.

2. Run Notepad from the Start menu by selecting Programs/Accessories/Notepad.

3. Run the Windows NT 4 Performance Monitor (Perfmon4.exe in the Windows
2000 resource kits). This older version of the Performance tool is needed for this
experiment because it can query performance counter values at a faster frequency.
(The Windows Performance tool has a maximum interval of once per second.)

4. Click the Add Counter toolbar button (or press Ctrl+I) to bring up the Add To
Chart dialog box.

5. Select the Thread object, and then select the Priority Current counter.

6. In the Instance box, scroll down the list until you see Notepad thread 0. Click it,
click the Add button, and then click the Done button.

7. As in the previous experiment, select Chart from the Options menu. Change the
Vertical Maximum to 16 and the Interval to 0.010, and click OK.

354 Microsoft Windows Internals, Fourth Edition
8. You should see the priority of thread 0 in Notepad at 8, 9, or 10. Because Notepad
entered a wait state shortly after it received the boost of 2 that threads in the fore-
ground process receive, it might not yet have decayed from 10 to 9 and then to 8.

9. With Performance Monitor in the foreground, move the mouse across the Note-
pad window. (Make both windows visible on the desktop.) You’ll see that the pri-
ority sometimes remains at 10 and sometimes at 9, for the reasons just explained.
(The reason you won’t likely catch Notepad at 8 is that it runs so little after receiv-
ing the GUI thread boost of 2 that it never experiences more than one priority
level of decay before waking up again because of additional windowing activity
and receiving the boost of 2 again.)

10. Now bring Notepad to the foreground. You should see the priority rise to 12 and
remain there (or drop to 11, because it might experience the normal priority decay
that occurs for boosted threads on the quantum end) because the thread is receiv-
ing two boosts: the boost of 2 applied to GUI threads when they wake up to pro-
cess windowing input and an additional boost of 2 because Notepad is in the
foreground.

11. If you then move the mouse over Notepad (while it’s still in the foreground), you
might see the priority drop to 11 (or maybe even 10) as it experiences the priority
decay that normally occurs on boosted threads as they complete quantums. How-
ever, the boost of 2 that is applied because it’s the foreground process remains as
long as Notepad remains in the foreground.

12. When you’ve finished, exit Performance Monitor and Notepad.

Priority Boosts for CPU Starvation

Imagine the following situation: you have a priority 7 thread that’s running, preventing a pri-
ority 4 thread from ever receiving CPU time; however, a priority 11 thread is waiting for some
resource that the priority 4 thread has locked. But because the priority 7 thread in the middle
is eating up all the CPU time, the priority 4 thread will never run long enough to finish what-
ever it’s doing and release the resource blocking the priority 11 thread. What does Windows
do to address this situation? Once per second, the balance set manager (a system thread that
exists primarily to perform memory management functions and is described in more detail in
Chapter 7) scans the ready queues for any threads that have been in the ready state (that is,
haven’t run) for approximately 4 seconds. If it finds such a thread, the balance set manager
boosts the thread’s priority to 15. On Windows 2000 and Windows XP, the thread quantum
is set to twice the process quantum. On Windows Server 2003, the quantum is set to 4 quan-
tum units. Once the quantum is expired, the thread’s priority decays immediately to its origi-
nal base priority. If the thread wasn’t finished and a higher priority thread is ready to run, the
decayed thread will return to the ready queue, where it again becomes eligible for another
boost if it remains there for another 4 seconds.

Chapter 6: Processes, Threads, and Jobs 355
The balance set manager doesn’t actually scan all ready threads every time it runs. To minimize
the CPU time it uses, it scans only 16 ready threads; if there are more threads at that priority
level, it remembers where it left off and picks up again on the next pass. Also, it will boost only
10 threads per pass—if it finds 10 threads meriting this particular boost (which would indicate
an unusually busy system), it stops the scan at that point and picks up again on the next pass.

Will this algorithm always solve the priority inversion issue? No—it’s not perfect by any
means. But over time, CPU-starved threads should get enough CPU time to finish whatever
processing they were doing and reenter a wait state.

EXPERIMENT: Watching Priority Boosts for CPU Starvation
Using the CPU Stress tool (in the resource kit and the Platform SDK), you can watch pri-
ority boosts in action. In this experiment, we’ll see CPU usage change when a thread’s
priority is boosted. Take the following steps:

1. Run Cpustres.exe. Change the activity level of the active thread (by default, Thread
1) from Low to Maximum. Change the thread priority from Normal to Below Nor-
mal. The screen should look like this:

2. Run the Windows NT 4 Performance Monitor (Perfmon4.exe in the Windows
2000 resource kits). Again, you need the older version for this experiment because
it can query performance counter values at a frequency faster than once per sec-
ond.

3. Click the Add Counter toolbar button (or press Ctrl+I) to bring up the Add To
Chart dialog box.

4. Select the Thread object, and then select the % Processor Time counter.

356 Microsoft Windows Internals, Fourth Edition
5. In the Instance box, scroll down the list until you see the cpustres process. Select
the second thread (thread 1). (The first thread is the GUI thread.) You should see
something like this:

6. Click the Add button, and then click the Done button.

7. Raise the priority of Performance Monitor to real-time by running Task Manager,
clicking the Processes tab, and selecting the Perfmon4.exe process. Right-click the
process, select Set Priority, and then select Realtime. (If you receive a Task Man-
ager Warning message box warning you of system instability, click the Yes button.)

8. Run another copy of CPU Stress. In this copy, change the activity level of Thread 1
from Low to Maximum.

9. Now switch back to Performance Monitor. You should see CPU activity every 4 or
so seconds because the thread is boosted to priority 15.

When you’ve finished, exit Performance Monitor and the two copies of CPU Stress.

Chapter 6: Processes, Threads, and Jobs 357
EXPERIMENT: “Listening” to Priority Boosting
To “hear” the effect of priority boosting for CPU starvation, perform the following steps
on a system with a sound card:

1. Run Windows Media Player (or some other audio playback program), and begin
playing some audio content.

2. Run Cpustres from the Windows 2000 resource kits, and set the activity level of
thread 1 to maximum.

3. Raise the priority of thread 1 from Normal to Time Critical.

4. You should hear the music playback stop as the compute-bound thread begins
consuming all available CPU time.

5. Every so often, you should hear bits of sound as the starved thread in the audio
playback process gets boosted to 15 and runs enough to send more data to the
sound card.

6. Stop Cpustres and Windows Media Player.

Multiprocessor Systems

On a uniprocessor system, scheduling is relatively simple: the highest priority thread that
wants to run is always running. On a multiprocessor system, it is more complex, as Windows
attempts to schedule threads on the most optimal processor for the thread, taking into
account the thread’s preferred and previous processors, as well as the configuration of the
multiprocessor system. Therefore, while Windows attempts to schedule the highest priority
runnable threads on all available CPUs, it only guarantees to be running the (single) highest
priority thread somewhere.

Before we describe the specific algorithms used to choose which threads run where and when,
let’s examine the additional information Windows maintains to track thread and processor
state on multiprocessor systems and the two new types of multiprocessor systems supported
by Windows (hyperthreaded and NUMA).

Multiprocessor Dispatcher Database

As explained in the “Dispatcher Database” section earlier in the chapter, the dispatcher data-
base refers to the information maintained by the kernel to perform thread scheduling. As
shown in Figure 6-16, on multiprocessor Windows 2000 and Windows XP systems, the ready
queues and ready summary have the same structure as they do on uniprocessor systems. In
addition to the ready queues and the ready summary, Windows maintains two bitmasks that
track the state of the processors on the system. (How these bitmasks are used is explained in
the upcoming section “Multiprocessor Thread-Scheduling Algorithms”.) Following are the
two bitmasks that Windows maintains:

358 Microsoft Windows Internals, Fourth Edition
■ The active processor mask (KeActiveProcessors), which has a bit set for each usable proces-
sor on the system (This might be less than the number of actual processors if the licens-
ing limits of the version of Windows running supports less than the number of available
physical processors.)

■ The idle summary (KiIdleSummary), in which each set bit represents an idle processor

Whereas on uniprocessor systems, the dispatcher database is locked by raising IRQL (to DPC/
dispatch level on Windows 2000 and Windows XP and to both DPC/dispatch level and Synch
level on Windows Server 2003), on multiprocessor systems more is required, because each pro-
cessor could, at the same time, raise IRQL and attempt to operate on the dispatcher database.
(This is true for any systemwide structure accessed from high IRQL.) (See Chapter 3 for a gen-
eral description of kernel synchronization and spinlocks.) On Windows 2000 and Windows XP,
two kernel spinlocks are used to synchronize access to thread dispatching: the dispatcher spin-
lock (KiDispatcherLock) and the context swap spinlock (KiContextSwapLock). The former is held
while changes are made to structures that might affect which thread should run. The latter is
held after the decision is made but during the thread context swap operation itself.

To improve scalability including thread dispatching concurrency, Windows Server 2003 mul-
tiprocessor systems have per-processor dispatcher ready queues, as illustrated in Figure 6-24.
In this way, on Windows Server 2003, each CPU can check its own ready queues for the next
thread to run without having to lock the systemwide ready queues.

Figure 6-24 Windows Server 2003 multiprocessor dispatcher database

Process

Thread 1 Thread 2

Ready summary

Deferred
ready queue

CPU 0
ready queues

31

0

31 0

Process

Thread 3 Thread 4

Ready summary

31 0
Deferred

ready queue

CPU 1
ready queues

31

0

Chapter 6: Processes, Threads, and Jobs 359
The per-processor ready queues, as well as the per-processor ready summary are part of the
processor control block (PRCB) structure. (To see the fields in the PRCB, type dt nt!_prcb in
the Kernel Debugger.) Because on a multiprocessor system one processor might need to mod-
ify another processor’s per-CPU scheduling data structures (such as inserting a thread that
would like to run on a certain processor), these structures are synchronized by using a new
per-PRCB queued spinlock, which is held at IRQL SYNCH_LEVEL. (See Table 6-18 for the var-
ious values of SYNCH_LEVEL). Thus, thread selection can occur while locking only an indi-
vidual processor’s PRCB, in contrast to doing this on Windows 2000 and Windows XP, where
the systemwide dispatcher spinlock had to be held.

There is also a per-CPU list of threads in the deferred ready state. These represent threads that
are ready to run but have not yet been readied for execution; the actual ready operation has
been deferred to a more appropriate time. Because each processor manipulates only its own
per-processor deferred ready list, this list is not synchronized by the PRCB spinlock. The
deferred ready thread list is processed before exiting the thread dispatcher, before performing
a context switch, and after processing a DPC. Threads on the deferred ready list are either dis-
patched immediately or are moved to the per-process ready queue for their priority level.

Note that the systemwide dispatcher spinlock still exists and is used on Windows Server
2003, but it is held only for the time needed to modify systemwide state that might affect
which thread runs next. For example, changes to synchronization objects (mutexes, events,
and semaphores) and their wait queues require holding the dispatcher lock to prevent more
than one processor from changing the state of such objects (and the consequential action of
possibly readying threads for execution). Other examples include changing the priority of a
thread, timer expiration, and swapping of thread kernel stacks.

Finally, synchronization of thread context switching has also been improved on Windows
Server 20003, as it is now synchronized by using a per-thread spinlock, whereas in Windows
2000 and Windows XP context switching was synchronized by holding a systemwide context
swap spinlock.

Table 6-17 IRQL SYNCH_LEVEL on Multiprocessor Systems

Windows Version IRQL

Windows 2000 2

Windows XP on x86 2

Windows Server 2003 on x86 27

Windows XP on x64 12

Windows XP on IA-64 2

Windows Server 2003 on x64 & IA-64 12

360 Microsoft Windows Internals, Fourth Edition
Hyperthreaded Systems

As described in the “Symmetric Multiprocessing” section in Chapter 2, Windows XP and Win-
dows Server 2003 support hyperthreaded multiprocessor systems in two primary ways:

1. Logical processors do not count against physical processor licensing limits. For exam-
ple, Windows XP Home Edition, which has a licensed processor limit of 1, will use both
logical processors on a single processor hyperthreaded system.

2. When choosing a processor for a thread, if there is a physical processor with all logical
processors idle, a logical processor from that physical processor will be selected, as
opposed to choosing an idle logical processor on a physical processor that has another
logical processor running a thread.

EXPERIMENT: Viewing Hyperthreading Information
You can examine the information Windows maintains for hyperthreaded processors
using the !smt command in the kernel debugger. The following output is from a dual
processor hyperthreaded Xeon system (four logical processors):

lkd> !smt

SMT Summary:

KeActiveProcessors: ****---------------------------- (0000000f)

KiIdleSummary: -***---------------------------- (0000000e)

No PRCB Set Master SMT Set #LP IAID

0 ffdff120 Master *-*----------------------------- (00000005) 2 00

1 f771f120 Master -*-*---------------------------- (0000000a) 2 06

2 f7727120 ffdff120 *-*----------------------------- (00000005) 2 01

3 f772f120 f771f120 -*-*---------------------------- (0000000a) 2 07

Number of licensed physical processors: 2

Logical processor 0 and 1 are on separate physical processors (as indicated by the term
“Master”).

NUMA Systems

Another type of multiprocessor system supported by Windows XP and Windows Server 2003
are those with nonuniform memory access (NUMA) architectures. In a NUMA system, proces-
sors are grouped together in smaller units called nodes. Each node has its own processors and
memory, and is connected to the larger system through a cache-coherent interconnect bus.
These systems are called “nonuniform” because each node has its own local high-speed mem-
ory. While any processor in any node can access all of memory, node-local memory is much
faster to access.

Chapter 6: Processes, Threads, and Jobs 361
The kernel maintains information about each node in a NUMA system in a data structure
called KNODE. The kernel variable KeNodeBlock is an array of pointers to the KNODE struc-
tures for each node. The format of the KNODE structure can be shown using the dt command
in the kernel debugger, as shown here:

lkd> dt nt!_knode

nt!_KNODE

+0x000 ProcessorMask : Uint4B

+0x004 Color : Uint4B

+0x008 MmShiftedColor : Uint4B

+0x00c FreeCount : [2] Uint4B

+0x018 DeadStackList : _SLIST_HEADER

+0x020 PfnDereferenceSListHead : _SLIST_HEADER

+0x028 PfnDeferredList : Ptr32 _SINGLE_LIST_ENTRY

+0x02c Seed : UChar

+0x02d Flags : _flags

EXPERIMENT: Viewing NUMA Information
You can examine the information Windows maintains for each node in a NUMA system
using the !numa command in the kernel debugger. The following partial output is from
a 32-processor NUMA system by NEC with 4 processors per node:

21: kd> !numa

NUMA Summary:

Number of NUMA nodes : 8

Number of Processors : 32

MmAvailablePages : 0x00F70D2C

KeActiveProcessors : ********************************---------------------------

----- (00000000ffffffff)

NODE 0 (E00000008428AE00):

ProcessorMask : ****---

Color : 0x00000000

MmShiftedColor : 0x00000000

Seed : 0x00000000

Zeroed Page Count: 0x00000000001CF330

Free Page Count : 0x0000000000000000

NODE 1 (E00001597A9A2200):

ProcessorMask : ----****---

Color : 0x00000001

MmShiftedColor : 0x00000040

Seed : 0x00000006

Zeroed Page Count: 0x00000000001F77A0

Free Page Count : 0x0000000000000004

362 Microsoft Windows Internals, Fourth Edition
The following partial output is from a 64-processor NUMA system from Hewlett Pack-
ard with 4 processors per node:

26: kd> !numa

NUMA Summary:

Number of NUMA nodes : 16

Number of Processors : 64

MmAvailablePages : 0x03F55E67

KeActiveProcessors : ***

***** (ffffffffffffffff)

NODE 0 (E000000084261900):

ProcessorMask : ****---

Color : 0x00000000

MmShiftedColor : 0x00000000

Seed : 0x00000001

Zeroed Page Count: 0x00000000003F4430

Free Page Count : 0x0000000000000000

NODE 1 (E0000145FF992200):

ProcessorMask : ----****---

Color : 0x00000001

MmShiftedColor : 0x00000040

Seed : 0x00000007

Zeroed Page Count: 0x00000000003ED59A

Free Page Count : 0x0000000000000000

Applications that want to gain the most performance out of NUMA systems can set the affinity
mask to restrict a process to the processors in a specific node. This information can be
obtained using the functions listed in Table 6-18. Functions that can alter thread affinity are
listed in Table 6-13.

How the scheduling algorithms take into account NUMA systems will be covered in the
upcoming section “Multiprocessor Thread-Scheduling Algorithms” (and the optimizations in
the memory manager to take advantage of node-local memory are covered in Chapter 7).

Affinity

Each thread has an affinity mask that specifies the processors on which the thread is allowed
to run. The thread affinity mask is inherited from the process affinity mask. By default, all pro-

Table 6-18 NUMA-Related Functions

Function Description

GetNumaHighestNodeNumber Retrieves the node that currently has the highest number.

GetNumaNodeProcessorMask Retrieves the processor mask for the specified node.

GetNumaProcessorNode Retrieves the node number for the specified processor.

Chapter 6: Processes, Threads, and Jobs 363
cesses (and therefore all threads) begin with an affinity mask that is equal to the set of active
processors on the system—in other words, the system is free to schedule all threads on any
available processor.

However, to optimize throughput and/or partition workloads to a specific set of processors,
applications can choose to change the affinity mask for a thread. This can be done at several
levels:

■ Calling the SetThreadAffinityMask function to set the affinity for an individual thread

■ Calling the SetProcessAffinityMask function to set the affinity for all the threads in a pro-
cess. Task Manager and Process Explorer provide a GUI interface to this function if you
right-click a process and choose Set Affinity. The Psexec tool (from www.sysinter-
nals.com) provides a command-line interface to this function. (See the –a switch.)

■ By making a process a member of a job that has a jobwide affinity mask set using the Set-
InformationJobObject function (Jobs are described in the upcoming “Job Objects” section.)

■ By specifying an affinity mask in the image header using, for example, the Imagecfg tool
in the Windows 2000 Server Resource Kit Supplement 1 (For more information on the
detailed format of Windows images, see the article “Portable Executable and Common
Object File Format Specification” in the MSDN Library.)

You can also set the “uniprocessor” flag for an image (using the Imagecfg –u switch). If this
flag is set, the system chooses a single processor at process creation time and assigns that as
the process affinity mask, starting with the first processor and then going round-robin across
all the processors. For example, on a dual-processor system, the first time you run an image
marked as uniprocessor, it is assigned to CPU 0; the second time, CPU 1; the third time, CPU
0; the fourth time, CPU 1; and so on. This flag can be useful as a temporary workaround for
programs that have multithreaded synchronization bugs that, as a result of race conditions,
surface on multiprocessor systems but that don’t occur on uniprocessor systems. (This has
actually saved the authors of this book on two different occasions.)

EXPERIMENT: Viewing and Changing Process Affinity
In this experiment, you will modify the affinity settings for a process and see that pro-
cess affinity is inherited by new processes:

1. Run the Command Prompt (cmd.exe).

2. Run Task Manager or Process Explorer, and find the cmd.exe process in the pro-
cess list.

3. Right-click the process, and select Affinity. A list of processors should be displayed.
For example, on a dual-processor system you will see this:

364 Microsoft Windows Internals, Fourth Edition
4. Select a subset of the available processors on the system, and press OK. The pro-
cess’s threads are now restricted to run on the processors you just selected.

5. Now run Notepad.exe from the Command Prompt (by typing Notepad.exe).

6. Go back to Task Manager or Process Explorer and find the new Notepad process.
Right-click it, and choose Affinity. You should see the same list of processors you
chose for the Command Prompt process. This is because processes inherit their
affinity settings from their parent.

EXPERIMENT: Changing the Image Affinity
In this experiment (which requires access to a multiprocessor system), you will change
the affinity mask of a program to force it to run on the first processor:

1. Make a copy of Cpustres.exe from the Windows 2000 resource kits. For example,
assuming there is a c:\temp folder on your system, from the command prompt,
type the following:

copy c:\program files\resource kit\cpustres.exe c:\temp\cpustres.exe

2. Set the image affinity mask to force the process’s threads to run on CPU 0 by typ-
ing the following in the command prompt (assuming that the path to the resource
kit tools is in your path):

imagecfg –a 1 c:\temp\cpustres.exe

3. Now run the modified Cpustres from the c:\temp folder.

4. Enable two worker threads, and set the activity level for both threads to Maximum
(not Busy). The Cpustres screen should look like this:

Chapter 6: Processes, Threads, and Jobs 365
5. Find the Cpustres process in Process Explorer or Task Manager, right click, and
choose Set Affinity. The affinity settings should show the process bound to CPU 0.

6. Examine the systemwide CPU usage by clicking Show, System Information (if run-
ning Process Explorer) or by clicking the Performance tab (if running Task Man-
ager). Assuming there are no other compute-bound processes, you should see the
total percentage of CPU time consumed, approximately 1/# CPUs (for example,
50% on a dual-CPU system, 25% on a four-CPU system), because the two threads
in Cpustres are forced to run on a single processor, leaving the other processor(s)
idle.

7. Finally, change the affinity mask of the Cpustres process to permit it to run on all
CPUs. Go back and examine the systemwide CPU usage. You should see 100% on
a dual-CPU system, 50% on a four-CPU system, and so forth.

Windows won’t move a running thread that could run on a different processor from one CPU
to a second processor to permit a thread with an affinity for the first processor to run on the
first processor. For example, consider this scenario: CPU 0 is running a priority 8 thread that
can run on any processor, and CPU 1 is running a priority 4 thread that can run on any pro-
cessor. A priority 6 thread that can run on only CPU 0 becomes ready. What happens? Win-
dows won’t move the priority 8 thread from CPU 0 to CPU 1 (preempting the priority 4
thread) so that the priority 6 thread can run; the priority 6 thread has to wait.

Therefore, changing the affinity mask for a process or a thread can result in threads getting
less CPU time than they normally would, as Windows is restricted from running the thread
on certain processors. Therefore, setting affinity should be done with extreme care—in most
cases, it is optimal to let Windows decide which threads run where.

366 Microsoft Windows Internals, Fourth Edition
Ideal and Last Processor

Each thread has two CPU numbers stored in the kernel thread block:

■ Ideal processor, or the preferred processor that this thread should run on

■ Last processor, or the processor on which the thread last ran

The ideal processor for a thread is chosen when a thread is created using a seed in the process
block. The seed is incremented each time a thread is created so that the ideal processor for
each new thread in the process will rotate through the available processors on the system. For
example, the first thread in the first process on the system is assigned an ideal processor of 0.
The second thread in that process is assigned an ideal processor of 1. However, the next pro-
cess in the system has its first thread’s ideal processor set to 1, the second to 2, and so on. In
that way, the threads within each process are spread evenly across the processors.

Note that this assumes the threads within a process are doing an equal amount of work. This
is typically not the case in a multithreaded process, which normally has one or more house-
keeping threads and then a number of worker threads. Therefore, a multithreaded application
that wants to take full advantage of the platform might find it advantageous to specify the
ideal processor numbers for its threads by using the SetThreadIdealProcessor function.

On hyperthreaded systems, the next ideal processor is the first logical processor on the next
physical processor. For example, on a dual-processor hyperthreaded system with four logical
processors, if the ideal processor for the first thread is assigned to logical processor 0, the sec-
ond thread would be assigned to logical processor 2, the third thread to logical processor 1,
the fourth thread to logical process 3, and so forth. In this way, the threads are spread evenly
across the physical processors.

On NUMA systems, when a process is created, an ideal node for the process is selected. The
first process is assigned to node 0, the second process to node 1, and so on. Then, the ideal
processors for the threads in the process are chosen from the process’s ideal node. The ideal
processor for the first thread in a process is assigned to the first processor in the node. As
additional threads are created in processes with the same ideal node, the next processor is
used for the next thread’s ideal processor, and so on.

Multiprocessor Thread-Scheduling Algorithms

Now that we’ve described the types of multiprocessor systems supported by Windows as well
as the thread affinity and ideal processor settings, we’re ready to examine how this informa-
tion is used to determine which threads run where. There are two basic decisions to describe:

■ Choosing a processor for a thread that wants to run

■ Choosing a thread on a processor that needs something to do

Chapter 6: Processes, Threads, and Jobs 367
Choosing a Processor for a Thread When There Are Idle Processors

When a thread becomes ready to run, Windows first tries to schedule the thread to run on an
idle processor. If there is a choice of idle processors, preference is given first to the thread’s
ideal processor, then to the thread’s previous processor, and then to the currently executing
processor (that is, the CPU on which the scheduling code is running).

On Windows 2000, if none of these CPUs are idle, the first idle processor the thread can run
on is selected by scanning the idle processor mask from highest to lowest CPU number.

On Windows XP and Windows Server 2003, the idle processor selection is more sophisticated.
First, the idle processor set is set to the idle processors that the thread’s affinity mask permits it
to run on. If the system is NUMA and there are idle CPUs in the node containing the thread’s
ideal processor, the list of idle processors is reduced to that set. If this eliminates all idle proces-
sors, the reduction is not done. Next, if the system is running hyperthreaded processors and
there is a physical processor with all logical processors idle, the list of idle processors is reduced
to that set. If that results in an empty set of processors, the reduction is not done.

If the current processor (the processor trying to determine what to do with the thread that
wants to run) is in the remaining idle processor set, the thread is scheduled on it. If the cur-
rent processor is not in the remaining set of idle processors, it is a hyperthreaded system, and
there is an idle logical processor on the physical processor containing the ideal processor for
the thread, the idle processors are reduced to that set. If not, the system checks whether there
are any idle logical processors on the physical processor containing the thread’s previous pro-
cessor. If that set is nonzero, the idle processors are reduced to that list.

In the set of idle processors remaining, any CPUs in a sleep state are eliminated from consid-
eration. (Again, this reduction is not performed if that would eliminate all possible proces-
sors.) Finally, the lowest numbered CPU in the remaining set is selected as the processor to
run the thread on.

Regardless of the Windows version, once a processor has been selected for the thread to run
on, that thread is put in the Standby state and the idle processor’s PRCB is updated to point
to this thread. When the idle loop on that processor runs, it will see that a thread has been
selected to run and will dispatch that thread.

Choosing a Processor for a Thread When There Are No Idle Processors

If there are no idle processors when a thread wants to run, Windows compares the priority of
the thread running (or the one in the standby state) on the thread’s ideal processor to deter-
mine whether it should preempt that thread. On Windows 2000, a thread’s affinity mask can
exclude the ideal processor. (This condition is not allowed as of Windows XP.) If that is the
case, Windows 2000 selects the thread’s previous processor. If that processor is not in the
thread’s affinity mask, the highest processor number that the thread can run on is selected.

368 Microsoft Windows Internals, Fourth Edition
If the thread’s ideal processor already has a thread selected to run next (waiting in the standby
state to be scheduled) and that thread’s priority is less than the priority of the thread being
readied for execution, the new thread preempts that first thread out of the standby state and
becomes the next thread for that CPU. If there is already a thread running on that CPU, Win-
dows checks whether the priority of the currently running thread is less than the thread being
readied for execution. If so, the currently running thread is marked to be preempted and Win-
dows queues an interprocessor interrupt to the target processor to preempt the currently run-
ning thread in favor of this new thread.

Note Windows doesn’t look at the priority of the current and next threads on all the CPUs—
just on the one CPU selected as just described. If no thread can be preempted on that one CPU,
the new thread is put in the ready queue for its priority level, where it awaits its turn to get
scheduled. Therefore, Windows does not guarantee to be running all the highest priority
threads, but it will always run the highest priority thread.

If the ready thread cannot be run right away, it is moved into the ready state where it awaits its
turn to run. Note that in Windows Server 2003, threads are always put on their ideal proces-
sor’s per-processor ready queues.

Selecting a Thread to Run on a Specific CPU (Windows 2000 and
Windows XP)

In several cases (such as when a thread enters a wait state, lowers its priority, changes its
affinity, or delays or yields execution), Windows must find a new thread to run on the CPU
that the currently executing thread is running on. As described earlier, on a single-processor
system, Windows simply picks the first thread in the highest-priority nonempty ready
queue. On a multiprocessor system, however, Windows 2000 and Windows XP don’t sim-
ply pick the first thread in the ready queue. Instead, they look for a thread in the highest-pri-
ority nonempty read queue that meets one of the following conditions:

■ Ran last on the specified processor

■ Has its ideal processor set to the specified processor

■ Has been ready to run for longer than 3 clock ticks

■ Has a priority greater than or equal to 24

Threads that don’t have the specified processor in their hard affinity mask are skipped, obvi-
ously. If there are no threads that meet one of these conditions, Windows picks the thread at
the head of the ready queue it began searching from.

Why does it matter which processor a thread was last running on? As usual, the answer is
speed—giving preference to the last processor a thread executed on maximizes the chances
that thread data remains in the secondary cache of the processor in question.

Chapter 6: Processes, Threads, and Jobs 369
Selecting a Thread to Run on a Specific CPU (Windows Server 2003)

Because each processor in Windows Server 2003 has its own list of threads waiting to run on
that processor, when a thread finishes running, the processor can simply check its per-proces-
sor ready queue for the next thread to run. If the per-processor ready queues are empty, the
idle thread for that processor is scheduled. The idle thread then begins scanning other proces-
sor’s ready queues for threads it can run. Note that on NUMA systems, the idle thread first
looks at processors on its node before looking at other nodes’ processors.

Job Objects
A job object is a nameable, securable, shareable kernel object that allows control of one or
more processes as a group. A job object’s basic function is to allow groups of processes to be
managed and manipulated as a unit. A process can be a member of only one job object. By
default, its association with the job object can’t be broken and all processes created by the
process and its descendents are associated with the same job object as well. The job object
also records basic accounting information for all processes associated with the job and for all
processes that were associated with the job but have since terminated. Table 6-20 lists the
Windows functions to create and manipulate job objects.

The following are some of the CPU-related and memory-related limits you can specify for a
job:

■ Maximum number of active processes Limits the number of concurrently existing
processes in the job.

■ Jobwide user-mode CPU time limit Limits the maximum amount of user-mode CPU
time that the processes in the job can consume (including processes that have run and
exited). Once this limit is reached, by default all the processes in the job will be termi-
nated with an error code and no new processes can be created in the job (unless the
limit is reset). The job object is signaled, so any threads waiting for the job will be
released. You can change this default behavior with a call to EndOfJobTimeAction.

Table 6-19 Windows API Functions for Jobs

Function Description

CreateJobObject Creates a job object (with an optional name)

OpenJobObject Opens an existing job object by name

AssignProcessToJobObject Adds a process to a job

TerminateJobObject Terminates all processes in a job

SetInformationJobObject Sets limits

QueryInformationJobObject Retrieves information about the job, such as CPU time, page
fault count, number of processes, list of process IDs, quotas or
limits, and security limits

370 Microsoft Windows Internals, Fourth Edition
■ Per-process user-mode CPU time limit Allows each process in the job to accumulate
only a fixed maximum amount of user-mode CPU time. When the maximum is reached,
the process terminates (with no chance to clean up).

■ Job scheduling class Sets the length of the time slice (or quantum) for threads in pro-
cesses in the job. This setting applies only to systems running with long, fixed quan-
tums (the default for Windows Server systems). The value of the job-scheduling class
determines the quantum as shown here:

■ Job processor affinity Sets the processor affinity mask for each process in the job. (Indi-
vidual threads can alter their affinity to any subset of the job affinity, but processes can’t
alter their process affinity setting.)

■ Job process priority class Sets the priority class for each process in the job. Threads
can’t increase their priority relative to the class (as they normally can). Attempts to
increase thread priority are ignored. (No error is returned on calls to SetThreadPriority,
but the increase doesn’t occur.)

■ Default working set minimum and maximum Defines the specified working set mini-
mum and maximum for each process in the job. (This setting isn’t jobwide—each pro-
cess has its own working set with the same minimum and maximum values.)

■ Process and job committed virtual memory limit Defines the maximum amount of
virtual address space that can be committed by either a single process or the entire job.

Jobs can also be set to queue an entry to an I/O completion port object, which other threads
might be waiting for, with the Windows GetQueuedCompletionStatus function.

You can also place security limits on processes in a job. You can set a job so that each process
runs under the same jobwide access token. You can then create a job to restrict processes from
impersonating or creating processes that have access tokens that contain the local administra-
tor’s group. In addition, you can apply security filters so that when threads in processes con-
tained in a job impersonate client threads, certain privileges and security IDs (SIDs) can be
eliminated from the impersonation token.

Scheduling Class Quantum Units

0 6

1 12

2 18

3 24

4 30

5 36

6 42

7 48

8 54

9 Infinite if real-time; 60 otherwise

Chapter 6: Processes, Threads, and Jobs 371
Finally, you can also place user-interface limits on processes in a job. Such limits include being
able to restrict processes from opening handles to windows owned by threads outside the job,
reading and/or writing to the clipboard, and changing the many user-interface system param-
eters via the Windows SystemParametersInfo function.

Windows 2000 Datacenter Server has a tool called the Process Control Manager that allows
an administrator to define job objects, the various quotas and limits that can be specified for
a job, and which processes, if run, should be added to the job. A service component monitors
process activity and adds the specified processes to the jobs. Note that this tool is no longer
shipped with Windows Server 2003 Datacenter Edition, but will remain on the system if a
Windows 2000 Datacenter Server is upgraded to Windows Server 2003 Datacenter Edition.

EXPERIMENT: Viewing the Job Object
You can view named job objects with the Performance tool. (See the Job Object and Job
Object Details performance objects.) You can view unnamed jobs with the kernel
debugger !job or dt nt!_ejob commands.

To see whether a process is associated with a job, you can use the kernel debugger
!process command, or on Windows XP and Windows Server 2003, Process Explorer.
Follow these steps to create and view an unnamed job object:

1. From the command prompt, use the runas command to create a process running
the command prompt (Cmd.exe). For example, type runas /user:<domain>\<
username> cmd. You’ll be prompted for your password. Enter your password, and
a command prompt window will appear. The Windows service that executes
runas commands creates an unnamed job to contain all processes (so that it can
terminate these processes at logoff time).

2. From the command prompt, run Notepad.exe.

3. Then run Process Explorer and notice that the Cmd.exe and Notepad.exe pro-
cesses are highlighted as part of a job. (You can configure the colors used to high-
light processes that are members of a job by clicking Options, Configure
Highlighting.) Here is a screen shot showing these two processes:

4. Double-click either the Cmd.exe or Notepad.exe process to bring up the process
properties. You will see a Job tab on the process properties dialog box.

372 Microsoft Windows Internals, Fourth Edition
5. Click the Job tab to view the details about the job. In this case, there are no quotas
associated with the job, but there are two member processes:

6. Now run the kernel debugger on the live system (either WinDbg in local kernel
debugging mode or LiveKd if you are on Windows 2000), display the process list
with !process, and find the recently created process running Cmd.exe. Then dis-
play the process block by using !process <process ID>, find the address of the job
object, and finally display the job object with the !job command. Here’s some par-
tial debugger output of these commands on a live system:

lkd> !process 0 0

**** NT ACTIVE PROCESS DUMP ****

.

.

PROCESS 8567b758 SessionId: 0 Cid: 0fc4 Peb: 7ffdf000 ParentCid: 00b0

DirBase: 1b3fb000 ObjectTable: e18dd7d0 HandleCount: 19.

Image: cmd.exe

PROCESS 856561a0 SessionId: 0 Cid: 0d70 Peb: 7ffdf000 ParentCid: 0fc4

DirBase: 2e341000 ObjectTable: e19437c8 HandleCount: 16.

Image: notepad.exe

lkd> !process 0fc4

Searching for Process with Cid == fc4

PROCESS 8567b758 SessionId: 0 Cid: 0fc4 Peb: 7ffdf000 ParentCid: 00b0

DirBase: 1b3fb000 ObjectTable: e18dd7d0 HandleCount: 19.

Image: cmd.exe

BasePriority 8

.

.

Job 85557988

lkd> !job 85557988

Job at 85557988

TotalPageFaultCount 0

TotalProcesses 2

ActiveProcesses 2

TotalTerminatedProcesses 0

Chapter 6: Processes, Threads, and Jobs 373
LimitFlags 0

MinimumWorkingSetSize 0

MaximumWorkingSetSize 0

ActiveProcessLimit 0

PriorityClass 0

UIRestrictionsClass 0

SecurityLimitFlags 0

Token 00000000

7. Finally, use the dt command to display the job object and notice the additional
fields shown about the job:

lkd> dt nt!_ejob 85557988

nt!_EJOB

+0x000 Event : _KEVENT

+0x010 JobLinks : _LIST_ENTRY [0x805455c8 - 0x85797888]

+0x018 ProcessListHead : _LIST_ENTRY [0x8567b8dc - 0x85656324]

+0x020 JobLock : _ERESOURCE

+0x058 TotalUserTime : _LARGE_INTEGER 0x0

+0x060 TotalKernelTime : _LARGE_INTEGER 0x0

+0x068 ThisPeriodTotalUserTime : _LARGE_INTEGER 0x0

+0x070 ThisPeriodTotalKernelTime : _LARGE_INTEGER 0x0

+0x078 TotalPageFaultCount : 0

+0x07c TotalProcesses : 2

+0x080 ActiveProcesses : 2

+0x084 TotalTerminatedProcesses : 0

+0x088 PerProcessUserTimeLimit : _LARGE_INTEGER 0x0

+0x090 PerJobUserTimeLimit : _LARGE_INTEGER 0x0

+0x098 LimitFlags : 0

+0x09c MinimumWorkingSetSize : 0

+0x0a0 MaximumWorkingSetSize : 0

+0x0a4 ActiveProcessLimit : 0

+0x0a8 Affinity : 0

+0x0ac PriorityClass : 0 ’’

+0x0b0 UIRestrictionsClass : 0

+0x0b4 SecurityLimitFlags : 0

+0x0b8 Token : (null)

+0x0bc Filter : (null)

+0x0c0 EndOfJobTimeAction : 0

+0x0c4 CompletionPort : 0x8619d8c0

+0x0c8 CompletionKey : (null)

+0x0cc SessionId : 0

+0x0d0 SchedulingClass : 5

+0x0d8 ReadOperationCount : 0

+0x0e0 WriteOperationCount : 0

+0x0e8 OtherOperationCount : 0

+0x0f0 ReadTransferCount : 0

+0x0f8 WriteTransferCount : 0

+0x100 OtherTransferCount : 0

+0x108 IoInfo : _IO_COUNTERS

+0x138 ProcessMemoryLimit : 0

+0x13c JobMemoryLimit : 0

+0x140 PeakProcessMemoryUsed : 0x256

+0x144 PeakJobMemoryUsed : 0x1f6

+0x148 CurrentJobMemoryUsed : 0x1f6

+0x14c MemoryLimitsLock : _FAST_MUTEX

+0x16c JobSetLinks : _LIST_ENTRY [0x85557af4 - 0x85557af4]

+0x174 MemberLevel : 0 +0x178 JobFlags : 0

374 Microsoft Windows Internals, Fourth Edition
Conclusion
In this chapter, we’ve examined the structure of processes and threads and jobs, seen how they
are created, and looked at how Windows decides which threads should run and for how long.

Many references in this chapter are to topics related to memory management. Because threads
run inside processes and processes in large part define an address space, the next logical topic
is how Windows performs virtual and physical memory management—the subjects of Chapter 7.

Chapter 7

Memory Management

In this chapter, you’ll learn how Microsoft Windows implements virtual memory and how it
manages the subset of virtual memory kept in physical memory. We’ll also describe the inter-
nal structure and components that make up the memory manager, including key data struc-
tures and algorithms. Before examining these mechanisms, let’s review the basic services
provided by the memory manager and key concepts such as reserved memory versus commit-
ted memory and shared memory.

Introduction to the Memory Manager
By default, the virtual size of a process on 32-bit Windows is 2 GB. If the image is marked spe-
cially as large address space aware, and the system is booted with a special switch (described
later in this chapter), a 32-bit process can grow to 3 GB on 32-bit Windows and up to 4 GB on
64-bit Windows. The process virtual address space size on 64-bit Windows is 7152 GB on IA-
64 systems and 8192 GB on x64 systems. (This value could be increased in future releases.)

As you saw in Chapter 2 (specifically in Table 2-4), the maximum amount of physical memory
supported by Windows ranges from 2 GB to 1024 GB, depending on which version and edi-
tion of Windows you are running. Because the virtual address space might be larger or smaller
than the physical memory on the machine, the memory manager has two primary tasks:

■ Translating, or mapping, a process’s virtual address space into physical memory so that
when a thread running in the context of that process reads or writes to the virtual
address space, the correct physical address is referenced. (The subset of a process’s vir-
tual address space that is physically resident is called the working set. Working sets are
described in more detail later in this chapter.)

■ Paging some of the contents of memory to disk when it becomes overcommitted—that
is, when running threads or system code try to use more physical memory than is cur-
rently available—and bringing the contents back into physical memory when needed.

In addition to providing virtual memory management, the memory manager provides a core
set of services on which the various Windows environment subsystems are built. These ser-
vices include memory mapped files (internally called section objects), copy-on-write mem-
ory, and support for applications using large, sparse address spaces. In addition, the
375

376 Microsoft Windows Internals, Fourth Edition
memory manager provides a way for a process to allocate and use larger amounts of physi-
cal memory than can be mapped into the process virtual address space (for example, on 32-
bit systems with more than 4 GB of physical memory). This is explained in the section
“Address Windowing Extensions” later in this chapter.

Memory Manager Components

The memory manager is part of the Windows executive and therefore exists in the file
Ntoskrnl.exe. No parts of the memory manager exist in the HAL. The memory manager con-
sists of the following components:

■ A set of executive system services for allocating, deallocating, and managing virtual
memory, most of which are exposed through the Windows API or kernel-mode device
driver interfaces

■ A translation-not-valid and access fault trap handler for resolving hardware-detected
memory management exceptions and making virtual pages resident on behalf of a pro-
cess

■ Several key components that run in the context of six different kernel-mode system
threads:

❑ The working set manager (priority 16), which the balance set manager (a system
thread that the kernel creates) calls once per second as well as when free memory
falls below a certain threshold, drives the overall memory management policies,
such as working set trimming, aging, and modified page writing.

❑ The process/stack swapper (priority 23) performs both process and kernel thread
stack inswapping and outswapping. The balance set manager and the thread-
scheduling code in the kernel awaken this thread when an inswap or outswap
operation needs to take place.

❑ The modified page writer (priority 17) writes dirty pages on the modified list back
to the appropriate paging files. This thread is awakened when the size of the mod-
ified list needs to be reduced. (See the section “Modified Page Writer” to find out
how you can change this default value.)

❑ The mapped page writer (priority 17) writes dirty pages in mapped files to disk. It is
awakened when the size of the modified list needs to be reduced or if pages for
mapped files have been on the modified list for more than 5 minutes. This second
modified page writer thread is necessary because it can generate page faults that
result in requests for free pages. If there were no free pages and there was only one
modified page writer thread, the system could deadlock waiting for free pages.

Chapter 7: Memory Management 377
❑ The dereference segment thread (priority 18) is responsible for cache reduction as
well as page file growth and shrinkage. (For example, if there is no virtual address
space for paged pool growth, this thread trims the page cache so that the paged
pool used to anchor it can be freed for reuse.)

❑ The zero page thread (priority 0) zeroes out pages on the free list so that a cache of
zero pages is available to satisfy future demand-zero page faults. (Memory zeroing
in some cases is done by a faster function called MiZeroInParallel. See the note in
the section “Page List Dynamics.”)

Each of these components is covered in more detail later in the chapter.

Internal Synchronization

Like all other components of the Windows executive, the memory manager is fully reentrant
and supports simultaneous execution on multiprocessor systems—that is, it allows two
threads to acquire resources in such a way that they don’t corrupt each other’s data. To
accomplish the goal of being fully reentrant, the memory manager uses several different inter-
nal synchronization mechanisms to control access to its own internal data structures, such as
spinlocks and executive resources. (Synchronization objects are discussed in Chapter 3.)

Systemwide resources to which the memory manager must synchronize access include the page
frame number (PFN) database (controlled by a spinlock), section objects and the system work-
ing set (controlled by pushlocks), and page file creation (controlled by a mutex). In Windows
XP and Windows Server 2003, a number of these locks have been either removed completely or
optimized, resulting in much less contention. For example, in Windows 2000, spinlocks were
used to synchronize changes to system address space and memory commitment; however to
improve scalability, these spinlocks have been removed as of Windows XP. Per-process memory
management data structures that require synchronization include the working set lock (held
while changes are being made to the working set list) and the address space lock (held when-
ever the address space is being changed). Working set synchronization in Windows 2000 was
implemented as a mutex; in Windows XP and later, a pushlock is used, improving parallelism
and scalability, because pushlocks support both shared and exclusive access.

Other operations that no longer involve acquiring locks include charging nonpaged and
paged pool quotas, charging commitment of pages, and allocating and mapping physical
memory allocated through the address windowing extensions (AWE) functions. Also, the
lock that synchronizes access to the structures that describe physical memory (the PFN data-
base) is now acquired less and when acquired, held for less time. These changes translate into
greater parallelism and scalability on multiprocessor systems because the number of times
the memory manager might have to block while another CPU is making a change to a global
structure has been reduced or eliminated.

378 Microsoft Windows Internals, Fourth Edition
Configuring the Memory Manager

Like most of Windows, the memory manager attempts to automatically provide optimal sys-
tem performance for varying workloads on systems of varying sizes and types. While there
are a limited number of registry values you can add and/or modify under the key HKLM\
SYSTEM\CurrentControlSet\Control\Session Manager\Memory Management to override
some of these default performance calculations, in general, the memory manager’s default
computations will be sufficient for the majority of workloads.

Many of the thresholds and limits that control memory manager policy decisions are com-
puted at system boot time on the basis of memory size and product type. (Windows 2000 Pro-
fessional and Windows XP Professional and Home editions are optimized for desktop
interactive use, and Windows Server systems are optimized for running server applications.)
These values are stored in various kernel variables and later used by the memory manager. To
find some of these, search for global variables in Ntoskrnl.exe that have names beginning with
Mm that contain the word “maximum” or “minimum.” (See the experiment “Peering into
Undocumented Interfaces” in Chapter 2.)

Warning Although you’ll find references to some of these variables, you shouldn’t change
them. Windows has been tested to operate properly with the current possible permutations of
these values that can be computed. Changing the value of these kernel variables on a running
system can result in unpredictable system behavior, including system hangs or even crashes.

Examining Memory Usage

The Memory and Process performance counter objects provide access to most of the details
about system and process memory utilization. Throughout the chapter, we’ll include refer-
ences to specific performance counters that contain information related to the component
being described.

Besides the Performance tool, a number of tools in the Windows Support Tools and Windows
resource kits display different subsets of memory usage information. We’ve included relevant
examples and experiments throughout the chapter. One word of caution, however—different
utilities use varying and sometimes inconsistent or confusing names when displaying mem-
ory information. The following experiment illustrates this point. (We’ll explain the terms used
in this example in subsequent sections.)

EXPERIMENT: Viewing System Memory Information
The Performance tab in the Windows Task Manager, shown in the following screen shot
from Windows XP, displays basic system memory information. This information is a
subset of the detailed memory information available through the performance counters.

Chapter 7: Memory Management 379
Both Pmon.exe (in the Windows Support Tools) and Pstat.exe (in the Platform SDK)
display system and process memory information. The annotations in the following out-
put from Pstat explain the information reported. (For an explanation of the commit
total and limit, see Table 7-15.)

To see the specific usage of paged and nonpaged pool, use the Poolmon utility,
described in the “Monitoring Pool Usage” section.

Actual physical memory
on machine

Total size of standby,
free, and zero lists

Standby list + size of
system working set

Total of next two values

Paged pool virtual size

Nonpaged pool
physical size

Memory: 64692K

Commit: 111848K/85808K

Avail: 3676K

 Limit: 182400K

TotalWs: 62836K

 Peak: 113732K

InRam Kernel: 3788K

 Pool N: 2344K

P: 9604K

P:14448K

Total physical
memory

Total of standby,
free, zero lists

Total of all process
working sets (not
the total process
memory usage,
which would double
count shared pages)

Resident
system
code

Resident
paged
pool

Nonpaged pool
physical size

Paged
pool
virtual
size

System working
set size (not just
the size of the file
cache)

User Time Kernel Time Ws
20032

Faults
194378

Commit Pri Hnd Thd Pid Name
File Cache

0:00:00.000

0:00:00.000

0:00:00.140

0:00:00.640

8:03:55.734

0:01:24.421

0:00:00.468

0:00:02.843

16

32

200

716

1

1601

2008

8625

0

36

164

1588

0

8

11

13

0

140

35

145

2

27

6

9

0

2

20

30

Idle Process

System

smss.exe

csrss.exe

380 Microsoft Windows Internals, Fourth Edition
Finally, the !vm command in the kernel debugger shows the basic memory management
information available through the memory-related performance counters. This com-
mand can be useful if you’re looking at a crash dump or hung system. Here’s an example
of its output:

kd> !vm

*** Virtual Memory Usage ***

Physical Memory: 32620 (130480 Kb)

Page File: \??\C:\pagefile.sys

Current: 204800Kb Free Space: 101052Kb

Minimum: 204800Kb Maximum: 204800Kb

Available Pages: 3604 (14416 Kb)

ResAvail Pages: 24004 (96016 Kb)

Modified Pages: 768 (3072 Kb)

NonPagedPool Usage: 1436 (5744 Kb)

NonPagedPool Max: 12940 (51760 Kb)

PagedPool 0 Usage: 6817 (27268 Kb)

PagedPool 1 Usage: 982 (3928 Kb)

PagedPool 2 Usage: 984 (3936 Kb)

PagedPool Usage: 8783 (35132 Kb)

PagedPool Maximum: 26624 (106496 Kb)

Shared Commit: 1361 (5444 Kb)

Special Pool: 0 (0 Kb)

Free System PTEs: 189291 (757164 Kb)

Shared Process: 3165 (12660 Kb)

PagedPool Commit: 8783 (35132 Kb)

Driver Commit: 1098 (4392 Kb)

Committed pages: 45113 (180452 Kb)

Commit limit: 79556 (318224 Kb)

Total Private: 30536 (122144 Kb)

IEXPLORE.EXE 3028 (12112 Kb)

svchost.exe 2128 (8512 Kb)

WINWORD.EXE 1971 (7884 Kb)

POWERPNT.EXE 1905 (7620 Kb)

Acrobat.exe 1761 (7044 Kb)

winlogon.exe 1361 (5444 Kb)

explorer.exe 1300 (5200 Kb)

livekd.exe 1015 (4060 Kb)

hh.exe 960 (3840 Kb)

EXPERIMENT: Accounting for Physical Memory Use
By combining information available from performance counters with output from ker-
nel debugger commands, you can come close to accounting for physical memory usage
on a machine running Windows. To examine the memory usage information available
through performance counters, run the Performance tool and add the counters to view
the following information. (You’ll see the results more easily if you change the vertical
scale maximum on the graph to 1000.)

Chapter 7: Memory Management 381
■ Total process working set size To view this information, select the Process perfor-
mance object and the Working Set counter for the _Total process instance. This
number will be larger than the actual total process memory utilization because
shared pages are counted in each process working set. To get a more accurate pic-
ture of process memory utilization, subtract free memory (available bytes), operat-
ing system memory used (nonpaged pool, resident paged pool, and resident
operating system and driver code), and the size of the modified list from the total
physical memory on the machine. What you’re left with is the memory being used
by processes. Comparing this value against the total process working set size as
reported by the Performance tool gives you some indication of the amount of shar-
ing occurring between processes. Although examining process physical memory
usage is interesting, of more concern is the private committed virtual memory
usage by processes, because memory leaks show up as an increasing private vir-
tual size, not an increasing working set size. At some point, the memory manager
will stop the process from growing in physical size, though it can continue to grow
in its virtual size until the systemwide commit limit—the maximum amount of pri-
vate committed virtual memory available on the system—is reached (or less if the
process is a member of a job with a job-wide or process virtual memory limit). For
more information, see the section “Page Files.”

■ Total system working set size To view this information, select the Memory proces-
sor object and the Cache Bytes counter. As explained in the section “System Work-
ing Set,” the total system working set size includes more than just the cache size—
it includes the subset of paged pool, pageable operating system code, and page-
able driver code that is resident and in the system working set.

■ Size of nonpaged pool View this information by adding the Memory: Pool Non-
paged Bytes counter.

■ Size of the free, zero, and standby lists View the sizes of these lists by adding the
Memory: Available Bytes counter. (Use the !memusage kernel debugger command
to get the size of each of the lists separately.)

Your graph or report now contains a representation of all of physical memory except for
two components that you can’t obtain from a performance counter:

■ Nonpaged operating system and driver code

■ The modified and modified-no-write paging lists

Although you can easily obtain the size of both the modified and modified-no-write lists
by using the kernel debugger !memusage command, there’s no easy way to get the size of
the nonpaged operating system and driver code.

382 Microsoft Windows Internals, Fourth Edition
Services the Memory Manager Provides
The memory manager provides a set of system services to allocate and free virtual memory,
share memory between processes, map files into memory, flush virtual pages to disk, retrieve
information about a range of virtual pages, change the protection of virtual pages, and lock the
virtual pages into memory.

Like other Windows executive services, the memory management services allow their caller to
supply a process handle, indicating the particular process whose virtual memory is to be
manipulated. The caller can thus manipulate either its own memory or (with the proper per-
missions) the memory of another process. For example, if a process creates a child process, by
default it has the right to manipulate the child process’s virtual memory. Thereafter, the par-
ent process can allocate, deallocate, read, and write memory on behalf of the child process by
calling virtual memory services and passing a handle to the child process as an argument. This
feature is used by subsystems to manage the memory of their client processes, and it is also
key for implementing debuggers because debuggers must be able to read and write to the
memory of the process being debugged.

Most of these services are exposed through the Windows API. The Windows API has three
groups of functions for managing memory in applications: page granularity virtual memory
functions (Virtualxxx), memory-mapped file functions (CreateFileMapping, MapViewOfFile),
and heap functions (Heapxxx and the older interfaces Localxxx and Globalxxx). (We’ll
describe the heap manager later in this section.)

The memory manager also provides a number of services, such as allocating and deallocating
physical memory and locking pages in physical memory for direct memory access (DMA)
transfers, to other kernel-mode components inside the executive as well as to device drivers.
These functions begin with the prefix Mm. In addition, though not strictly part of the memory
manager, executive support routines that begin with Ex are used to allocate and deallocate
from the system heaps (paged and nonpaged pool) as well as to manipulate look-aside lists.
We’ll touch on these topics later in this chapter, in the section “System Memory Pools.”

Although we’ll be referring to Windows functions and kernel-mode memory management
and memory allocation routines provided for device drivers, we won’t cover the interface and
programming details but rather the internal operations of these functions. Refer to the Plat-
form Software Development Kit (SDK) and Device Driver Kit (DDK) documentation on
MSDN for a complete description of the available functions and their interfaces.

Large and Small Pages

The virtual address space is divided into units called pages. That is because the hardware mem-
ory management unit translates virtual to physical addresses at the granularity of a page. Hence,
a page is the smallest unit of protection at the hardware level. (The various page protection
options are described in the section “Protecting Memory.”) There are two page sizes: small and
large. The actual sizes vary based on hardware architecture, and they are listed in Table 7-1.

Chapter 7: Memory Management 383
The advantage of large pages is speed of address translation for references to other data within
the large page. This advantage exists because the first reference to any byte within a large page
will cause the hardware’s translation look-aside buffer (or TLB, which is described in the sec-
tion “Translation Look-Aside Buffer”) to have in its cache the information necessary to trans-
late references to any other byte within the large page. If small pages are used, more TLB
entries are needed for the same range of virtual addresses, thus increasing recycling of entries
as new virtual addresses require translation. This, in turn, means having to go back to the page
table structures when references are made to virtual addresses outside the scope of a small
page whose translation has been cached. The TLB is a very small cache, and thus large pages
make better use of this limited resource.

To take advantage of large pages, on systems considered to have enough memory (see Table 7-2
for the minimums), Windows maps with large pages the core operating system images
(Ntoskrnl.exe and Hal.dll) as well as core operating system data (such as the initial part of
nonpaged pool and the data structures that describe the state of each physical memory page).
Windows also automatically maps I/O space requests (calls by device drivers to MmMap-
IoSpace) with large pages if the request is of satisfactory large page length and alignment.
Lastly, Windows also allows applications to map their images, private memory and pagefile-
backed sections with large pages. (See the MEM_LARGE_PAGE flag on the VirtualAlloc func-
tion.) You can also specify other device drivers to be mapped with large pages by adding a
multistring registry value HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Con-
trol\Session Manager\Memory Management\LargePageDrivers and specifying the names of
the drivers as separately null terminated strings.

One side-effect of large pages is that because each large page must be mapped with a single
protection (because hardware memory protection is on a per-page basis), if a large page con-
tains both read-only code and read/write data, the page must be marked as read/write, which
means that the code will be writable. This means device drivers or other kernel mode code
could, as a result of a bug, modify what is supposed to be read-only operating system or driver
code without causing a memory access violation. However, if small pages are used to map the
kernel, the read-only portions of NTOSKRNL.EXE and HAL.DLL will be mapped as read-only
pages. Although this reduces efficiency of address translation, if a device driver (or other ker-

Table 7-1 Page Sizes

Architecture Small Page Size Large Page Size

x86 4 KB 4 MB (2 MB on PAE systems)

x64 4 KB 2 MB

IA64 8 KB 16 MB

Table 7-2 Large Page Minimums

Operating System Minimum Memory to Use Large Pages

Windows 2000 >127 MB

Windows XP, Windows Server 2003 >255 MB

384 Microsoft Windows Internals, Fourth Edition
nel mode code) attempts to modify a read-only part of the operating system, the system will
crash immediately with the finger pointing at the offending instruction, as opposed to allow-
ing the corruption to occur and later the system crashing (in a harder-to-diagnose way) when
some other component trips over their corrupted data. If you suspect you are experiencing
kernel code corruptions, enable Driver Verifier (described later in this chapter)—this will dis-
able the use of large pages.

Reserving and Committing Pages

Pages in a process address space are free, reserved, or committed. Applications can first reserve
address space and then commit pages in that address space. Or they can reserve and commit
in the same function call. These services are exposed through the Windows VirtualAlloc and
VirtualAllocEx functions.

Reserved address space is simply a way for a thread to reserve a range of virtual addresses for
future use. Attempting to access reserved memory results in an access violation because the
page isn’t mapped to any storage that can resolve the reference.

Committed pages are pages that, when accessed, ultimately translate to valid pages in physical
memory. Committed pages are either private and not shareable or mapped to a view of a sec-
tion (which might or might not be mapped by other processes). Sections are described in two
upcoming sections: “Shared Memory and Mapped Files” and “Section Objects.”

If the pages are private to the process and have never been accessed before, they are created at
the time of first access as zero-initialized pages (or demand zero). Private committed pages can
later be automatically written to the paging file by the operating system if memory demands dic-
tate. Committed pages that are private are inaccessible to any other process unless they’re
accessed using cross-process memory functions, such as ReadProcessMemory or WriteProcess-
Memory. If committed pages are mapped to a portion of a mapped file, they might need to be
brought in from disk when accessed unless they’ve already been read earlier, either by the pro-
cess accessing the page or by another process that had the same file mapped and had previously
accessed the page. (See the section “Shared Memory and Mapped Files” later in this chapter.)

Pages are written to disk through normal modified page writing as pages are moved from the
process working set to the modified list and ultimately to disk. (Working sets and the modi-
fied list are explained later in this chapter.) Mapped file pages can also be written back to disk
as a result of an explicit call to FlushViewOfFile.

You can decommit pages and/or release address space with the VirtualFree or VirtualFreeEx
function. The difference between decommittal and release is similar to the difference between
reservation and committal—decommitted memory is still reserved, but released memory is
neither committed nor reserved. (It’s freed.)

Using the two-step process of reserving and committing memory can reduce memory usage
by deferring committing pages until needed but keeping the convenience of virtual contiguity.

Chapter 7: Memory Management 385
Reserving memory is a relatively fast and inexpensive operation under Windows because it
doesn’t consume any committed pages (a precious system resource) or process page file
quota (a limit on the number of committed pages a process can consume—not necessarily
page file space). All that needs to be updated or constructed is the relatively small internal
data structures that represent the state of the process address space. (We’ll explain these data
structures, called virtual address descriptors, or VADs, later in the chapter.)

Reserving and then committing memory is useful for applications that need a potentially large
virtually contiguous memory buffer; rather than committing pages for the entire region, the
address space can be reserved and then committed later when needed. A utilization of this
technique in the operating system is the user-mode stack for each thread. When a thread is
created, a stack is reserved. (1 MB is the default; you can override this size with the CreateThread
function call or on an imagewide basis by using the /STACK linker flag.) By default, the initial
page in the stack is committed and the next page is marked as a guard page, which isn’t com-
mitted, that traps references beyond the end of the committed portion of the stack and
expands it.

Locking Memory

In general, it’s better to let the memory manager decide which pages remain in physical mem-
ory. However, there might be special circumstances where this is necessary. Pages can be
locked in memory in two ways:

■ Windows applications can call the VirtualLock function to lock pages in their process
working set. The number of pages a process can lock can’t exceed its minimum working
set size minus eight pages. Therefore, if a process needs to lock more pages, it can
increase its working set minimum with the SetProcessWorkingSetSize function (referred
to in the section “Working Set Management”).

■ Device drivers can call the kernel-mode functions MmProbeAndLockPages, MmLockPaga-
bleCodeSection, MmLockPagableDataSection, or MmLockPagableSectionByHandle. Pages
locked using this mechanism remain in memory until explicitly unlocked. Although no
quota is imposed on the number of pages a driver can lock in memory, a driver can’t
lock more pages than the resident available page count will allow.

Allocation Granularity

Windows aligns each region of reserved process address space to begin on an integral bound-
ary defined by the value of the system allocation granularity, which can be retrieved from the
Windows GetSystemInfo function. Currently, this value is 64 KB. This size was chosen so that
if support were added for future processors with large page sizes (for example, up to 64 KB)
or virtually indexed caches that require systemwide physical-to-virtual page alignment, the
risk of requiring changes to applications that made assumptions about allocation alignment
would be reduced. (Windows kernel-mode code isn’t subject to the same restrictions; it can
reserve memory on a single-page granularity.)

386 Microsoft Windows Internals, Fourth Edition
Finally, when a region of address space is reserved, Windows ensures that the size and base of
the region is a multiple of the system page size, whatever that might be. For example, because
x86 systems use 4-KB pages, if you tried to reserve a region of memory 18 KB in size, the actual
amount reserved on an x86 system would be 20 KB. If you specified a base address of 3 KB for
an 18-KB region, the actual amount reserved would be 24 KB.

Shared Memory and Mapped Files

As is true with most modern operating systems, Windows provides a mechanism to share
memory among processes and the operating system. Shared memory can be defined as mem-
ory that is visible to more than one process or that is present in more than one process virtual
address space. For example, if two processes use the same DLL, it would make sense to load
the referenced code pages for that DLL into physical memory only once and share those pages
between all processes that map the DLL, as illustrated in Figure 7-1.

Figure 7-1 Sharing memory between processes

Each process would still maintain its private memory areas in which to store private data, but
the program instructions and unmodified data pages could be shared without harm. As we’ll
explain later, this kind of sharing happens automatically because the code pages in executable
images are mapped as execute-only and writable pages are mapped copy-on-write. (See the
section “Copy-on-Write” for more information.)

The underlying primitives in the memory manager used to implement shared memory are
called section objects, which are called file mapping objects in the Windows API. The internal
structure and implementation of section objects are described in the section “Section Objects”
later in this chapter.

This fundamental primitive in the memory manager is used to map virtual addresses, whether
in main memory, in the page file, or in some other file that an application wants to access as
if it were in memory. A section can be opened by one process or by many; in other words, sec-
tion objects don’t necessarily equate to shared memory.

A section object can be connected to an open file on disk (called a mapped file) or to commit-
ted memory (to provide shared memory). Sections mapped to committed memory are called

Page 1

Page 2

Page 3

Physical memory

Original data

Process
address
space

Original data

Process
address
space

Chapter 7: Memory Management 387
page file backed sections because the pages are written to the paging file if memory demands
dictate. (Because Windows can run with no paging file, page file backed sections might in fact
be “backed” only by physical memory.) As with any other page that is made visible to user
mode (such as private committed pages), shared committed pages are always zero-filled when
they are first accessed.

To create a section object, call the Windows CreateFileMapping function, specifying the file
handle to map it to (or INVALID_HANDLE_VALUE for a page file backed section), and
optionally a name and security descriptor. If the section has a name, other processes can open
it with OpenFileMapping. Or you can grant access to section objects through handle inherit-
ance (by specifying that the handle be inheritable when opening or creating the handle) or
handle duplication (by using DuplicateHandle). Device drivers can also manipulate section
objects with the ZwOpenSection, ZwMapViewOfSection, and ZwUnmapViewOfSection functions.

A section object can refer to files that are much larger than can fit in the address space of a pro-
cess. (If the paging file backs a section object, sufficient space must exist in the paging file to
contain it.) To access a very large section object, a process can map only the portion of the sec-
tion object that it requires (called a view of the section) by calling the MapViewOfFile function
and then specifying the range to map. Mapping views permits processes to conserve address
space because only the views of the section object needed at the time must be mapped into
memory.

Windows applications can use mapped files to conveniently perform I/O to files by simply
making them appear in their address space. User applications aren’t the only consumers of
section objects: the image loader uses section objects to map executable images, DLLs, and
device drivers into memory, and the cache manager uses them to access data in cached files.
(For information on how the cache manager integrates with the memory manager, see Chap-
ter 11.) How shared memory sections are implemented, both in terms of address translation
and the internal data structures, is explained later in this chapter.

EXPERIMENT: Viewing Memory Mapped Files
You can list the memory mapped files in a process by using Process Explorer from Sys-
internals. To view the memory mapped files by using Process Explorer, configure the
lower pane to show the DLL view. (Click on View, Lower Pane View, DLLs.) Note that
this is more than just a list of DLLs—it represents all memory mapped files in the pro-
cess address space. Some of these are DLLs, one is the image file (EXE) being run, and
additional entries might represent memory mapped data files. For example, the follow-
ing display from Process Explorer shows a Microsoft PowerPoint process that has mem-
ory mapped the PowerPoint file being edited into its address space:

388 Microsoft Windows Internals, Fourth Edition
You can also search for memory mapped files by clicking on Find, DLL. This can be useful
when trying to determine which process(es) are using a DLL that you are trying to replace.

Finally, comparing the list of DLLs loaded in a process with another instance of the
same program running on another system might help point to DLL configuration
issues, such as the wrong version of a DLL getting loaded in a process. This problem is
known affectionately as “DLL hell.”

Protecting Memory

As explained in Chapter 1, Windows provides memory protection so that no user process can
inadvertently or deliberately corrupt the address space of another process or the operating
system itself. Windows provides this protection in four primary ways.

First, all systemwide data structures and memory pools used by kernel-mode system compo-
nents can be accessed only while in kernel mode—user-mode threads can’t access these pages.
If they attempt to do so, the hardware generates a fault, which in turn the memory manager
reports to the thread as an access violation.

Note In contrast, Microsoft Windows 95, Microsoft Windows 98, and Microsoft Windows Mil-
lennium Edition have some pages in system address space that are writable from user mode, thus
allowing an errant application to corrupt key system data structures and crash the system.

Second, each process has a separate, private address space, protected from being accessed by
any thread belonging to another process. The only exceptions are if the process decides to
share pages with other processes or if another process has virtual memory read or write access
to the process object and thus can use the ReadProcessMemory or WriteProcessMemory func-
tions. Each time a thread references an address, the virtual memory hardware, in concert with
the memory manager, intervenes and translates the virtual address into a physical one. By
controlling how virtual addresses are translated, Windows can ensure that threads running in
one process don’t inappropriately access a page belonging to another process.

Chapter 7: Memory Management 389
Third, in addition to the implicit protection virtual-to-physical address translation offers, all
processors supported by Windows provide some form of hardware-controlled memory pro-
tection (such as read/write, read-only, and so on); the exact details of such protection vary
according to the processor. For example, code pages in the address space of a process are
marked read-only and are thus protected from modification by user threads.

Table 7-3 lists the memory protection options defined in the Windows API. (See the Virtual-
Protect, VirtualProtectEx, VirtualQuery, and VirtualQueryEx functions.)

Table 7-3 Memory Protection Options Defined in the Windows API

Attribute Description

PAGE_NOACCESS Any attempt to read from, write to, or execute code in this region
causes an access violation.

PAGE_READONLY Any attempt to write to (and on processors with no execute sup-
port, execute code in) memory causes an access violation, but
reads are permitted.

PAGE_READWRITE The page is readable and writable, but not executable.

PAGE_EXECUTE*

* No execute protection is supported by Windows XP Service Pack 2 and Windows Server 2003 Service Pack 1 and
later on processors that have the necessary hardware support (for example, the x64, IA-64, and future x86 proces-
sors). On earlier versions of Windows and on processors that do not support no execute protection, all page per-
missions allow execution. The next section contains a more complete description of no execute protection.

Any attempt to write to code in memory in this region causes an
access violation, but execution (and read on all existing proces-
sors) is permitted.

PAGE_EXECUTE_READ* Any attempt to write to code in memory in this region causes an
access violation, but executes and reads are permitted.

PAGE_EXECUTE_READWRITE* The page is readable, writable, and executable—no action will
cause an access violation.

PAGE_WRITECOPY Any attempt to write to memory in this region causes the system
to give the process a private copy of the page. On processors
with no execute support, attempts to execute code in memory in
this region cause an access violation.

PAGE_EXECUTE_WRITECOPY Any attempt to write to memory in this region causes the system to
give the process a private copy of the page. Reading and executing
code in this region is permitted. (No copy is made in this case.)

PAGE_GUARD Any attempt to read from or write to a guard page raises an
EXCEPTION_GUARD_PAGE exception and turns off the guard
page status. Guard pages thus act as a one-shot alarm. Note that
this flag can be specified with any of the page protections listed
in this table except PAGE_NOACCESS.

PAGE_NOCACHE Use physical memory that is not cached. This is not recommend-
ed for general usage. It is useful for device drivers—for example,
mapping a video frame buffer with no caching.

PAGE_WRITECOMBINE Enables write-combined memory accesses. When enabled, the
processor might cache memory write requests to optimize per-
formance. For example, if multiple writes are made to the same
address, only the most recent write might occur.

390 Microsoft Windows Internals, Fourth Edition
And finally, shared memory section objects have standard Windows access-control lists
(ACLs) that are checked when processes attempt to open them, thus limiting access of shared
memory to those processes with the proper rights. Security also comes into play when a
thread creates a section to contain a mapped file. To create the section, the thread must have
at least read access to the underlying file object or the operation will fail.

Once a thread has successfully opened a handle to a section, its actions are still subject to the
memory manager and the hardware-based page protections described earlier. A thread can
change the page-level protection on virtual pages in a section if the change doesn’t violate the
permissions in the ACL for that section object. For example, the memory manager allows a
thread to change the pages of a read-only section to have copy-on-write access but not to have
read/write access. The copy-on-write access is permitted because it has no effect on other pro-
cesses sharing the data.

These four primary memory protection mechanisms are part of the reason that Windows is a
robust, reliable operating system that is impervious to and resilient to application errors.

No Execute Page Protection

Although the Windows memory management API has always had page protection bits
defined in the programming interface that allow specification of whether or not pages can
contain executable code, it is only as of Windows XP Service Pack 2 and Windows Server
2003 Service Pack 1 that this capability is supported on processors that have hardware “no
execute” protection, including all AMD64 processors (including AMD Athlon64 and AMD
Opteron) and certain exclusively 32-bit AMD processors (selected AMD Sempron processors—
details are in AMD's product literature), Intel IA-64, and Intel Pentium 4 and Xeon processors
with Intel Extended Memory 64 Technology (EM64T).

No execute page protection (also referred to as data execution prevention, or DEP) means an
attempt to transfer control to an instruction in a page marked as “no execute” will generate an
access fault. This can prevent certain types of viruses from exploiting bugs in the system that
permit the execution of code placed in a data page. If an attempt is made in kernel mode to
execute code in a page marked as no execute, the system will crash with the ATTEMPTED_
EXECUTE_OF_NOEXECUTE_MEMORY bugcheck code. If this occurs in user mode, a
STATUS_ACCESS_VIOLATION (0xc0000005) exception is delivered to the thread attempt-
ing the illegal reference. If a process allocates memory that needs to be executable, it must
explicitly mark such pages by specifying the PAGE_EXECUTE, PAGE_EXECUTE_READ,
PAGE_EXECUTE_READWRITE, or PAGE_EXECUTE_WRITECOPY flags on the page granu-
larity memory allocation functions.

On 64-bit versions of Windows, execution protection is always applied to all 64-bit programs
and device drivers and cannot be disabled. Execution protection for 32-bit programs depends
on system configuration settings, described shortly. On 64-bit Windows, execution protection
is applied to thread stacks (both user and kernel mode), user mode pages not specifically
marked as executable, kernel paged pool, and kernel session pool (for a description of kernel
memory pools, see the section “System Memory Pools”). However, on 32-bit Windows,

Chapter 7: Memory Management 391
execution protection is only applied to thread stacks and user mode pages, not to paged
pool and session pool. Also, when execution protection is enabled on 32-bit Windows, the
system automatically boots in PAE mode (automatically selecting the PAE kernel, \Windows\
System32\Ntkrnlpa.exe). For a description of PAE, see the section “Physical Address Exten-
sion (PAE).”

The application of execution protection for 32-bit programs depends on the Boot.ini /NOEX-
ECUTE= switch. The settings can be changed by going to the Data Execution Prevention tab
under My Computer, Properties, Advanced, Performance Settings. (See Figure 7-2.) When you
configure no execute protection with the DEP settings dialog box, Boot.ini is modified to add the
appropriate /NOEXECUTE Boot.ini switch. For a list of the variations of the switch and how they
correspond to the DEP settings tab, see Table 7-4. 32-bit applications that are excluded from
execution protection are listed as registry values under the key HKLM\Software\Microsoft\
Windows NT\CurrentVersion\AppCompatFlags\Layers with the value name being the full path
of the executable and the data set to “DisableNXShowUI”.

Figure 7-2 Data Execution Protection settings

On Windows XP (both 64-bit and 32-bit versions), execution protection for 32-bit applica-
tions is configured by default to apply only to core Windows operating system executables
(/NOEXECUTE=OPTIN) so as not to break 32-bit applications that might rely on being
able to execute code in pages not specifically marked as executable. On Windows Server 2003
systems, execution protection for 32-bit applications is configured by default to apply to all
32-bit programs (/NOEXECUTE=OPTOUT).

Note To obtain a complete list of which programs are protected, install the Windows Appli-
cation Compatibility Toolkit (downloadable from www.microsoft.com) and run the Compatibil-
ity Administrator Tool. Click on System Database, Applications, and Windows Components
and, on the right-hand pane, the list of protected executables will be shown.

392 Microsoft Windows Internals, Fourth Edition
Software Data Execution Prevention
Because most processors running Windows these days do not support hardware “no
execute” protection, Windows XP Service Pack 2 and Windows Server 2003 Service
Pack 1 and later support limited software data execution prevention (DEP). One aspect
of software DEP reduces exploits of the exception handling mechanism in Windows.
(See Chapter 3 for a description of structured exception handling.) If the program’s
image files are built with safe structured exception handling (a new feature in the
Microsoft Visual C++ 2003 compiler), before an exception is dispatched, the system ver-
ifies that the exception handler is registered in the function table located within the
image file. If the program’s image files are not built with safe structured exception han-
dling, software DEP ensures that before an exception is dispatched, the exception han-
dler is located within a memory region marked as executable.

Copy-on-Write

Copy-on-write page protection is an optimization the memory manager uses to conserve
physical memory. When a process maps a copy-on-write view of a section object that con-
tains read/write pages, instead of making a process private copy at the time the view is
mapped (as the Hewlett Packard OpenVMS operating system does), the memory manager
defers making a copy of the pages until the page is written to. All modern UNIX systems use
this technique as well. For example, as shown in Figure 7-3, two processes are sharing three
pages, each marked copy-on-write, but neither of the two processes has attempted to modify
any data on the pages.

Table 7-4 Boot.ini/NOEXECUTE Switch

Boot.ini Switch
Option in DEP Settings
Dialog Box Meaning

/NOEXECUTE=OPTIN Turn on DEP for necessary
Windows programs and ser-
vices only.

Enables DEP for core
Windows system images.

/NOEXECUTE=OPTOUT Turn on DEP for all programs
and services except those that
I select.

Enables DEP for all executa-
bles except those specified.

/NOEXECUTE=ALWAYSON (No GUI interface to select
this option)

Enables DEP for all compo-
nents with no ability to ex-
clude certain applications.

/NOEXECUTE=ALWAYSOFF (No GUI interface to select
this option)

Disables DEP (not recom-
mended).

Chapter 7: Memory Management 393
Figure 7-3 The “before” of copy-on-write

If a thread in either process writes to a page, a memory management fault is generated. The
memory manager sees that the write is to a copy-on-write page, so instead of reporting the
fault as an access violation, it allocates a new read/write page in physical memory, copies the
contents of the original page to the new page, updates the corresponding page-mapping infor-
mation (explained later in this chapter) in this process to point to the new location, and dis-
misses the exception, thus causing the instruction that generated the fault to be reexecuted.
This time, the write operation succeeds, but as shown in Figure 7-4, the newly copied page is
now private to the process that did the writing and isn’t visible to the other processes still
sharing the copy-on-write page. Each new process that writes to that same shared page will
also get its own private copy.

Figure 7-4 The “after” of copy-on-write

One application of copy-on-write is to implement breakpoint support in debuggers. For exam-
ple, by default, code pages start out as execute-only. If a programmer sets a breakpoint while
debugging a program, however, the debugger must add a breakpoint instruction to the code.
It does this by first changing the protection on the page to PAGE_EXECUTE_READWRITE
and then changing the instruction stream. Because the code page is part of a mapped section,
the memory manager creates a private copy for the process with the breakpoint set, while
other processes continue using the unmodified code page.

Copy-on-write is one example of an evaluation technique known as lazy evaluation that the mem-
ory manager uses as often as possible. Lazy-evaluation algorithms avoid performing an expensive
operation until absolutely required—if the operation is never required, no time is wasted on it.

Page 1

Page 2

Page 3

Physical memory

Original data

Process
address
space

Original data

Process
address
space

Page 1

Page 2

Page 3

Copy of page 2

Physical memory

Original data

Process
address
space

Modified data

Process
address
space

394 Microsoft Windows Internals, Fourth Edition
The POSIX subsystem takes advantage of copy-on-write to implement the fork function. Typi-
cally, when a UNIX application calls the fork function to create another process, the first thing
that the new process does is call the exec function to reinitialize the address space with an exe-
cutable program. Instead of copying the entire address space on fork, the new process shares
the pages in the parent process by marking them copy-on-write. If the child writes to the data,
a process private copy is made. If not, the two processes continue sharing and no copying
takes place. One way or the other, the memory manager copies only the pages the process
tries to write to rather than the entire address space.

To examine the rate of copy-on-write faults, see the performance counter Memory: Write
Copies/Sec.

Heap Manager

Many applications allocate smaller blocks than the 64-KB minimum allocation granularity
possible using page granularity functions such as VirtualAlloc. Allocating such a large area for
relatively small allocations is not optimal from the memory usage and performance stand-
point. To address this need, Windows provides a component called the heap manager, which
manages allocations inside larger memory areas reserved using the page granularity memory
allocation functions. The allocation granularity in the heap manager is relatively small: 8 bytes
on 32-bit systems and 16 bytes on 64-bit systems. The heap manager has been designed to
optimize memory usage and performance in the case of these smaller allocations.

The heap manager exists in two places: Ntdll.dll and Ntoskrnl.exe. The subsystem APIs (such
as the Windows heap APIs) call the functions in Ntdll, and various executive components and
device drivers call the functions in Ntoskrnl. Its native interfaces (prefixed with Rtl) are avail-
able only for use in internal Windows components or kernel mode device drivers. The docu-
mented Windows API interface to the heap (prefixed with Heap) are thin functions that call
the native functions in Ntdll.dll. In addition, legacy APIs (prefixed with either Local or Global)
are provided to support older Windows applications. The most common Windows heap func-
tions are:

■ HeapCreate or HeapDestroy—Creates or deletes, respectively, a heap. The initial reserved
and committed size can be specified at creation.

■ HeapAlloc—Allocates a heap block.

■ HeapFree—Frees a block previously allocated with HeapAlloc.

■ HeapReAlloc—Changes the size of an existing allocation (grows or shrinks an existing
block).

■ HeapLock or HeapUnlock—Controls mutual exclusion to the heap operations.

■ HeapWalk—Enumerates the entries and regions in a heap.

Chapter 7: Memory Management 395
Types of Heaps

Each process has at least one heap: the default process heap. The default heap is created at
process startup and is never deleted during the process’s lifetime. It defaults to 1 MB in size,
but it can be bigger by specifying a starting size in the image file by using the /HEAP linker
flag. This size is just the initial reserve, however—it will expand automatically as needed. (You
can also specify the initial committed size in the image file.)

The default heap can be explicitly used by a program or implicitly used by some Windows
internal functions. An application can query the default process heap by making a call to the
Windows function GetProcessHeap. Processes can also create additional private heaps with the
HeapCreate function. When a process no longer needs a private heap, it can recover the virtual
address space by calling HeapDestroy. An array with all heaps is maintained in each process,
and a thread can query them with the Windows function GetProcessHeaps.

A heap can manage allocations either in large memory regions reserved from the memory
manager via VirtualAlloc or from memory mapped file objects mapped in the process address
space. The latter approach is rarely used in practice, but it’s suitable for scenarios where the
content of the blocks need to be shared between two processes or between a kernel mode and
a user mode component. If a heap is built on top of a memory mapped file region, certain con-
straints apply with respect to the component that can call heap functions. First, the internal
heap structures use pointers, and therefore do not allow relocation to different addresses. Sec-
ond, the synchronization across multiple processes or between a kernel component and a
user process is not supported by the heap functions. Also, in the case of a shared heap
between user and kernel mode, the user mode mapping should be read-only to prevent user
mode code from corrupting the heap internal structures, which would result in a system
crash.

Heap Manager Structure

As shown in Figure 7-5, the heap manager is structured in two layers: an optional front-end
layer and the core heap. The core heap handles the basic functionality and is mostly common
across the user and kernel mode heap implementations. The core functionality includes the
management of blocks inside segments, the management of the segments, policies for extend-
ing the heap, committing and decommitting memory, and management of the large blocks.

For user mode heaps only, an optional front-end heap layer can exist on top of the existing
core functionality. There are two types of front-end layers: look-aside lists and the Low Frag-
mentation Heap (or LFH, which is available in Windows XP and later), both of which are
described later in this section. Only one front-end layer can be used for one heap at one time.

396 Microsoft Windows Internals, Fourth Edition
Figure 7-5 Heap manager layers

Heap Synchronization

The heap manager supports concurrent access from multiple threads by default. However, if a
process is single threaded or uses an external mechanism for synchronization, it can tell the
heap manager to avoid the overhead of synchronization by specifying HEAP_NO_SERIALIZE
either at heap creation or on a per-allocation basis.

A process can also lock the entire heap and prevent other threads from performing heap oper-
ations for operations that would require consistent states across multiple heap calls. For
instance, enumerating the heap blocks in a heap with the Windows function HeapWalk
requires locking the heap if multiple threads can perform heap operations simultaneously.

If heap synchronization is enabled, there is one lock per heap that protects all internal heap
structures. In heavily multithreaded applications (especially when running on multiprocessor
systems), the heap lock might become a significant contention point. In that case, perfor-
mance might be improved by enabling the front-end heap, described in an upcoming section.

Look-Aside Lists

Look-aside lists are single linked lists that allow elementary operations such as “push to the
list” or “pop from the list” in a last in, first out (LIFO) order with nonblocking algorithms. A
simplified version of these data structures is also available to Windows applications through
the functions InterlockedPopEntrySList or InterlockedPushEntrySList. There are 128 look-aside

Windows heap APIs
(HeapAlloc, HeapFree, LocalAlloc, GlobalAlloc etc.)

Application

Front-end heap layer
(optional)

Core heap layer

 Memory manager

Heap manager

Chapter 7: Memory Management 397
lists per heap, which handle allocations up to 1 KB on 32-bit platforms and up to 2 KB on 64-
bit platforms.

Look-aside lists provide a significant performance improvement over normal heap allocations
because multiple threads can concurrently perform allocation and deallocation operations
without acquiring the heap global lock. Also, cache locality is optimized by using a LIFO
ordering model and by accessing fewer internal data files in each heap operation.

The heap manager maintains the number of blocks in each look-aside list and some counters
that help tune the usage of each list independently. If a thread allocates a block of a size that
does not exist in the corresponding look-aside list, the heap manager will forward the call to
the core heap manager to complete the operation. The heap manager will also update in this
case an internal counter of misses at allocations, which will later be used in tuning decisions.

The heap manager creates look-aside lists automatically when a heap is created, as long as no
debugging options are enabled and the heap is expandable. Some applications might have com-
patibility issues as a result of the heap manager’s use of look-aside lists. In this case, these legacy
applications can be made to run properly by specifying the DisableHeapLookaside flag in the
image file execution options for that application. (Image file execution options can be specified
using the Imagecfg.exe tool in the Windows 2000 Server Resource Kit, supplement 1.)

The Low Fragmentation Heap

Many applications running in Windows have relatively small heap memory usage (usually
less than one megabyte). For this class of applications, the heap manager’s best-fit policy
helps keep a low memory footprint for each process. However, this strategy does not scale for
large processes and multiprocessor machines. In these cases, memory available for heap usage
might be reduced as a result of heap fragmentation. Performance can suffer in scenarios where
only certain sizes are often used concurrently from different threads scheduled to run on dif-
ferent processors. This is because several processors need to modify the same memory loca-
tion (for example, the head of the look-aside list for that particular size) at the same time, thus
invalidating the corresponding cache line for the other processors.

The Low Fragmentation Heap (LFH) addresses these issues using the core heap manager and
look-aside lists. Unlike the look-aside lists that are used as front-end heaps by default if other
heap settings are allowing it, LFH is turned on only if an application calls the HeapSetInforma-
tion function. For large heaps, a significant percentage of allocations is generally grouped in a
relatively small number of buckets of certain sizes. The allocation strategy used by LFH is to
optimize the usage for these patterns by efficiently handling same-size blocks.

To address scalability, LFH expands the frequently accessed internal structures to a number
of slots that is two times larger than the current number of processors on the machine. The
assignment of threads to these slots is done by an LFH component called the affinity manager.
Initially, LFH starts using the first slot for heap allocations; however, if a contention is detected
at accessing some internal data, LFH switches the current thread to use a different slot. Fur-

398 Microsoft Windows Internals, Fourth Edition
ther contentions will spread threads on more slots. These slots are controlled for each size
bucket, also to improve locality and minimize the overall memory consumption.

Heap Debugging Features

The heap manager includes several features to help detect bugs by using the following heap
functions:

■ Enable tail checking The end of each block carries a signature, which is checked when
the block is released. If a buffer overrun destroyed the signature entirely or partially, the
heap will report this error.

■ Enable free checking A free block is filled with a pattern, which is checked at various
points when the heap manager needs to access the block (such as at removal from the
free list to allocate the block). If the process continued to write to the block after freeing
it, the heap manager will detect changes in the pattern and the error will be reported.

■ Parameter checking This function consists of extensive checking of the parameters
passed to the heap functions.

■ Heap validation The entire heap is validated at each heap call.

■ Heap tagging and stack traces support This function supports specifying tags for allo-
cation and/or captures user mode stack traces for the heap calls to help narrow the pos-
sible causes of a heap error.

The first three options are enabled by default if the loader detects that a process is started
under the control of a debugger. (A debugger can override this behavior and turn off these fea-
tures.) The heap debugging features can be specified for an executable image by setting vari-
ous debugging flags in the image header using the gflags tool. (See the section “Windows
Global Flags” in Chapter 3.) Or, heap debugging options can be enabled using the !heap com-
mand in the standard Windows debuggers. (See the debugger help for more information.)

Enabling heap debugger options affects all heaps in the process. Also, if any of the heap debug
options are enabled, the front-end heap will be disabled automatically and the core heap will
be used (with the required debugging options enabled). The front-end heaps are also not used
for heaps that are not expandable (because of the extra overhead added to the existing heap
structures) or for heaps that do not allow serialization.

Pageheap

Because the tail and free checking options described in the preceding sections might be dis-
covering corruptions that occurred well before the problem was detected, an additional heap
debugging tool, called pageheap, is provided that directs all or part of the heap calls to a differ-
ent heap manager. Pageheap is part of the Windows Application Compatibility Toolkit, which
can be downloaded from www.microsoft.com. The pageheap places allocations at the end of
pages so that if a buffer overrun occurs, it will cause an access violation, making it easier to

Chapter 7: Memory Management 399
detect the offending code. Optionally, pageheap allows placing the blocks at the beginning of
the pages to detect buffer underrun problems. (This is a rare occurrence.) The pageheap also
can protect freed pages against any access to detect references to heap blocks after they have
been freed.

Note that using the pageheap can result in running out of address space because of the signifi-
cant overhead added for small allocations. Also, performance can suffer as of result of the
increase of references to demand zero pages, loss of locality, and additional overhead caused by
frequent calls to validate heap structures. A process can reduce the impact by specifying that the
pageheap be used only for blocks of certain sizes, address ranges, and/or originating DLLs.

Note For more information on pageheap, see article 286470 in the Microsoft Knowledge
Base (http://support.microsoft.com).

Address Windowing Extensions

Although the 32-bit version of Windows can support up to 128 GB of physical memory (as
shown in Table 2-4), each 32-bit user process has by default only a 2-GB virtual address space.
(This can be configured up to 3 GB when using the /3GB and /USERVA Boot.ini switches,
described in the upcoming section “x86 User Address Space Layouts.”) To allow a 32-bit pro-
cess to allocate and access more physical memory than can be represented in its limited
address space, Windows provides a set of functions called Address Windowing Extensions
(AWE). For example, on a Windows 2000 Advanced Server system with 8 GB of physical
memory, a database server application could use AWE to allocate and use perhaps 6 GB of
memory as a database cache.

Allocating and using memory via the AWE functions is done in three steps:

1. Allocating the physical memory to be used

2. Creating a region of virtual address space to act as a window to map views of the physi-
cal memory

3. Mapping views of the physical memory into the window

To allocate physical memory, an application calls the Windows function AllocateUserPhysi-
calPages. (This function requires the Lock Pages In Memory user right.) The application then
uses the Windows VirtualAlloc function with the MEM_PHYSICAL flag to create a window in
the private portion of the process’s address space that is mapped to some or all of the physical
memory previously allocated. The AWE-allocated memory can then be used with nearly all
the Windows APIs. (For example, the Microsoft DirectX functions can’t use AWE memory.)

If an application creates a 256-MB window in its address space and allocates 4 GB of physical
memory (on a system with more than 4 GB of physical memory), the application can use the
MapUserPhysicalPages or MapUserPhysicalPagesScatter Windows functions to access any

400 Microsoft Windows Internals, Fourth Edition
portion of the physical memory by mapping the memory into the 256-MB window. The size
of the application’s virtual address space window determines the amount of physical memory
that the application can access with a given mapping. Figure 7-6 shows an AWE window in a
server application address space mapped to a portion of physical memory previously allo-
cated by AllocateUserPhysicalPages.

Figure 7-6 Using AWE to map physical memory

The AWE functions exist on all editions of Windows and are usable regardless of how much
physical memory a system has. However, AWE is most useful on systems with more than 2 GB
of physical memory because it’s the only way for a 32-bit process to directly use more than 2
GB of memory. Another use is for security purposes: because AWE memory is never paged
out, the data in AWE memory could never have a copy in the paging file that someone could
examine by rebooting into an alternate operating system.

Finally, there are some restrictions on memory allocated and mapped by the AWE functions:

■ Pages can’t be shared between processes.

■ The same physical page can’t be mapped to more than one virtual address in the same
process.

■ On older versions of Windows, page protection is limited to read/write. In Windows
Server 2003 Service Pack 1 and later, no access and read-only are supported.

For a description of the page table data structures used to map memory on systems with more
than 4 GB of physical memory, see the section “Physical Address Extension (PAE).”

System
address
space

User
address
space

AWE window

Server application
address space

Physical memory

2 GB

0

0

4 GB 64 GB

AWE memory

Chapter 7: Memory Management 401
System Memory Pools
At system initialization, the memory manager creates two types of dynamically sized memory
pools that the kernel-mode components use to allocate system memory:

■ Nonpaged pool Consists of ranges of system virtual addresses that are guaranteed to
reside in physical memory at all times and thus can be accessed at any time (from any
IRQL level and from any process context) without incurring a page fault. One of the rea-
sons nonpaged pool is required is because of the rule described in Chapter 2: page faults
can’t be satisfied at DPC/dispatch level or above.

■ Paged pool A region of virtual memory in system space that can be paged in and out of
the system. Device drivers that don’t need to access the memory from DPC/dispatch
level or above can use paged pool. It is accessible from any process context.

Both memory pools are located in the system part of the address space and are mapped in the
virtual address space of every process. (In Table 7-8, you’ll find out where in the system mem-
ory they start.) The executive provides routines to allocate and deallocate from these pools;
for information on these routines, see the functions that start with ExAllocatePool in the Win-
dows DDK documentation.

Uniprocessor systems have three paged pools; multiprocessor systems have five. Having more
than one paged pool reduces the frequency of system code blocking on simultaneous calls to
pool routines. Both nonpaged and paged pool start at an initial size based on the amount of
physical memory on the system and then grow, if necessary, up to a maximum size computed
at system boot time.

Note Future releases of Windows might support dynamic pool sizes, which means the max-
imum size will no longer apply. Therefore, applications and device drivers should not assume
that the pool size maximum is a fixed value for each system.

Configuring Pool Sizes

You can override the initial size of these pools by changing the values NonPagedPoolSize and
PagedPoolSize in the registry key HKLM\SYSTEM\CurrentControlSet\Control\Session Man-
ager\Memory Management from 0 (which causes the system to compute the size) to the size
desired in bytes. You can’t, however, go beyond the maximum pool sizes listed in Table 7-5. A
value of 0xFFFFFFFF for PagedPoolSize indicates that the largest possible size is selected, which
means allowing a larger paged pool at the expense of system page table entries (PTEs).

Table 7-5 Maximum Pool Sizes

Pool Type Maximum on 32-Bit Systems Maximum on 64-Bit Systems

Nonpaged 256 MB (128 MB if booted /3GB) 128 GB

Paged 491.875 MB (Windows 2000 and Windows XP);
650 MB (Windows Server 2003)

128 GB

402 Microsoft Windows Internals, Fourth Edition
The computed sizes are stored in four kernel variables, three of which are exposed as perfor-
mance counters. These variables and counters, as well as the two registry keys that can alter
the sizes, are listed in Table 7-6.

EXPERIMENT: Determining the Maximum Pool Sizes
Because paged and nonpaged pool represent a critical system resource, it is important to
know when you’re nearing the maximum size computed for your system so that you can
determine whether you need to override the default maximum with the appropriate reg-
istry values. The pool-size performance counters report only the current size, however,
not the maximum size. So you don’t know when you’re reaching the limit until you’ve
exhausted pool. (As noted earlier, future versions of Windows might support dynami-
cally sized pools. Therefore, the need to check the pool maximums might no longer be
necessary in the future.)

You can obtain the pool maximums by using either Process Explorer or live kernel
debugging (explained in Chapter 1). To view pool maximums with Process Explorer,
click on View, System Information. The pool maximums are displayed in the Kernel
Memory section as shown below:

Table 7-6 System Pool Size Variables and Performance Counters

Kernel Variable
Performance
Counter Registry Key to Override Description

MmSizeOfNonPaged-
PoolInBytes

Memory: Pool
Nonpaged Bytes

Not applicable Current size of
nonpaged pool

MmMaximum-
NonPagedPoolInBytes

Not available HKLM\SYSTEM\CurrentControlSet\
Control\Session Manager\Memory
Management\NonPagedPoolSize

Maximum size of
nonpaged pool

Not available Memory: Pool
Paged Bytes

Not applicable Current virtual
size of paged
pool

MmPagedPoolPage
(number of pages)

Memory: Pool
Paged Resident
Bytes

Not applicable Current physical
(resident) size of
paged pool

MmSizeOfPagedPoolIn-
Bytes

Not available HKLM\SYSTEM\CurrentControlSet\
Control\Session Manager\
Memory Management\PagedPoolSize

Maximum (virtu-
al) size of paged
pool

Chapter 7: Memory Management 403
Note that for Process Explorer to retrieve this information, it must have access to the
symbols for the kernel running on your system. (For a description of how to configure
Process Explorer to use symbols, see the experiment “Viewing Process Details with Pro-
cess Explorer” in Chapter 1.)

To view the same information by using the kernel debugger, you can use the !vm com-
mand as shown below:

lkd> !vm

*** Virtual Memory Usage ***

Physical Memory: 261980 (1047920 Kb)

Page File: \??\C:\pagefile.sys

Current: 1024000Kb Free Space: 862236Kb

Minimum: 1024000Kb Maximum: 1024000Kb

Available Pages: 96077 (384308 Kb)

ResAvail Pages: 194722 (778888 Kb)

Locked IO Pages: 89 (356 Kb)

Free System PTEs: 175933 (703732 Kb)

Free NP PTEs: 31832 (127328 Kb)

Free Special NP: 0 (0 Kb)

Modified Pages: 529 (2116 Kb)

Modified PF Pages: 529 (2116 Kb)

NonPagedPool Usage: 5617 (22468 Kb)

NonPagedPool Max: 52741 (210964 Kb)

PagedPool 0 Usage: 6582 (26328 Kb)

PagedPool 1 Usage: 3009 (12036 Kb)

PagedPool 2 Usage: 3044 (12176 Kb)

PagedPool Usage: 12635 (50540 Kb)

PagedPool Maximum: 40960 (163840 Kb)

404 Microsoft Windows Internals, Fourth Edition
On this system, nonpaged and paged pool were far from their maximums. You can also
examine the values of the kernel variables listed in Table 7-6:

kd> dd mmmaximumnonpagedpoolinbytes l1

8047f620 0328c000

kd> ? 328c000

Evaluate expression: 53002240 = 0328c000

kd> dd mmsizeofpagedpoolinbytes l1

80470a98 06800000

kd> ? 6800000

Evaluate expression: 109051904 = 06800000

From this example, you can see that the maximum size of nonpaged pool is 53,002,240
bytes (approximately 50 MB) and the maximum size of paged pool is 109,051,904 bytes
(104 MB). On the test system we used for this example, current nonpaged pool usage
was 5.5 MB and paged pool usage was 34 MB, so both pools were far from full.

Monitoring Pool Usage

The Memory performance counter object has separate counters for the size of nonpaged pool
and paged pool (both virtual and physical). In addition, the Poolmon utility (in the Windows
Support Tools) allows you to monitor the detailed usage of nonpaged and paged pool. To do
so, you must have the internal Enable Pool Tagging option enabled. Pool tagging is turned on
by default as of Windows Server 2003 (in fact, it cannot be turned off) and in all checked
builds of Windows. To enable pool tagging, run the Gflags utility in the Windows Support
Tools, Platform SDK, or DDK, and select Enable Pool Tagging, as shown here:

Chapter 7: Memory Management 405
Then click Apply, and reboot the system. After the system reboots, run Poolmon; you should
see a display like this one:

The highlighted lines represent changes to the display. (You can disable the highlighting fea-
ture by typing l while running Poolmon. Type l again to reenable highlighting.) Type ? while
Poolmon is running to bring up its help screen. You can configure which pools you want to
monitor (paged, nonpaged, or both) and the sort order. Also, the command-line options are
shown, which allow you to monitor specific structures (or everything but one structure type).
For example, the command poolmon -iCM will monitor only structures of type CM (the con-
figuration manager, which manages the registry). The columns have the meanings shown in
Table 7-7.

In this example, CM structures (the configuration manager, or registry) are taking up the
most space in paged pool, and MmSt structures (a memory management–related structure
used for mapped files) are taking up the most space in nonpaged pool.

For a description of the meaning of the pool tags used by Windows, see the file \Program
Files\Debugging Tools for Windows\Triage\Pooltag.txt. (This file is installed as part of the
Windows Debugging Tools described in Chapter 1.) Because third-party device driver pool
tags are not listed in this file, you can use the “-c” switch on the version of Poolmon that comes
with the Windows Server 2003 Device Driver Kit (DDK) to generate a local pool tag file

Table 7-7 Poolmon Columns

Column Explanation

Tag Four-byte tag given to the pool allocation

Type Pool type (paged or nonpaged pool)

Allocs Count of all allocations (The number in parentheses shows the difference in the
Allocs column since the last update.)

Frees Count of all Frees (The number in parentheses shows the difference in the Frees
column since the last update.)

Diff Count of Allocs minus Frees

Bytes Total bytes consumed by this structure type (The number in parentheses shows
the difference in the Bytes column since the last update.)

Per Alloc Size in bytes of a single instance of this structure type

406 Microsoft Windows Internals, Fourth Edition
(Localtag.txt). This file will contain pool tags used by drivers found on your system, including
third-party drivers. (Note that if a device driver binary has been deleted after it was loaded, its
pool tags will not be recognized.)

Alternatively, you can search the device drivers on your system for a pool tag by using the
Strings.exe tool from www.sysinternals.com. For example, the command

strings \windows\system32\drivers*.sys > findstr /i "abcd"

will display drivers that contain the string “abcd”. Note that device drivers do not necessarily
have to be located in \Windows\System32\Drivers—they can be in any folder. To list the full
path of all loaded drivers, click Start, click Run, and type Msinfo32. Then click on Software
Environment and System Drivers. As already noted, if a device driver has been loaded and
then deleted from the system, it will not be listed here.

An alternative to view pool usage by device driver is to enable the pool tracking feature of
Driver Verifier, explained later in this chapter. While this makes the mapping from pool tag to
device driver unnecessary, it does require a reboot (to enable Driver Verifier on the desired
drivers). After rebooting with pool tracking enabled, you can either run the graphical Driver
Verifier Manager (\Windows\System32\Verifier.exe) or use the Verifier /Log command to
send the pool usage information to a file.

Finally, if you are looking at a crash dump, you can view pool usage with the kernel debugger
!poolused command. The command !poolused 2 shows nonpaged pool usage sorted by struc-
ture tag using the most amount of pool. The command !poolused 4 lists paged pool usage,
again sorted by structure tag using the most amount of pool. The following example shows
the partial output from these two commands:

lkd> !poolused 2

Sorting by NonPaged Pool Consumed

Pool Used:

NonPaged Paged

Tag Allocs Used Allocs Used

MmCm 386 2237440 0 0 Calls made to MmAllocateContiguousMemory , Bin

ary: nt!mm

File 12544 2121232 0 0 File objects

Devi 385 1487184 0 0 Device objects

Ntfr 19163 1226888 0 0 ERESOURCE , Binary: ntfs.sys

kd> !poolused 4

Sorting by Paged Pool Consumed

Pool Used:

NonPaged Paged

Tag Allocs Used Allocs Used

CM 11 704 5146 22311904

Gh 5 0 0 727 2523648

MmSt 0 0 968 1975872

Ntff 10 2240 790 682560

Gla1 1 128 383 600544

Ttfd 0 0 265 545440

Chapter 7: Memory Management 407
EXPERIMENT: Troubleshooting a Pool Leak
In this experiment, you will fix a real paged pool leak on your system so that you can put
to use the techniques described in the previous section to track down the leak. The leak
will be generated by the NotMyFault tool, which you can download from www.sysinter-
nals.com/windowsinternals.shtml. (Note that this tool is not listed on the main Sysinter-
nals tools list.) When you run NotMyFault.exe, it loads a device driver Myfault.sys and
presents the following dialog box:

1. Click the Leak Pool button. This causes NotMyFault to begin sending requests to
the Myfault device driver to allocate paged pool. (Do not click the Do Bug button
or you will experience a system crash; this button is used in Chapter 14 to demon-
strate various types of crashes.) NotMyFault will continue to do this until you click
the Stop Leaking button. Note that the paged pool is not released even when you
close the program; the pool is permanently leaked until you reboot the system.
However, because you will leak pool only for a short period, this should not cause
any problems on your system.

2. While the pool is leaking, first open Task Manager and click on the Performance
tab. You should notice Paged Pool climbing. You can also check this with Process
Explorer’s System Information display. (Click on Show and then System Infor-
mation.)

3. To determine the pool tag that is leaking, run Poolmon and press the “b” key to
sort by the number of bytes. Press “p” twice so that Poolmon is showing only
paged pool. You should notice the pool tag “Leak” climbing to the top of the list.
(Poolmon shows changes to pool allocations by highlighting the lines that
change.)

408 Microsoft Windows Internals, Fourth Edition
4. Now press the “Stop Leaking” button so that you don’t exhaust paged pool on
your system.

5. Using the technique described in the previous section, run Strings (from www.sys-
internals.com) to look for driver binaries that contain the pool tag “Leak”:

Strings \windows\system32\drivers*.sys | findstr Leak

This should display a match on the file Myfault.sys, thus confirming it as the driver
using the “Leak” pool tag.

Look-Aside Lists

Windows also provides a fast memory allocation mechanism called look-aside lists. The basic
difference between pools and look-aside lists is that while general pool allocations can vary in
size, a look-aside list contains only fixed-sized blocks. Although the general pools are more
flexible in terms of what they can supply, look-aside lists are faster because they don’t use any
spinlocks and also because the system doesn’t have to search for free memory that fits a vary-
ing size allocation.

Executive components and device drivers can create look-aside lists that match the size of fre-
quently allocated data structures by using the ExInitializeNPagedLookasideList and ExInitial-
izePagedLookasideList functions (documented in the DDK). To minimize the overhead of
multiprocessor synchronization, several executive subsystems (such as the I/O manager,
cache manager, and object manager) create separate look-aside lists for each processor for
their frequently accessed data structures. The executive also creates a general per-processor
paged and nonpaged look-aside list for small allocations (256 bytes or less).

If a look-aside list is empty (as it is when it’s first created), the system must allocate from paged
or nonpaged pool. But if it contains a freed structure, the allocation can be satisfied very
quickly. (The list grows as structures are returned to it.) The pool allocation routines automat-
ically tune the number of freed buffers that look-aside lists store according to how often a
device driver or executive subsystem allocates from the list—the more frequent the allocations,
the more buffers are stored on a list. Look-aside lists are automatically reduced in size if they
aren’t being allocated from. (This check happens once per second when the balance set man-
ager system thread wakes up and calls the function KiAdjustLookasideDepth.)

EXPERIMENT: Viewing the System Look-Aside Lists
You can display the contents and sizes of the various system look-aside lists with the
kernel debugger !lookaside command. The following excerpt is from the output of this
command:

Chapter 7: Memory Management 409
kd> !lookaside

Lookaside "nt!IopSmallIrpLookasideList" @ 804758a0 "Irps"

Type = 0000 NonPagedPool

Current Depth = 3 Max Depth = 4

Size = 148 Max Alloc = 592

AllocateMisses = 32 FreeMisses = 9

TotalAllocates = 52 TotalFrees = 32

Hit Rate = 38% Hit Rate = 71%

Lookaside "nt!IopLargeIrpLookasideList" @ 804756a0 "Irpl"

Type = 0000 NonPagedPool

Current Depth = 4 Max Depth = 4

Size = 436 Max Alloc = 1744

AllocateMisses = 2623 FreeMisses = 2443

TotalAllocates = 7039 TotalFrees = 6863

Hit Rate = 62% Hit Rate = 64%

"

Lookaside "nt!IopMdlLookasideList" @ 80475740 "Mdl "

Type = 0000 NonPagedPool

Current Depth = 3 Max Depth = 4

Size = 120 Max Alloc = 480

AllocateMisses = 7017 FreeMisses = 1824

TotalAllocates = 10901 TotalFrees = 5711

Hit Rate = 35% Hit Rate = 68%

§

Total NonPaged currently allocated for above lists = 4200

Total NonPaged potential for above lists = 6144

Total Paged currently allocated for above lists = 5136

Total Paged potential for above lists = 12032

Driver Verifier

Driver Verifier is a mechanism that can be used to help find and isolate commonly found bugs
in device driver or other kernel-mode system code. Microsoft uses Driver Verifier to check its
own device drivers as well as all device drivers that vendors submit for Hardware Compatibil-
ity List (HCL) testing. Doing so ensures that the drivers on the HCL are compatible with Win-
dows and free from common driver errors. (Although not described in this book, there is also
a corresponding Application Verifier tool that has resulted in quality improvements for user-
mode code in Windows.)

Driver Verifier consists of support in several system components: the memory manager, I/O
manager, and the HAL all have driver verification options that can be enabled. This section
describes the memory management–related verification options Driver Verifier provides. The
options related to device drivers are described in Chapter 9.

Driver Verifier Configuration and Initialization

To configure Driver Verifier and view statistics about its operation, run the Driver Verifier
Manager (\Windows\System32\Verifier.exe). (The Windows 2000 version is shown in
Figure 7-7.) It displays several tabbed pages. You use the Settings tab to specify which device

410 Microsoft Windows Internals, Fourth Edition
drivers you want to verify (including an option to Verify All Drivers) and what types of ver-
ification you want performed.

Figure 7-7 The Driver Verifier Manager in Windows 2000

In Windows XP and Windows Server 2003, Verifier.exe has a wizard-style interface, as shown
in Figure 7-8.

Figure 7-8 The Driver Verifier Manager in Windows XP and Windows Server 2003

You can also enable and disable Driver Verifier as well as display current settings by using its
command line interface. Type “verifier /?” to see the switches.

The settings are stored in the registry under HKLM\SYSTEM\CurrentControlSet\Control\
Session Manager\Memory Management. The value VerifyDriverLevel contains a bitmask that
represents the verification types enabled. The VerifyDrivers value contains the names of the
drivers to validate. (These values won’t exist in the registry until you select drivers to verify in
the Driver Verifier Manager.) If you choose to verify all drivers, VerifyDrivers is set to an aster-
isk (*) character. Depending on the settings you have made, you might need to reboot the sys-
tem for the selected verification to occur.

Chapter 7: Memory Management 411
Early in the boot process, the memory manager reads the Driver Verifier registry values to
determine which drivers to verify and which Driver Verifier options you enabled. (Note that if
you boot in safe mode, any Driver Verifier settings are ignored.) Subsequently, if you’ve
selected at least one driver for verification, the kernel checks the name of every device driver
it loads into memory against the list of drivers you’ve selected for verification. For every device
driver that appears in both places, the kernel invokes the MiApplyDriverVerifier function,
which replaces the driver’s references to a number of kernel functions with references to
Driver Verifier–equivalent versions of those functions. For example, ExAllocatePool is replaced
with a call to VerifierAllocatePool. The windowing system driver also makes similar changes to
use Driver Verifier–equivalent functions.

Now that we’ve reviewed how to set up Driver Verifier, let’s examine the four memory-related
verification options that can be applied to device drivers: Special Pool, Pool Tracking, Force
IRQL Checking, and Low Resources Simulation.

Special Pool The Special Pool option causes the pool allocation routines to bracket pool
allocations with an invalid page so that references before or after the allocation will result in a
kernel-mode access violation, thus crashing the system with the finger pointed at the buggy
driver. Special pool also causes some additional validation checks to be performed when a
driver allocates or frees memory.

When special pool is enabled, the pool allocation routines allocate a region of kernel memory
for Driver Verifier to use. Driver Verifier redirects memory allocation requests that drivers
under verification make to the special pool area rather than to the standard kernel-mode
memory pools. When a device driver allocates memory from special pool, Driver Verifier
rounds up the allocation to an even-page boundary. Because Driver Verifier brackets the allo-
cated page with invalid pages, if a device driver attempts to read or write past the end of the
buffer, the driver will access an invalid page and the memory manager will raise a kernel-mode
access violation.

Figure 7-9 shows an example of the special pool buffer that Driver Verifier allocates to a device
driver when Driver Verifier checks for overrun errors.

Figure 7-9 Layout of special pool allocations

Invalid page

Page 0

Page 1

Page 2

Random signature

Driver buffer

Invalid page

412 Microsoft Windows Internals, Fourth Edition
By default, Driver Verifier performs overrun detection. It does this by placing the buffer that
the device driver uses at the end of the allocated page and fills the beginning of the page
with a random pattern. Although the Driver Verifier Manager doesn’t let you specify under-
run detection, you can set this type of detection manually by adding the DWORD registry
value HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\MemoryManage-
ment\PoolTagOverruns and setting it to 0 (or by running the Gflags utility and selecting the Verify
Start option instead of the default option Verify End). When Windows enforces underrun detec-
tion, Driver Verifier allocates the driver’s buffer at the beginning of the page rather than at the end.

The overrun-detection configuration includes some measure of underrun detection as well.
When the driver frees its buffer to return the memory to Driver Verifier, Driver Verifier ensures
that the pattern preceding the buffer hasn’t changed. If the pattern is modified, the device
driver has underrun the buffer and written to memory outside the buffer.

Special pool allocations also check to ensure that the processor IRQL at the time of an alloca-
tion and deallocation is legal. This check catches an error that some device drivers make: allo-
cating pageable memory from an IRQL at DPC/dispatch level or above.

You can also configure special pool manually by adding the DWORD registry value
HKLM\SYSTEMCurrentControlSet\Control\Session Manager\Memory Manage-
ment\PoolTag, which represents the allocation tags the system uses for special pool. Thus,
even if Driver Verifier isn’t configured to verify a particular device driver, if the tag the driver
associates with the memory it allocates matches what is specified in the PoolTag registry
value, the pool allocation routines will allocate the memory from special pool. If you set the
value of PoolTag to 0x0000002a or the wildcard (*), all memory that drivers allocate is from
special pool, provided there’s enough virtual and physical memory. (The drivers will revert to
allocating from regular pool if there aren’t enough free pages—bounding exists, but each allo-
cation uses two pages.)

Pool Tracking If pool tracking is enabled, the memory manager checks at driver unload time
whether the driver freed all the memory allocations it made. If it didn’t, it crashes the system,
indicating the buggy driver. Driver Verifier also shows general pool statistics on the Driver Veri-
fier Manager’s Pool Tracking tab. You can also use the !verifier kernel debugger command. This
command shows more information than Driver Verifier and is useful to driver writers.

Force IRQL Checking One of the most common device driver bugs occurs when a driver
accesses pageable data or code when the processor on which the device driver is executing is
at an elevated IRQL. As explained in Chapter 3, the memory manager can’t service a page fault
when the IRQL is DPC/dispatch level or above. The system often doesn’t detect instances of
a device driver accessing pageable data when the processor is executing at a high IRQL level
because the pageable data being accessed happens to be physically resident at the time. At
other times, however, the data might be paged out, which results in a system crash with the
stop code IRQL_NOT_LESS_OR_EQUAL (that is, the IRQL wasn’t less than or equal to the
level required for the operation attempted—in this case, accessing pageable memory).

Chapter 7: Memory Management 413
Although testing device drivers for this kind of bug is usually difficult, Driver Verifier makes it
easy. If you select the Force IRQL Checking option, Driver Verifier forces all kernel-mode page-
able code and data out of the system working set whenever a device driver under verification
raises the IRQL. The internal function that does this is MmTrimAllSystemPagableMemory. With
this setting enabled, whenever a device driver under verification accesses pageable memory
when the IRQL is elevated, the system instantly detects the violation and the resulting system
crash identifies the faulty driver.

Low Resources Simulation Enabling Low Resources Simulation causes Driver Verifier to
randomly fail memory allocations that verified device drivers perform. In the past, developers
wrote many device drivers under the assumption that kernel memory would always be avail-
able and that if memory ran out, the device driver didn’t have to worry about it because the
system would crash anyway. However, because low-memory conditions can occur tempo-
rarily, it’s important that device drivers properly handle allocation failures that indicate kernel
memory is exhausted.

Beginning 7 minutes after the system boots—which is enough time to get past the critical ini-
tialization period in which a low-memory condition might prevent a device driver from load-
ing—Driver Verifier starts randomly failing allocation calls for device drivers it is verifying. If a
driver doesn’t correctly handle allocation failures, this will likely show up as a system crash.

Driver Verifier is a valuable addition to the arsenal of verification and debugging tools avail-
able to device driver writers. Many device drivers that first ran with Driver Verifier had bugs
that Driver Verifier was able to expose. Thus, Driver Verifier has resulted in an overall improve-
ment in the quality of all kernel-mode code running in Windows.

Virtual Address Space Layouts
This section describes the components in the user and system address space, followed by the
specific layouts on 32-bit and 64-bit systems. This information helps you to understand the
limits on process and system virtual memory on both platforms.

Three main types of data are mapped into the virtual address space in Windows: per-process
private code and data, sessionwide code and data, and systemwide code and data.

As explained in Chapter 1, each process has a private address space that cannot be accessed
by other processes (unless they have permission to open the process for read or write access).
Threads within the process can never access virtual addresses outside this private address
space, unless they map to shared memory sections and/or use the cross-process memory
functions that allow access to another process’s address space. The information that describes
the process virtual address space, called page tables, is described in the section on address
translation. Page tables are marked as kernel-mode-only accessible pages so that user threads
in a process cannot modify their own address space layout.

414 Microsoft Windows Internals, Fourth Edition
On systems with multiple sessions (Windows 2000 Server with Terminal Services installed,
Windows XP, and Windows Server 2003), session space contains information global to each
session. (For a description of sessions, see Chapter 2.) A session consists of the processes and
other system objects (such as the window station, desktops, and windows) that represent a
single user’s workstation logon session. Each session has a session-specific paged pool area
used by the kernel-mode portion of the Windows subsystem (Win32k.sys) to allocate ses-
sion-private GUI data structures. In addition, each session has its own copy of the Windows
subsystem process (Csrss.exe) and logon process (Winlogon.exe). The session manager pro-
cess (Smss.exe) is responsible for creating new sessions, which includes loading a session-pri-
vate copy of Win32k.sys, creating the session-private object manager namespace, and creating
the session-specific instances of the Csrss and Winlogon processes.

To virtualize sessions, all sessionwide data structures are mapped into a region of system
space called session space. When a process is created, this range of addresses is mapped to the
pages appropriate to the session that the process belongs to. The size of the space for mapped
views in session space can be configured by modifying registry values under HKLM\Sys-
tem\CurrentControlSet\Control\Session Manager\Memory Management. (For 32-bit sys-
tems, these registry values are ignored if the system is booted /3GB.)

Finally, system space contains global operating system code and data structures visible to each
process. System space consists of the following components:

■ System code Contains the operating system image, HAL, and device drivers used to
boot the system.

■ System mapped views Used to map Win32k.sys, the loadable kernel-mode part of the
Windows subsystem, as well as kernel-mode graphics drivers it uses. (See Chapter 2 for
more information on Win32k.sys.)

■ Hyperspace A special region used to map the process working set list and to tempo-
rarily map other physical pages for operations such as zeroing a page on the free list
(when the zero list is empty and a zero page is needed), invalidating page table entries in
other page tables (such as when a page is removed from the standby list), and process
creation to set up a new process’s address space.

■ System working set list The working set list data structures that describe the system
working set.*

■ System cache Virtual address space used to map files open in the system cache. (See
Chapter 11 for detailed information about the cache manager.)

■ Paged pool Pageable system memory heap.

Chapter 7: Memory Management 415
■ System page table entries (PTEs) Pool of system PTEs used to map system pages such
as I/O space, kernel stacks, and memory descriptor lists. You can see how many system
PTEs are available by examining the value of the Memory: Free System Page Table
Entries counter in the Performance tool.

■ Nonpaged pool Nonpageable system memory heap, usually existing in two parts—one
in the lower end of system space and one in the upper end.

■ Crash dump information Reserved to record information about the state of a system
crash.

■ HAL usage System memory reserved for HAL-specific structures.

Note *Internally, the system working set is called the system cache working set. This term is
misleading, however, because it includes not only the system cache but also the paged pool,
pageable system code and data, and pageable driver code and data.

Now that we’ve described the basic components of the virtual address space in Windows, let’s
examine the specific layout on the x86, IA-64, and x64 platforms.

x86 User Address Space Layouts

By default, each user process on the 32-bit version of Windows can have up to a 2-GB private
address space; the operating system takes the remaining 2 GB. Windows 2000 Advanced
Server, Windows 2000 Datacenter Server, Windows XP Service Pack 2 and later, and Win-
dows Server 2003 (all versions) support a boot-time option (the /3GB switch in Boot.ini) that
allows 3-GB user address spaces. Windows XP and Windows Server 2003 support an addi-
tional switch (/USERVA), which allows specifying a user address space size between 2 GB and
3 GB. (The value is in number of megabytes.) These two possible address space layouts are
shown in Figure 7-10.

The ability for a 32-bit process to grow beyond 2 GB was added as a short-term solution to
accommodate the need for applications such as database servers to keep more data in mem-
ory than could be done with a 2-GB address space. The AWE functions described earlier in
this chapter provide a much better solution to the need for accessing more data than can fit in
the limited 2-GB (or 3-GB) process address space.

416 Microsoft Windows Internals, Fourth Edition
Figure 7-10 x86 virtual address space layouts

For a process to grow beyond 2 GB of address space, the image file must have the
IMAGE_FILE_LARGE_ADDRESS_AWARE flag set in the image header. Otherwise, Windows
reserves the additional address space for that process so that the application won’t see virtual
addresses greater than 0x7FFFFFFF. (This is to avoid breaking applications that might break
with such addresses.) You set this flag by specifying the linker flag /LARGEADDRESSAWARE
when building the executable. This flag has no effect when running the application on a sys-
tem with a 2-GB user address space. (If you boot with /3GB in versions of Windows Server
that do not support the /3GB switch, system space is reduced to 1 GB, but user processes are
still limited to 2 GB, even if the large-address-space aware flag is set on an image that is run.)

Several system images are marked as large address space aware so that they can take advan-
tage of systems running with large process address spaces. These include:

■ Lsass.exe—the Local Security Authority Subsystem

■ Inetinfo.exe—Internet Information Server

■ Chkdsk.exe—the Check Disk utility

■ Dllhst3g.exe—a special version of Dllhost.exe (for COM+ applications)

Application code
Global variables

Per-thread stacks
DLL code

3-GB user space

Kernel and executive
HAL

Boot drivers

1-GB system space

Process page tables
Hyperspace

System cache
Paged pool

Nonpaged pool

BFFFFFFF

C0000000

FFFFFFFFFFFFFFFF

C0800000

C0000000

80000000

7FFFFFFF

00000000

Chapter 7: Memory Management 417
Finally, because by default, memory allocations using VirtualAlloc start with low virtual
addresses and grow higher, unless a process allocates a lot of virtual memory or it has a very
fragmented virtual address space, it will never get back very high virtual addresses. Therefore,
for testing purposes, you can force memory allocations to start from high addresses by adding
a DWORD registry value, HKLM\System\CurrentControlSet\Control\Session Manager\
Memory Management\AllocationPreference, and setting it to 0x100000.

x86 System Address Space Layout

This section describes the detailed layout and contents of system space in 32-bit Windows.
Figure 7-11 shows the overall structure on x86 systems with a 2-GB system space.

Figure 7-11 x86 system space layout (not proportional)

Table 7-8 lists the kernel variables that contain start and end addresses of various system space
regions. Some of these regions are fixed; some are computed at system boot time on the basis of
memory size and whether the system is running a client or server edition of Windows.

80000000 NTLDR loads the kernel, HAL and
boot drivers here. The kernel

then relocates the drivers to the
system PTE area

Additional system PTEs, system
cache or special pool

System mapped views

Session space

C0000000 Page tables

C0400000 Hyperspace and process
 working set lists

C0C00000 System cache structures

C1000000 System cache

E1000000 Start of paged system area

FFBE0000
Crash dump driver area

FFC00000
Reserved for HAL usage

System PTE area

NonPaged system area

418 Microsoft Windows Internals, Fourth Edition
x86 Session Space

For systems with multiple sessions, the code and data unique to each session is mapped into
system address space but shared by the processes in that session. Figure 7-12 shows the gen-
eral layout of session space.

Table 7-8 System Variables That Describe System Space Regions

System Variables Description
x86 2-GB System
Space (non-PAE)

x86 1-GB System
Space (non-PAE)

MmSystemRangeStart Start address of
system space

0x80000000 0xC0000000

MmSystemCacheWorkingSetList System working
set list

0xC0C00000 Calculated

MmSystemCacheStart Start of system
cache

Calculated Calculated

MmSystemCacheEnd End of system
cache

Calculated Calculated

MiSystemCacheStartExtra Start of system
cache or system
PTE extension

Calculated 0

MiSystemCacheEndExtra End of system
cache or PTE
extension

0xC0000000 0

MmPagedPoolStart Start of paged
pool

Calculated Calculated

MmPagedPoolEnd End of paged
pool

Calculated (maxi-
mum size is 650
MB)

Calculated (mini-
mum size is 160
MB)

MmNonPagedSystemStart Start of system
PTEs

Calculated (lowest
value is
0xEB000000)

Calculated

MmNonPagedPoolStart Start of nonpaged
pool

Calculated Calculated

MmNonPagedPoolExpansionStart Start of nonpaged
pool expansion

Calculated Calculated

MmNonPagedPoolEnd End of nonpaged
pool

0xFFBE0000 0xFFBE0000

Chapter 7: Memory Management 419
Figure 7-12 x86 session space layout (not proportional)

The sizes of the components of session space can be configured by adding registry values under
the key HKLM\System\CurrentControlSet\Session Manager\Memory Management. These
registry values along with the kernel variables that contain the actual sizes are listed in Table 7-9.

EXPERIMENT: Viewing Sessions
You can display which processes are members of which sessions by examining the ses-
sion ID process performance counter. This can be viewed with Task Manager, Process
Explorer, or the Performance Tool. Using the kernel debugger, you can list the active ses-
sions with the !session command as follows:

lkd> !session

Sessions on machine: 3

Valid Sessions: 0 1 2

Current Session 0

Then you can set the active session using the !session –s command and display the
address of the session data structures and the processes in that session with the !sprocess
command:

lkd> !session -s 2

Sessions on machine: 3

Implicit process is now 8144f3a0

Using session 2

lkd> !sprocess

Dumping Session 2

Table 7-9 Session Space Configuration Values

Registry Value Under Kernel Variable

SessionImageSize MmSessionImageSize

SessionViewSize MmSessionViewSize

SessionPoolSize MmSessionPoolSize

Win32k.sys, video drivers and any
rebased NT4 printer drivers

(8MB)

MM_SESSION_SPACE & Session WSLs
(4MB)

Mapped views for this session
(20MB by default, but is

registry configurable)

Paged pool for this session
(16MB by default, but is
registry configurable)

420 Microsoft Windows Internals, Fourth Edition
_MM_SESSION_SPACE f9d5a000

_MMSESSION f9d5ad80

PROCESS 8144f3a0 SessionId: 2 Cid: 0d18 Peb: 7ffdf000 ParentCid: 0134

DirBase: 07ef7000 ObjectTable: e1855bb0 HandleCount: 71.

Image: csrss.exe

PROCESS 813f6500 SessionId: 2 Cid: 0d04 Peb: 7ffdf000 ParentCid: 0134

DirBase: 0f3fd000 ObjectTable: e18f3008 HandleCount: 131.

Image: winlogon.exe

To view the details of the session, dump the MM_SESSION_SPACE structure using the
dt command as follows:

lkd> dt nt!_mm_session_space f9d4a000

nt!_MM_SESSION_SPACE

+0x000 GlobalVirtualAddress : 0xf9d4a000

+0x004 ReferenceCount : 0x19

+0x008 u : __unnamed

+0x00c SessionId : 0

+0x010 ProcessList : _LIST_ENTRY [0x817d92cc - 0x812de88c]

+0x018 LastProcessSwappedOutTime : _LARGE_INTEGER 0x0

+0x020 SessionPageDirectoryIndex : 0x6a29

+0x024 NonPagablePages : 0xf

+0x028 CommittedPages : 0x3f

+0x02c PagedPoolStart : 0xbc000000

+0x030 PagedPoolEnd : 0xbc3fffff

+0x034 PagedPoolBasePde : 0xc0300bc0

+0x038 Color : 0xd6

+0x03c ProcessOutSwapCount : 5

+0x040 SessionPoolAllocationFailures : [4] 0

+0x050 ImageList : _LIST_ENTRY [0x81801fa8 - 0x816933a0]

+0x058 LocaleId : 0x409

+0x05c AttachCount : 0

+0x060 AttachEvent : _KEVENT

+0x070 LastProcess : (null)

+0x074 ProcessReferenceToSession : 25

+0x078 WsListEntry : _LIST_ENTRY [0x8056d058 - 0x8056d058]

+0x080 Lookaside : [26] _GENERAL_LOOKASIDE

+0xd80 Session : _MMSESSION

+0xdc0 PagedPoolMutex : _KGUARDED_MUTEX

+0xde0 PagedPoolInfo : _MM_PAGED_POOL_INFO

+0xe00 Vm : _MMSUPPORT

+0xe60 Wsle : 0xbf400038

+0xe64 Win32KDriverUnload : 0xbf9169ab +ffffffffbf9169ab

+0xe68 PagedPool : _POOL_DESCRIPTOR

+0x1e98 PageTables : 0x816e7008

+0x1e9c ImageLoadingCount : 0

Chapter 7: Memory Management 421
EXPERIMENT: Viewing Session Space Utilization
You can view session space memory utilization with the !vm 4 command in the kernel
debugger. For example, the following output was taken from a 32-bit Windows Server
2003 Enterprise Edition system with two active sessions:

lkd> !vm 4

.

.

Terminal Server Memory Usage By Session:

Session Paged Pool Maximum is 4096K

Session View Space Maximum is 49152K

Session ID 0 @ f9d4a000:

Paged Pool Usage: 0K

Commit Usage: 252K

Session ID 1 @ f9d4c000:

Paged Pool Usage: 0K

Commit Usage: 172K

Executing the same command on an x64 Windows Server 2003 Enterprise Edition sys-
tem with two active sessions shows the much larger session space regions:

Terminal Server Memory Usage By Session:

Session Paged Pool Maximum is 65536K

Session View Space Maximum is 106496K

Session ID 0 @ fffffadfe4bb9000:

Paged Pool Usage: 0K

Commit Usage: 4608K

Session ID 1 @ fffffadfe4c5f000:

Paged Pool Usage: 0K

Commit Usage: 584K

System Page Table Entries

System page table entries are used to dynamically map system pages such as I/O space, kernel
stacks, and memory descriptor lists. System PTEs aren’t an infinite resource. For example,
Windows 2000 can describe only 660 MB of variable system virtual address space (440 MB of
which could be contiguous). With the 32-bit edition of Windows XP and Windows Server
2003, the number of available system page table entries (PTEs) has increased such that the
system can describe 1.3 GB of system virtual address space, 960 MB of which can be contigu-
ous. On 64-bit Windows, system PTEs can describe up to 128 GB of contiguous virtual
address space.

422 Microsoft Windows Internals, Fourth Edition
You can see how many system PTEs are available by examining the value of the Memory: Free
System Page Table Entries counter in the Performance tool. By default, Windows calculates at
boot time how many system PTEs to allocate based on the memory size. You can override this
calculation by setting the registry value HKLM\SYSTEM\CurrentControlSet\Control\Ses-
sion Manager\Memory Management\SystemPages to the number of PTEs you want. (This
might be needed to support, for example, a device that requires a large number of system
PTEs, such as a video card with 512 MB of video memory that has to be mapped all at one
time.) If the value is 0xFFFFFFFF, the maximum number of system PTEs will be reserved.

64-Bit Address Space Layouts

The theoretical 64-bit virtual address space is 16 exabytes (18,446,744,073,709,551,616 bytes,
or approximately 17.2 billion gigabytes). Unlike on the x86 where the default address space is
divided in two parts (half for a process and half for the system), the 64-bit address is divided
into a number of different sized regions whose components match conceptually the portions
of user, system, and session space. The various sizes of these regions, listed in Table 7-10, rep-
resent current implementation limits that could easily be extended in future releases. (The
sizes on the 32-bit x86 platform are included for comparison purposes.) Clearly, 64-bits pro-
vides a tremendous leap in terms of address space sizes.

The detailed IA-64 and x64 address space layouts vary slightly. The IA-64 address space lay-
out is shown in Figure 7-13, and the x64 address space layout is shown in Figure 7-14.

Table 7-10 The 64-Bit Address Space Sizes

Region IA-64 x64 x86

Process Address Space 7152 GB 8192 GB 2 to 3 GB

System PTE Space 128 GB 128 GB 1.2 GB

System Cache 128 GB 128 GB 960 MB

Paged Pool 128 GB 128 GB 470 to 650 MB

Nonpaged Pool 128GB 128 GB 256 MB

Chapter 7: Memory Management 423
Figure 7-13 IA-64 address space layout

..

0000000000000000

000006FBFFFEFFFF

User mode addresses - 7 TB - 16 GB

000006FBFFFF0000 64k no access region

000006FC00000000
Alternate 4K-page mappings

for x86 process emulation

000006FC00800000

000006FFFFFFFFFF

HyperSpace - working set lists
and per process memory

management structures mapped
in this 16GB region.

0000070000000000

000007FFFFFFFFFF

Page table selfmapping structures

1FFFFF0000000000 8GB leaf level page table map
for user space

1FFFFF01FFFFFFFF

1FFFFFFFFFF00000 8KB parent directory (1st level)

1FFFFFFFC0000000

1FFFFFFFC07FFFFF

8MB page directory (2nd level)
table map for user space

..

..
2000000000000000 Session space (Win32k.sys

and per session memory
management structures mapped

in this 8GB region.)

3FFFFF0000000000

3FFFFF01FFFFFFFF

8GB leaf level page table map
for session space

3FFFFFFFFFF00000 8KB parent directory (1st level)

8000000000000000 Physical addressable memory
80000FFFFFFFFFFF

E000000080000000 The HAL, kernel, initial drivers,
NLS data, and registry load in the

first 16MB of this region which
physically addresses memory

9FFFFF0000000000 vhpt 64KB page for KSEG3 space
(not used)

3FFFFFFFC0000000

3FFFFFFFC07FFFFF

8MB page directory (2nd level)
table map for session space

..

Initial nonpaged pool is within
KSEG0

Kernel mode access only

E0000000FF000000 Shared system page

E0000000FF002000

E0000000FFFFFFFF

Reserved for the HAL.

E000000200000000

E000000400000000 The system cache working set
information resides in this 8GB

region.

E000000600000000 System cache resides here.
Kernel mode access only.

1TB.

E000010600000000

Start of paged system area.
128GB.

System mapped views start just
after paged pool. Default is

104MB, can be registry-
overridden. 8GB maximum.

..

E000012600000000 System PTE pool.
Kernel mode access only.

128GB.

PFN database.

E0000165FFFFFFFF

E000014600000000 Nonpaged Pool.
Kernel mode access only

128GB
Nonpaged System area

8GB leaf level page table map
for kernel space

FFFFFF0000000000

FFFFFF01FFFFFFFF

FFFFFFFFC0000000

FFFFFFFFC07FFFFF

8MB page directory (2nd level)
table map for kernel space

FFFFFFFFFFF00000 8KB parent directory (1st level)

424 Microsoft Windows Internals, Fourth Edition
Figure 7-14 x64 address space layout

Start of system space

0000000000000000

User mode addresses - 8TB minus 64K

000007FFFFFF0000

000007FFFFFEFFFF

000007FFFFFFFFFF
64K no access region

FFFFF68000000000 512GB four level page table map

FFFFF70000000000 HyperSpace - working set lists
and per process memory management

structures mapped in this 512GB
region

FFFFF80000000000 Mappings initialized by the loader

FFFFF90000000000 Session space

This is a 512GB region

FFFFF78000000000 Shared system page

FFFFF78000001000 The system working set
information resides in this

512GB-4K region

FFFF080000000000

.

..

FFFFF98000000000 System cache resides here
Kernel mode access only

1TB

FFFFFAA000000000 System PTE pool.
Kernel mode access only

128GB

System mapped views start just
after paged pool. Default is

104MB, can be registry-
overridden. 8GB maximum

FFFFFA8000000000 Start of paged system area
Kernel mode access only

128GB.

FFFFFAC000000000

FFFFFADFFFFFFFFF

NonPaged pool.
Kernel mode access only

128GB

NonPaged system area

FFFFFFFF80000000

FFFFFFFFFFFFFFFF

Reserved for the HAL 2GB

Chapter 7: Memory Management 425
Address Translation
Now that you’ve seen how Windows structures the virtual address space, let’s look at how it
maps these address spaces to real physical pages. User applications and system code reference
virtual addresses. This section starts with a detailed description of 32-bit x86 address transla-
tion, followed by a brief description of the differences on the 64-bit IA-64 and x64 platform. In
the next section, we’ll describe what happens when such a translation doesn’t resolve to a
physical memory address (paging) and explain how Windows manages physical memory via
working sets and the page frame database.

x86 Virtual Address Translation

Using data structures the memory manager creates and maintains called page tables, the CPU
translates virtual addresses into physical addresses. Each virtual address is associated with a
system-space structure called a page table entry (PTE), which contains the physical address to
which the virtual one is mapped. For example, Figure 7-15 shows how three consecutive vir-
tual pages are mapped to three physically discontiguous pages on an x86.

Figure 7-15 Mapping virtual addresses to physical memory (x86)

Virtual
pages

Page table
entries

Physical memory

FFFFFFFF

C1000000

C0000000

80000000

7FFFFFFF

00000000

426 Microsoft Windows Internals, Fourth Edition
The dashed line connecting the virtual pages to the PTEs in Figure 7-15 represents the indirect
relationship between virtual pages and physical memory.

Note Kernel-mode code (such as device drivers) can reference physical memory addresses
by mapping them to virtual addresses. For more information, see the memory descriptor list
(MDL) support routines described in the DDK documentation.

By default, Windows on an x86 system uses a two-level page table structure to translate virtual
to physical addresses. (x86 systems running the PAE kernel use a three-level page table—this
section assumes non-PAE systems.) A 32-bit virtual address is interpreted as three separate
components—the page directory index, the page table index, and the byte index—that are used
as indexes into the structures that describe page mappings, as illustrated in Figure 7-16. The
page size and the PTE width dictate the width of the page directory and page table index
fields. For example, on x86 systems, the byte index is 12 bits because pages are 4096 bytes
(212 = 4096).

Figure 7-16 Components of a 32-bit virtual address on x86 systems

The page directory index is used to locate the page table in which the virtual address’s PTE is
located. The page table index is used to locate the PTE, which, as mentioned earlier, contains
the physical address to which a virtual page maps. The byte index finds the proper address
within that physical page. Figure 7-17 shows the relationship of these three values and how
they are used to map a virtual address into a physical address.

31
Page directory

index

Virtual page number

Page table
index

Byte index

31

10 bits 10 bits 12 bits

0 (LSB)

Chapter 7: Memory Management 427
Figure 7-17 Translating a valid virtual address (x86-specific)

The following basic steps are involved in translating a virtual address:

1. The memory management hardware locates the page directory for the current process.
On each process context switch, the hardware is told the address of a new process page
directory, typically by the operating system setting a special CPU register.

2. The page directory index is used as an index into the page directory to locate the page
directory entry (PDE) that describes the location of the page table needed to map the
virtual address. The PDE contains the page frame number (PFN) of the page table (if it
is resident—page tables can be paged out).

3. The page table index is used as an index into the page table to locate the PTE that
describes the physical location of the virtual page in question.

4. The PTE is used to locate the page. If the page is valid, it contains the PFN of the page
in physical memory that contains the virtual page. If the PTE indicates that the page
isn’t valid, the memory management fault handler locates the page and tries to make
it valid. (See the section on page fault handling.) If the page can’t be made valid (for
example, because of a protection fault), the fault handler generates an access violation
or a bug check.

5. When the PTE is pointed to a valid page, the byte index is used to locate the address of
the desired data within the physical page.

Now that you have the overall picture, let’s look at the detailed structure of page directories,
page tables, and PTEs.

KPROCESS

Page directory
index

Page table
index

Byte
index

Physical addressCR3

Page directory
(one per process, 1024 entries)

Page tables
(up to 512 per process

plus up to 512 systemwide,
1024 entries per table)

Physical address
space

Desired byte

Desired page
Index

PFN

PFN

PTE

Index

PDE

Index

428 Microsoft Windows Internals, Fourth Edition
Page Directories

Each process has a single page directory, a page the memory manager creates to map the loca-
tion of all page tables for that process. The physical address of the process page directory is
stored in the kernel process (KPROCESS) block, but it is also mapped virtually at address
0xC0300000 on x86 systems (0xC0600000 on systems running the PAE kernel image). All
code running in kernel mode references virtual addresses, not physical ones. (For more
detailed information about KPROCESS and other process data structures, refer to Chapter 6.)

The CPU knows the location of the page directory page because a special register (CR3 on x86
systems) inside the CPU that is loaded by the operating system contains the physical address
of the page directory. Each time a context switch occurs to a thread that is in a different pro-
cess than that of the currently executing thread, this register is loaded from the KPROCESS
block of the target process being switched to by the context-switch routine in the kernel. Con-
text switches between threads in the same process don’t result in reloading the physical
address of the page directory because all threads within the same process share the same pro-
cess address space.

The page directory is composed of page directory entries (PDEs), each of which is 4 bytes long (8
bytes on systems running the PAE kernel image) and describes the state and location of all the
possible page tables for that process. (As described later in the chapter, page tables are created
on demand, so the page directory for most processes points only to a small set of page tables.)
The format of a PDE isn’t repeated here because it’s mostly the same as a hardware PTE.

On x86 systems running in non-PAE mode, 1024 page tables are required to describe the full
4-GB virtual address space. The process page directory that maps these page tables contains
1024 PDEs. Therefore, the page directory index needs to be 10 bits wide (210 = 1024). On x86
systems running in PAE mode, there are 512 entries in a page table (because the page direc-
tory index is 9 bits wide). Because there are 4 page directories, the result is a maximum of
2048 page tables.

Chapter 7: Memory Management 429
EXPERIMENT: Examining the Page Directory and PDEs
You can see the physical address of the currently running process’s page directory by
examining the DirBase field in the !process kernel debugger output:

You can see the page directory’s virtual address by examining the kernel debugger out-
put for the PTE of a particular virtual address, as shown here:

The PTE part of the kernel debugger output is defined in the section “Page Table
Entries.”

Because Windows provides a private address space for each process, each process has its own
set of process page tables to map that process’s private address space. However, the page
tables that describe system space are shared among all processes (and session space is shared
among processes in a session). To avoid having multiple page tables describing the same vir-
tual memory, when a process is created, the page directory entries that describe system space
are initialized to point to the existing system page tables. If the process is part of a session, ses-
sion space page tables are also shared by pointing the session space page directory entries to
the existing session page tables.

Physical address of PDE

kd> !process

PROCESS 80145880 Cid: 0000 Peb: 00000000 ParentCid: 0000

 DirBase: 00030000 ObjectTable: 80695668 TableSize: 126.

 Image: Idle

 VadRoot 0 Clone 0 Private 0. Modified 0. Locked 0.

 80145A3C MutantState Locked OwningThread 0

 Process Lock Owned by Thread 0

 .

 .

 .

Virtual address of PDE

Contents of PDE

PFN of page
table page

State and
protection of
page table
page

kd> !pte 50001

00050001 - PDE at C0300000

 contains 00700067

 pfn 00700 --DA--UW

PTE at C0000140

contains 00E63047

pfn 00E63 --D---UWV

430 Microsoft Windows Internals, Fourth Edition
But as shown in Figure 7-18, not all processes have the same view of system space. For exam-
ple, if paged pool expansion requires the allocation of a new system page table, the memory
manager doesn’t go back and update all the process page directories to point to the new sys-
tem page table. Instead, it updates the process page directories when the processes reference
the new virtual address.

Figure 7-18 System and process-private page tables

Thus, a process can take a page fault when referencing paged pool that is in fact physically res-
ident because its process page directory doesn’t yet point to the new system page table that
describes the new area of pool. Page faults don’t occur when accessing nonpaged pool, even
though it too can be expanded, because Windows builds enough system page tables to
describe the maximum size during system initialization.

Page Tables and Page Table Entries

The process page directory entries point to individual page tables. Page tables are composed
of an array of PTEs. The virtual address’s page table index field (as shown in Figure 7-17) indi-
cates which PTE within the page table maps the data page in question. On x86 systems, the
page table index is 10 bits wide (9 on PAE), allowing you to reference up to 1024 4-byte PTEs

Process 1
page tables

Process 1 page
directory

PDE 0

PDE 511
PDE 512

PDE n

Private

System
page tables

Process hasn’t
yet referenced
system page
table

PTE 0

.

.

. .
.
.

.

.

.

.

.

.

System PTE 0

System PTE n

.

.

.

.

.

.

Process 2 page
directory

PDE 0

PDE 511
PDE 512

PDE n

.

.

.

.

.

.

.

.

.

Process 2
page tables

PTE 0

.

.

.

Chapter 7: Memory Management 431
(512 8-byte PTEs on PAE systems). However, because 32-bit Windows provides a 4-GB private
virtual address space, more than one page table is needed to map the entire address space. To
calculate the number of page tables required to map the entire 4-GB process virtual address
space, divide 4 GB by the virtual memory mapped by a single page table. Recall that each page
table on an x86 system maps 4 MB (2 MB on PAE) of data pages. Thus, 1024 page tables (4
GB/4 MB)—or 2048 page tables (4 GB/2 MB) for PAE—are required to map the full 4-GB
address space.

You can use the !pte command in the kernel debugger to examine PTEs. (See the experiment
“Translating Addresses.”) We’ll discuss valid PTEs here and invalid PTEs in a later section.
Valid PTEs have two main fields: the page frame number (PFN) of the physical page contain-
ing the data or of the physical address of a page in memory, and some flags that describe the
state and protection of the page, as shown in Figure 7-19.

Figure 7-19 Valid x86 hardware PTEs

As you’ll see later, the bits labeled Reserved in Figure 7-19 are used only when the PTE isn’t
valid. (The bits are interpreted by software.) Table 7-11 briefly describes the hardware-defined
bits in a valid PTE.

Table 7-11 PTE Status and Protection Bits

Name of Bit Meaning

Accessed Page has been read.

Cache disabled Disables caching for that page.

Dirty Page has been written to.

Global Translation applies to all processes. (For example, a translation buffer flush
won’t affect this PTE.)

Reserved (writable on multi-
processor systems)
Reserved
Reserved
Global
Reserved (large page if PDE)
Dirty
Accessed
Cache disabled
Write through
Owner
Write (writable on multi-
processor systems)
Valid

Protection

Page frame number U P Cw Gl L D A Cd Wt O W V

31 01112 10 9 8 7 6 5 4 3 2 1

432 Microsoft Windows Internals, Fourth Edition
On x86 systems, a hardware PTE contains a Dirty bit and an Accessed bit. The Accessed bit is
clear if a physical page represented by the PTE hasn’t been read or written; the processor sets
this bit when the page is first read or written. The processor sets the Dirty bit only when a page
is first written. In addition to those two bits, the x86 architecture has a Write bit that provides
page protection. When this bit is clear, the page is read-only; when it is set, the page is read/
write. If a thread attempts to write to a page with the Write bit clear, a memory management
exception occurs and the memory manager’s access fault handler (described in the next sec-
tion) must determine whether the thread can write to the page (for example, if the page was
really marked copy-on-write) or whether an access violation should be generated.

Hardware PTEs on multiprocessor x86 systems have an additional Write bit implemented in
software that is intended to avoid stalls when flushing the PTE cache (called the translation
look-aside buffer, described in the next section) across processors. This bit indicates that a page
has been modified by another processor.

Byte Within Page

Once the memory manager has found the physical page in question, it must find the
requested data within that page. This is where the byte index field comes in. The byte index
field tells the CPU which byte of data in the page you want to reference. On x86 systems, the
byte index is 12 bits wide, allowing you to reference up to 4096 bytes of data (the size of a
page). So, adding the byte offset to the physical page number retrieved from the PTE com-
pletes the translation of a virtual address to a physical address.

Large page Indicates that the PDE maps a 4-MB page (or 2 MB on PAE systems). See the
section “Large and Small Pages” earlier in the chapter.

Owner Indicates whether user-mode code can access the page or whether the page
is limited to kernel-mode access.

Valid Indicates whether the translation maps to a page in physical memory.

Write through Disables caching of writes to this page so that changes are immediately
flushed to disk.

Write On uniprocessor systems, indicates whether the page is read/write or read-
only; on multiprocessor systems, indicates whether the page is writable. (The
Write bit is stored in a reserved bit in the PTE.)

Table 7-11 PTE Status and Protection Bits

Name of Bit Meaning

Chapter 7: Memory Management 433
EXPERIMENT: Translating Addresses
To clarify how address translation works, let’s go through a real example of translating
a virtual address on an x86 non-PAE system, using the available tools in the kernel
debugger to examine page directories, page tables, and PTEs. In this example, we’ll use
a process that has virtual address 0x50001 currently mapped to a valid physical
address. In later examples, you’ll see how to follow address translation for invalid
addresses with the kernel debugger.

First let’s convert 0x50001 to binary and break it into the three fields that are used to
translate an address. In binary, 0x50001 is 101.0000.0000.0000.0001. Breaking it into
the component fields yields the following:

To start the translation process, the CPU needs the physical address of the process page
directory, stored in the CR3 register while a thread in that process is running. You can
display this address either by examining the CR3 register itself or by dumping the
KPROCESS block for the process in question using the !process command, as shown
here:

In this case, the page directory is stored at physical address 0x12F0000. As shown in the
preceding illustration, the page directory index field in this example is 0. Therefore, the
PDE is at physical address 0x12F0000.

The kernel debugger !pte command displays the PDE and PTE that describe a virtual
address, as shown here:

00.0101.00000000.0000.00 0000.0000.0001

31 22 12 0

Page directory
index (0)

Page table index
(80 or 0x50)

Byte index
(1)

kd> !process

PROCESS 81555020 Cid: 0099 Peb: 7ffdf000 ParentCid: 0094

DirBase: 012f0000 ObjectTable: 80695ba8 TableSize: 46.

Image: IEXPLORE.EXE

 .

 .

 .

kd> r cr3

Cr3: 012F0000

Physical address of page directory

434 Microsoft Windows Internals, Fourth Edition
In the first column the kernel debugger displays the PDE, and in the second column it
displays the PTE. Notice that the PDE address is shown as a virtual address, not a phys-
ical address—as noted earlier, the process page directory starts at virtual address
0xC0300000 on x86 systems. Because we’re looking at the first PDE in the page direc-
tory, the PDE address is the same as the page directory address.

The PTE is at virtual address 0xC0000140. You can compute this address by multiplying
the page table index (0x50 in this example) by the size of a PTE: 0x50 multiplied by 4
equals 0x140. Because the memory manager maps page tables starting at 0xC0000000,
adding 140 yields the virtual address shown in the kernel debugger output:
0xC0000140. The page table page is at PFN 0x700, and the data page is at PFN 0xe63.

The PTE flags are displayed to the right of the PFN number. For example, the PTE that
describes the page being referenced has flags of D---UWV. D here stands for dirty (the
page has been modified), U for user-mode page (as opposed to a kernel-mode page), W
for writable page (rather than read-only), and V for valid. (The PTE represents a valid
page in physical memory.)

Translation Look-Aside Buffer

As we’ve learned so far, each address translation requires two lookups: one to find the right
page table in the page directory and one to find the right entry in the page table. Because
doing two additional memory lookups for every reference to a virtual address would result in
unacceptable system performance, most CPUs cache address translations so that repeated
accesses to the same addresses don’t have to be retranslated. The processor provides such a
cache in the form of an array of associative memory called the translation look-aside buffer, or
TLB. Associative memory, such as the TLB, is a vector whose cells can be read simultaneously
and compared to a target value. In the case of the TLB, the vector contains the virtual-to-phys-
ical page mappings of the most recently used pages, as shown in Figure 7-20, and the type of

Virtual address of PDE

Contents of PDE

Virtual address of PTE

Contents of PTE

PFN of page
table page

State and
protection of
page table

page

PFN of
data page

State and
protection of

data page

kd> !pte 50001

00050001 - PDE at C0300000

 contains 00700067

 pfn 00700 --DA--UW

PTE at C0000140

contains 00E63047

pfn 00E63 --D---UWV

Chapter 7: Memory Management 435
page protection applied to each page. Each entry in the TLB is like a cache entry, whose tag
holds portions of the virtual address and whose data portion holds a physical page number,
protection field, valid bit, and usually a dirty bit indicating the condition of the page to which
the cached PTE corresponds. If a PTE’s global bit is set (used for system space pages that are
globally visible to all processes), the TLB entry isn’t invalidated on process context switches.

Figure 7-20 Accessing the translation look-aside buffer

Virtual addresses that are used frequently are likely to have entries in the TLB, which provides
extremely fast virtual-to-physical address translation and, therefore, fast memory access. If a
virtual address isn’t in the TLB, it might still be in memory, but multiple memory accesses are
needed to find it, which makes the access time slightly slower. If a virtual page has been paged
out of memory or if the memory manager changes the PTE, the memory manager explicitly
invalidates the TLB entry. If a process accesses it again, a page fault occurs and the memory
manager brings the page back into memory and re-creates an entry for it in the TLB.

To maximize the amount of common code, the memory manager treats all PTEs the same
whenever possible, whether they are maintained by hardware or by software. For example, the
memory manager calls a kernel routine when a PTE changes from invalid to valid. The job of
this routine is to load this new PTE into the TLB in whatever hardware-specific manner the
architecture requires. On x86 systems, the code is a NOP because the processor loads the TLB
without any intervention from the software.

Physical Address Extension (PAE)

The Intel x86 Pentium Pro processor introduced a memory-mapping mode called Physical
Address Extension (PAE). With the proper chipset, the PAE mode allows access to up to 64 GB
of physical memory on current Intel x86 processors and 1024 GB of physical memory on x64
processors (though Windows currently limits this to 128 GB due to the size of the PFN data-

Virtual page 5 Page frame 290

Virtual page 64 Invalid

Page frame
1004

Virtual page 17

Virtual page 7

Virtual page 6

Virtual page 65

Invalid

Page frame 14

Page frame 801

Simultaneous read
and compare

Virtual page number: 17

Virtual address
Match

TLB

.

.

.

436 Microsoft Windows Internals, Fourth Edition
base required to map so much memory). When the processor executes in PAE mode, the mem-
ory management unit (MMU) divides virtual addresses into four fields, as shown in Figure 7-21.

Figure 7-21 Page mappings with PAE

The MMU still implements page directories and page tables, but a third level, the page direc-
tory pointer table, exists above them. PAE mode can address more memory than the standard
translation mode not because of the extra level of translation but because PDEs and PTEs are
64 bits wide rather than 32 bits. The system represents physical addresses internally with 25
bits, which gives the ability to support a maximum of 225+12 bytes, or 128 GB, of memory.
One way in which 32-bit applications can take advantage of such large memory configura-
tions is described in the earlier section “Address Windowing Extensions.” However, even if
applications are not using such functions, the memory manager will use all available physical
memory for file cache data through the use of the system cache, standby, and modified lists
(described in the section “Page Frame Number Database”).

As explained in Chapter 2, there is a special version of the 32-bit Windows kernel with sup-
port for PAE called Ntkrnlpa.exe. To select this PAE-enabled kernel, you must boot with the
/PAE switch in Boot.ini. Note that this special version of the kernel image is installed on all 32-
bit Windows systems, even Windows 2000 Professional or Windows XP systems with small
memory. The reason for this is to facilitate device driver testing. Because the PAE kernel pre-
sents 64-bit addresses to device drivers and other system code, booting /PAE even on a small
memory system allows device driver developers to test parts of their drivers with large
addresses. The other relevant Boot.ini switch is /NOLOWMEM, which discards memory
below 4 GB (assuming you have at least 5 GB of physical memory) and relocates device driv-

CR3

PFN

Page directory
(up to 4 per process,
512 entries per table,

8 bytes wide)

Page tables
(512 entries per
table, 8 bytes

wide)

Physical address
space

Page directory pointers
(one per process, 4 entries)

Page directory
pointer index

Page directory
index

Page table
index

Page byte
offset

KPROCESS

Physical address

Index

Desired
page

Desired
byte

Index Index Index

Index

PFN

PFN

PDE

PDE

PTE

31 29 20 11

Chapter 7: Memory Management 437
ers above this range. This guarantees that drivers will be presented with physical addresses
greater than 32 bits, which makes any possible driver sign extension bugs easier to find.

IA-64 Virtual Address Translation

The virtual address space for IA-64 is divided into eight regions by the hardware. Each region
can have its own set of page tables. Windows uses five of the regions, three of which have page
tables. Table 7-12 lists the regions and how they are used.

Address translation by 64-bit Windows on the IA-64 platform uses a three-level page table
scheme. Each process has a page directory pointer structure that contains 1024 pointers to
page directories. Each page directory contains 1024 pointers to page tables, which in turn
point to physical pages. Figure 7-22 shows the format of an IA-64 hardware PTE.

Figure 7-22 IA-64 page table entry

Table 7-12 The IA-64 Regions

Region Use

0 User code and data

1 Session space code and data

2 Unused

3 Unused

4 Kseg3, which is a cached 1-to-1 mapping of physical memory. No page tables are
needed for this region because the necessary TLB inserts are done directly by the
memory manager.

5 Kseg4, which is a noncached 1-to-1 mapping for physical memory. This is used only
in a few places for accessing I/O locations such as the I/O port range. There are no
page tables needed for this region.

6 Unused

7 Kernel code and data

Cw W NX O D A V

4963 53 52

E

13 101112 9 8 7 6 5 24 1 0

Write

Page frame number (37 bits)

Execute

Dirty
Owner

Accessed

Reserved
Valid

Cache

Copy on write
Reserved

Software
(working
set index)

Reserved

IA-64 PTE

Exception

438 Microsoft Windows Internals, Fourth Edition
x64 Virtual Address Translation

64-bit Windows on the x64 architecture uses a four-level page table scheme. Each process has
a top level extended page directory (called the page map level 4) that contains 512 pointers to
a third-level structure called a page parent directory. Each page parent directory contains 512
pointers to second-level page directories, each of which contain 512 pointers to the individual
page tables. Finally, the page tables (each of which contain 512 page table entries) point to
pages in memory. Current implementations of the x64 architecture limit virtual addresses to
48 bits. The components that make up this 48-bit virtual address are shown in Figure 7-23.
The connections between these structures are shown in Figure 7-24. Finally, the format of an
x64 hardware page table entry is shown in Figure 7-25.

Figure 7-23 x64 virtual address

Figure 7-24 x64 address translation structures

9 bits

47 39 38 30 29 21 20 12 11 0

9 bits 12 bits

Page table
selector

Page table
entry selector

Byte within
page

x64 64-bit (48-bit in today’s processors)

Page directory
pointer selector

Page map level
4 selector

9 bits9 bits

Page table
selector

Page dir
pointer

Page table
entry selector

Byte within
page

Page map
level 4

Page map
level 4

Page directory
pointers

Page
directories

Page
tables

Physical pages
(up to 2^40)CR3

PFN 0

1

2

3

4

5

6

7

8

9

10

11

12
.
.
.

48 0

Chapter 7: Memory Management 439
Figure 7-25 x64 hardware page table entry

Page Fault Handling
Earlier, you saw how address translations are resolved when the PTE is valid. When the PTE
valid bit is clear, this indicates that the desired page is for some reason not (currently) acces-
sible to the process. This section describes the types of invalid PTEs and how references to
them are resolved.

Note Only the 32-bit x86 PTE formats are detailed in this book. PTEs for 64-bit systems con-
tain similar information, but their detailed layout is not presented.

A reference to an invalid page is called a page fault. The kernel trap handler (introduced in the sec-
tion “Trap Dispatching” in Chapter 3) dispatches this kind of fault to the memory manager fault
handler (MmAccessFault) to resolve. This routine runs in the context of the thread that incurred
the fault and is responsible for attempting to resolve the fault (if possible) or raise an appropriate
exception. These faults can be caused by a variety of conditions, as listed in Table 7-13.

U P Cw Gl L DNX A Cd Wt O W V

63 62 5152 40 39 12 91011 8 7 6 5 4 23 1 0

Software field (copy on write)

Page Frame Number

Global

Accessed

Large page
Dirty

Cache disabled

Owner
Write
Valid

Write through

Reserved
No execute

Software
(working
set index)

Reserved

Software field (prototype PTE)

x64 PTE

Table 7-13 Reasons for Access Faults

Reason for Fault Result

Accessing a page that isn’t resident in
memory but is on disk in a page file or a
mapped file

Allocate a physical page, and read the desired page
from disk and into the working set

Accessing a page that is on the standby or
modified list

Transition the page to the process or system working
set

Accessing a page that isn’t committed
(for example, reserved address space or
address space that isn’t allocated)

Access violation

Accessing a page from user mode that
can be accessed only in kernel mode

Access violation

440 Microsoft Windows Internals, Fourth Edition
The following section describes the four basic kinds of invalid PTEs that are processed by the
access fault handler. Following that is an explanation of a special case of invalid PTEs, proto-
type PTEs, which are used to implement shareable pages.

Invalid PTEs

The following list details the four kinds of invalid PTEs and their structure. Some of the flags
are the same as those for a hardware PTE as described in Table 7-11.

■ Page file The desired page resides within a paging file. An in-page operation is initiated,
as illustrated here:

■ Demand zero The desired page must be satisfied with a page of zeros. The pager looks
at the zero page list. If the list is empty, the pager takes a page from the free list and
zeroes it. If that list is empty, it takes a page from the standby list and zeroes it. The PTE
format is the same as the page file PTE shown in the previous entry, but the page file
number and offset are zeros.

Writing to a page that is read-only Access violation

Accessing a demand-zero page Add a zero-filled page to the process working set

Writing to a guard page Guard-page violation (if a reference to a user-mode
stack, perform automatic stack expansion)

Writing to a copy-on-write page Make process-private (or session-private) copy of
page, and replace original in process, session, or sys-
tem working set

Referencing a page in system space that
is valid but not in the process page direc-
tory (for example, if paged pool expand-
ed after the process page directory was
created)

Copy page directory entry from master system page
directory structure, and dismiss exception

On a multiprocessor system, writing to a
page that is valid but hasn’t yet been writ-
ten to

Set dirty bit in PTE

Executing code in a page that is marked
as no execute

Access violation (supported only on hardware plat-
forms that support no execute protection running
Windows XP Service Pack 2 or Windows Server 2003
Service Pack 1 and later)

Table 7-13 Reasons for Access Faults

Reason for Fault Result

0

31 412 5 091011 1

Page file offset Protection PFN

Prototype
Transition

Valid

Chapter 7: Memory Management 441
■ Transition The desired page is in memory on either the standby, modified, or modified-
no-write list. The page will be removed from the list and added to the working set if ref-
erenced, as shown here:

■ Unknown The PTE is zero, or the page table doesn’t yet exist. In both cases, this flag
means that you should examine the virtual address descriptors (VADs) to determine
whether this virtual address has been committed. If so, page tables are built to represent
the newly committed address space. (See the discussion of VADs later in the chapter.)

Prototype PTEs

If a page can be shared between two processes, the memory manager relies on a software
structure called prototype page table entries (prototype PTEs) to map these potentially shared
pages. For page file backed sections, an array of prototype PTEs is created when a section
object is first created; for mapped files, portions of the array are created on demand as each
view is mapped. (See the following note.) These prototype PTEs are part of the segment struc-
ture, described at the end of this chapter.

Note In Windows 2000 and Windows 2000 Service Pack 1, the memory manager allocates
all the prototype page table entries needed to map the entire file, even though applications
might only map views to small parts of the file(s) at any one time. Because these structures are
allocated from a finite resource (paged pool), attempting to map large files can exhaust this
resource. As a result, this limits the total amount of mapped file(s) in use at any time to approx-
imately 200 GB.

This limit has been removed in Windows 2000 Service Pack 2 and beyond by having the mem-
ory manager allocate these structures only when mapped views into the file are created. A
result of this change is that it is now possible for file backup of any size file on any size system.
Previously, you couldn’t back up a 500-GB file on a 32-MB system because there wasn’t enough
paged pool to create the prototype page table entries for the entire section. Now that these
structures are allocated for active views only, large file backups are supported on systems with
small physical memory configurations.

31 12 5 091011 1234

PFN Protection

Prototype
Transition

Valid

1 1 0

Protection
Cache disable
Write through
Owner
Write

442 Microsoft Windows Internals, Fourth Edition
When a process first references a page mapped to a view of a section object (recall that the
VADs are created only when the view is mapped), the memory manager uses the information
in the prototype PTE to fill in the real PTE used for address translation in the process page
table. When a shared page is made valid, both the process PTE and the prototype PTE point
to the physical page containing the data. To track the number of process PTEs that reference
a valid shared page, a counter in the PFN database entry is incremented. Thus, the memory
manager can determine when a shared page is no longer referenced by any page table and
thus can be made invalid and moved to a transition list or written out to disk.

When a shareable page is invalidated, the PTE in the process page table is filled in with a special
PTE that points to the prototype PTE entry that describes the page, as shown in Figure 7-26.

Figure 7-26 Structure of an invalid PTE that points to the prototype PTE

Thus, when the page is later accessed, the memory manager can locate the prototype PTE
using the information encoded in this PTE, which in turn describes the page being referenced.
A shared page can be in one of six different states as described by the prototype PTE entry:

■ Active/valid The page is in physical memory as a result of another process that
accessed it.

■ Transition The desired page is in memory on the standby or modified list.

■ Modified-no-write The desired page is in memory and on the modified-no-write list.
(See Table 7-20.)

■ Demand zero The desired page should be satisfied with a page of zeros.

■ Page file The desired page resides within a page file.

■ Mapped file The desired page resides within a mapped file.

Although the format of these prototype PTE entries is the same as that of the real PTE
entries described earlier, these prototype PTEs aren’t used for address translation—they are
a layer between the page table and the page frame number database and never appear
directly in page tables.

By having all the accessors of a potentially shared page point to a prototype PTE to resolve
faults, the memory manager can manage shared pages without needing to update the page
tables of each process sharing the page. For example, a shared code or data page might be

0

31 11 078910 1
PTE address

(bits 7 through 27)
PTE address

(bits 0 through 6)

Prototype
Valid

Chapter 7: Memory Management 443
paged out to disk at some point. When the memory manager retrieves the page from disk, it
needs only to update the prototype PTE to point to the page’s new physical location—the PTEs
in each of the processes sharing the page remain the same (with the valid bit clear and still
pointing to the prototype PTE). Later, as processes reference the page, the real PTE will get
updated.

Figure 7-27 illustrates two virtual pages in a mapped view. One is valid, and the other is invalid.
As shown, the first page is valid and is pointed to by the process PTE and the prototype PTE. The
second page is in the paging file—the prototype PTE contains its exact location. The process PTE
(and any other processes with that page mapped) points to this prototype PTE.

Figure 7-27 Prototype page table entries

In-Paging I/O

In-paging I/O occurs when a read operation must be issued to a file (paging or mapped) to
satisfy a page fault. Also, because page tables are pageable, the processing of a page fault can
incur additional page faults when the system is loading the page table page that contains the
PTE or the prototype PTE that describes the original page being referenced.

The in-page I/O operation is synchronous—that is, the thread waits on an event until the I/O
completes—and isn’t interruptible by asynchronous procedure call (APC) delivery. The pager
uses a special modifier in the I/O request function to indicate paging I/O. Upon completion of
paging I/O, the I/O system triggers an event, which wakes up the pager and allows it to con-
tinue in-page processing.

While the paging I/O operation is in progress, the faulting thread doesn’t own any critical
memory management synchronization objects. Other threads within the process are allowed
to issue virtual memory functions and handle page faults while the paging I/O takes place.

Page directory Page table

Prototype page
table

Physical
memory

PFN database
entry

Valid – PFN n

Invalid – points
to prototype

PTE

Segment
structure

Valid – PFN 5

Invalid – in
page file

PFN n

PFN n

PTE address

Share count=1

PFN

444 Microsoft Windows Internals, Fourth Edition
But a number of interesting conditions that the pager must recognize when the I/O completes
are exposed:

■ Another thread in the same process or a different process could have faulted the same
page (called a collided page fault and described in the next section).

■ The page could have been deleted (and remapped) from the virtual address space.

■ The protection on the page could have changed.

■ The fault could have been for a prototype PTE, and the page that maps the prototype
PTE could be out of the working set.

The pager handles these conditions by saving enough state on the thread’s kernel stack before
the paging I/O request such that when the request is complete, it can detect these conditions
and, if necessary, dismiss the page fault without making the page valid. When and if the faulting
instruction is reissued, the pager is again invoked and the PTE is reevaluated in its new state.

Collided Page Faults

The case when another thread or process faults a page that is currently being in-paged is
known as a collided page fault. The pager detects and handles collided page faults optimally
because they are common occurrences in multithreaded systems. If another thread or process
faults the same page, the pager detects the collided page fault, noticing that the page is in tran-
sition and that a read is in progress. (This information is in the PFN database entry.) In this
case, the pager issues a wait operation on the event specified in the PFN database entry. This
event was initialized by the thread that first issued the I/O needed to resolve the fault.

When the I/O operation completes, all threads waiting on the event have their wait satisfied.
The first thread to acquire the PFN database lock is responsible for performing the in-page
completion operations. These operations consist of checking I/O status to ensure the I/O
operation completed successfully, clearing the read-in-progress bit in the PFN database, and
updating the PTE.

When subsequent threads acquire the PFN database lock to complete the collided page fault,
the pager recognizes that the initial updating has been performed as the read-in-progress bit is
clear and checks the in-page error flag in the PFN database element to ensure that the in-page
I/O completed successfully. If the in-page error flag is set, the PTE isn’t updated and an in-
page error exception is raised in the faulting thread.

Page Files

Page files are used to store modified pages that are still in use by some process but have had
to be written to disk (because of modified page writing). Page file space is reserved when the
pages are initially committed, but the actual page file locations are not chosen until pages are
written out to disk. The important point is that the system commit limit is charged for private
pages as they are created. Thus, the Process: Page File Bytes performance counter is actually

Chapter 7: Memory Management 445
the total process private committed memory, of which none, some, or all may be in the paging
file. (In fact, it’s the same as the Process: Private Bytes performance counter.)

The memory manager keeps track of private committed memory usage on a global basis,
termed commitment, and on a per-process basis as page file quota. (Again, this memory usage
doesn’t represent page file usage—it represents private committed memory usage.) Commit-
ment and page file quota are charged whenever virtual addresses that require new private
physical pages are committed. Once the global commit limit has been reached (physical mem-
ory and the page files are full), allocating virtual memory will fail until processes free commit-
ted memory (for example, when a process exits).

When the system boots, the Session Manager process (described in Chapter 4) reads the list
of page files to open by examining the registry value HKLM\SYSTEM\CurrentControlSet\
Control\Session Manager\Memory Management\PagingFiles. This multistring registry value
contains the name, minimum size, and maximum size of each paging file. Windows supports
up to 16 paging files. On x86 systems running the normal kernel, each page file can be a max-
imum of 4095 MB. On x64 systems and x86 systems running the PAE kernel, each page file
can be 16 terabytes (TB). On IA-64 systems, each page file can be 32 TB. Once open, the page
files can’t be deleted while the system is running because the System process (described in
Chapter 2) maintains an open handle to each page file. The fact that the paging files are open
explains why the built-in defragmentation tool cannot defragment the paging file while the
system is up. To defragment your paging file, use the freeware Pagedefrag tool from www.sys-
internals.com. It uses the same approach as other third-party defragmentation tools—it runs its
defragmentation process early in the boot process before the page files are opened by the Ses-
sion Manager.

Because the page file contains parts of process and kernel virtual memory, for security reasons
the system can be configured to clear the page file at system shutdown. To enable this, set the
registry value HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\Memory Man-
agement\ClearPageFileAtShutdown to 1. Otherwise, after shutdown, the page file will contain
whatever data happened to have been paged out while the system was up. This data could
then be accessed by someone who gained physical access to the machine.

If no paging files are specified, Windows 2000 creates a default 20-MB page file on the boot
partition. Windows XP and Windows Server 2003 do not create this temporary paging file,
which means the system virtual memory commit limit is based on available memory. In Win-
dows XP and Windows Server 2003, if the minimum and maximum paging file sizes are both
zero, this indicates a system managed paging file, which causes the system to choose the page
file size as shown in Table 7-14.

Table 7-14 Default Page File Sizes

System Memory Size Minimum Page File Size Maximum Page File Size

< 1 GB 1.5 * RAM 3 * RAM

>= 1 GB 1 * RAM 3 * RAM

446 Microsoft Windows Internals, Fourth Edition
EXPERIMENT: Viewing System Page Files
To view the list of page files, look in the registry at HKLM\SYSTEM\CurrentCon-
trolSet\Control\Session Manager\Memory Management\PagingFiles. This contains
the paging file configuration settings modified through the System utility in Control
Panel. In Windows 2000, click the Performance Options button on the Advanced tab,
and then click the Change button. In Windows XP and Windows Server 2003, click the
Advanced tab, click the Settings button in the Performance section, click the Advanced
tab, and finally, click the Change button in the Virtual Memory section.

To add a new page file, Control Panel uses the (internal only) NtCreatePagingFile system ser-
vice defined in Ntdll.dll. Page files are always created as noncompressed files, even if the direc-
tory they are in is compressed. To keep new page files from being deleted, a handle is
duplicated into the System process so that when the creating process closes the handle to the
new page file, another process can still open the page file.

The performance counters listed in Table 7-15 allow you to examine private committed mem-
ory usage on a systemwide or per-page-file basis. There’s no way to determine how much of a
process’s private committed memory is resident and how much is paged out to paging files.

Note that these counters can assist you in choosing a page file size. Although most do it, basing
page file size as a function of RAM makes no sense because the more memory you have, the less
likely you are to need to page data out. To determine how much page file space your system
really needs based on the mix of applications that have run since the system booted, examine
the peak commit charge (displayed in the Commit Charge section of Task Manager’s perfor-
mance tab and also in Process Explorer’s System Information display). This number represents
the peak amount of page file space since the system booted that would have been needed if the
system had to page out all private committed virtual memory (which rarely happens).

Table 7-15 Committed Memory and Page File Performance Counters

Performance Counter Description

Memory: Committed Bytes Number of bytes of virtual (not reserved) memory that has been
committed. This number doesn’t necessarily represent page file
usage because it includes private committed pages in physical
memory that have never been paged out. Rather, it represents
the amount of page file space that would be used if the process
was completely made nonresident.

Memory: Commit Limit Number of bytes of virtual memory that can be committed
without having to extend the paging files; if the paging files can
be extended, this limit is soft.

Paging File: % Usage Percentage of the paging file committed.

Paging File: % Usage Peak Highest percentage of the paging file committed.

Chapter 7: Memory Management 447
If the page file on your system is too big, the system will not use it any more or less—in other
words, increasing the size of the page file does not change system performance, it simply
means the system can have more nonshareable committed virtual memory. If the page file is
too small for the mix of applications you are running, you might get the “system running low
on virtual memory” error message. In this case, first check to see whether a process has a
memory leak by examining the process private bytes count (found in the “VM Size” column in
Task Manager’s Processes tab). If no process appears to have a leak, check the system paged
pool size—if a device driver is leaking paged pool, this might also explain the error. (See the
“Troubleshooting a Pool Leak” experiment in the “System Memory Pools” section for how to
troubleshoot a pool leak.)

EXPERIMENT: Viewing Page File Usage with Task Manager
You can also view committed memory usage with Task Manager by clicking its Perfor-
mance tab. You’ll see the following counters related to page files:

Note that the Mem Usage bar (called PF Usage in Windows XP and Windows Server
2003) is actually the system commit total. This number represents potential page file
usage, not actual page file usage. It is how much page file space would be used if all the
private committed virtual memory in the system had to be paged out all at once.

Process Explorer’s System Information display shows an additional piece of information
about system commit usage, namely the percentage of the peak as compared to the limit
and the current usage as compared to the limit:

Total virtual
memory that has
committed storage

Maximum virtual
memory without
extending page file

448 Microsoft Windows Internals, Fourth Edition
Virtual Address Descriptors
The memory manager uses a demand-paging algorithm to know when to load pages into
memory, waiting until a thread references an address and incurs a page fault before retrieving
the page from disk. Like copy-on-write, demand paging is a form of lazy evaluation—waiting to
perform a task until it is required.

The memory manager uses lazy evaluation not only to bring pages into memory but also to con-
struct the page tables required to describe new pages. For example, when a thread commits a
large region of virtual memory with VirtualAlloc, the memory manager could immediately con-
struct the page tables required to access the entire range of allocated memory. But what if some
of that range is never accessed? Creating page tables for the entire range would be a wasted
effort. Instead, the memory manager waits to create a page table until a thread incurs a page
fault, and then it creates a page table for that page. This method significantly improves perfor-
mance for processes that reserve and/or commit a lot of memory but access it sparsely.

With the lazy-evaluation algorithm, allocating even large blocks of memory is a fast operation.
When a thread allocates memory, the memory manager must respond with a range of
addresses for the thread to use. To do this, the memory manager maintains another set of data
structures to keep track of which virtual addresses have been reserved in the process’s address
space and which have not. These data structures are known as virtual address descriptors
(VADs). For each process, the memory manager maintains a set of VADs that describes the sta-
tus of the process’s address space. VADs are structured as a self-balancing binary tree to make
lookups efficient. Windows Server 2003 implements an AVL tree algorithm (named after their
inventors, Adelson-Velskii and Landis) that better balances the VAD tree, resulting in, on aver-

Chapter 7: Memory Management 449
age, fewer comparisons when searching for a VAD corresponding with a virtual address. A dia-
gram of a VAD tree is shown in Figure 7-28.

Figure 7-28 Virtual address descriptors

When a process reserves address space or maps a view of a section, the memory manager cre-
ates a VAD to store any information supplied by the allocation request, such as the range of
addresses being reserved, whether the range will be shared or private, whether a child process
can inherit the contents of the range, and the page protection applied to pages in the range.

When a thread first accesses an address, the memory manager must create a PTE for the page
containing the address. To do so, it finds the VAD whose address range contains the accessed
address and uses the information it finds to fill in the PTE. If the address falls outside the
range covered by the VAD or in a range of addresses that are reserved but not committed, the
memory manager knows that the thread didn’t allocate the memory before attempting to use
it and therefore generates an access violation.

EXPERIMENT: Viewing Virtual Address Descriptors
You can use the kernel debugger’s !vad command to view the VADs for a given process.
First find the address of the root of the VAD tree with the !process command. Then spec-
ify that address to the !vad command, as shown in the following example of the VAD tree
for a process running Notepad.exe:

kd> !process 2a0 1

Searching for Process with Cid == 2a0

PROCESS 8614d030 SessionId: 0 Cid: 02a0 Peb: 7ffdf000 ParentCid: 0554

DirBase: 00d93000 ObjectTable: 81bc47c8 TableSize: 41.

Image: notepad.exe

VadRoot 8118d868 Clone 0 Private 252. Modified 0. Locked 0.

Range: 20000000 through 2000FFFF
Protection: Read/write
Inheritance: Yes

Range: 00002000 through 0000FFFF
Protection: Read-only
Inheritance: No

Range: 4E000000 through 4F000000
Protection: Copy-on-write
Inheritance: Yes

Range: 32000000 through 3300FFFF
Protection: Read-only
Inheritance: No

Range: 7AAA0000 through 7AAA00FF
Protection: Read/write
Inheritance: No

450 Microsoft Windows Internals, Fourth Edition
kd> !vad 8118d868

VAD level start end commit

84df4148 (2) 10 10 1 Private READWRITE

850cdbe8 (3) 20 20 1 Private READWRITE

810b0ee8 (1) 30 6f 7 Private READWRITE

8109d308 (3) 70 16f 32 Private READWRITE

810e9a28 (2) 170 17f 0 Mapped READWRITE

84aedfc8 (3) 180 195 0 Mapped READONLY

8118d868 (0) 1a0 1ce 0 Mapped READONLY

81190a08 (4) 1d0 210 0 Mapped READONLY

85c7b928 (3) 220 223 0 Mapped READONLY

86253a08 (4) 230 2f7 0 Mapped EXECUTE_READ

810aab48 (2) 300 342 0 Mapped READONLY

80db5448 (5) 350 64f 0 Mapped EXECUTE_READ

 Total VADs: 49 average level: 6 maximum depth: 13

Section Objects
As you’ll remember from the section on shared memory earlier in the chapter, the section
object, which the Windows subsystem calls a file mapping object, represents a block of memory
that two or more processes can share. A section object can be mapped to the paging file or to
another file on disk.

The executive uses sections to load executable images into memory, and the cache manager
uses them to access data in a cached file. (See Chapter 11 for more information on how the
cache manager uses section objects.) You can also use section objects to map a file into a pro-
cess address space. The file can then be accessed as a large array by mapping different views
of the section object and reading or writing to memory rather than to the file (an activity
called mapped file I/O). When the program accesses an invalid page (one not in physical mem-
ory), a page fault occurs and the memory manager automatically brings the page into memory
from the mapped file. If the application modifies the page, the memory manager writes the
changes back to the file during its normal paging operations (or the application can flush a
view by using the Windows FlushViewOfFile function).

Section objects, like other objects, are allocated and deallocated by the object manager. The
object manager creates and initializes an object header, which it uses to manage the objects;
the memory manager defines the body of the section object. The memory manager also imple-
ments services that user-mode threads can call to retrieve and change the attributes stored in
the body of section objects. The structure of a section object is shown in Figure 7-29.

Chapter 7: Memory Management 451
Figure 7-29 A section object

Table 7-16 summarizes the unique attributes stored in section objects.

EXPERIMENT: Viewing Section Objects
With the Object Viewer (Winobj.exe from www.sysinternals.com from the book’s com-
panion CD or Winobj.exe in the Platform SDK), you can see the list of sections that have
global names. You can list the open handles to section objects with any of the tools
described in the Object Manager section in Chapter 3 that list the open handle table. (As
explained in Chapter 3, these names are stored in the object manager directory \Base-
NamedObjects.)

Table 7-16 Section Object Body Attributes

Attribute Purpose

Maximum size The largest size to which the section can grow in bytes; if mapping
a file, the maximum size is the size of the file.

Page protection Page-based memory protection assigned to all pages in the sec-
tion when it is created.

Paging file/Mapped file Indicates whether the section is created empty (backed by the
paging file—as explained earlier, page file backed sections use
page-file resources only when the pages need to be written out to
disk) or loaded with a file (backed by the mapped file).

Based/Not based Indicates whether a section is a based section, which must appear
at the same virtual address for all processes sharing it, or a non-
based section, which can appear at different virtual addresses for
different processes.

Object type

Object body attributes

Services

Section

Maximum size
Page protection
Paging file/Mapped file
Based/Not based

Create section
Open section
Extend section
Map/Unmap view
Query section

452 Microsoft Windows Internals, Fourth Edition
Using Process Explorer or Handles.exe (both from www.sysinternals.com) or the Win-
dows resource kit Oh.exe (Open Handles) tool, you can list the open handles to section
objects. For example, the following command displays all open handles to objects of
type section, whether or not they have names. (A section must have a name only if other
processes need to open it by name.)

c:\> oh -t section -a

00000008 System Section 0070

0000008C smss.exe Section 0004

000000A4 csrss.exe Section 0004

000000A4 csrss.exe Section 0024

000000A4 csrss.exe Section 0038

000000A4 csrss.exe Section 0040 \NLS\NlsSectionUnicode

000000A4 csrss.exe Section 0044 \NLS\NlsSectionLocale

000000A4 csrss.exe Section 0048 \NLS\NlsSectionCType

000000A4 csrss.exe Section 004c \NLS\NlsSectionSortkey

000000A4 csrss.exe Section 0050 \NLS\NlsSectionSortTbls

000000A0 winlogon.exe Section 0004

000000A0 winlogon.exe Section 0034

000000A0 winlogon.exe Section 0168 \BaseNamedObjects\mmGlobalPnpInfo

§

You can also use Process Explorer from www.sysinternals.com to view mapped files.
Select DLLs from the Lower Pane View entry of the View menu. Files marked with an
asterisk in the MM column are mapped files (rather than DLLs and other files the image
loader loads as modules). Here’s an example:

Chapter 7: Memory Management 453
The data structures maintained by the memory manager that describe mapped sections are
shown in Figure 7-30. These structures ensure that data read from mapped files is consistent,
regardless of the type of access (open file, mapped file, and so on).

Figure 7-30 Internal section structures

For each open file (represented by a file object), there is a single section object pointers struc-
ture. This structure is the key to maintaining data consistency for all types of file access as well
as to providing caching for files. The section object pointers structure points to one or two con-
trol areas. One control area is used to map the file when it is accessed as a data file, and one is
used to map the file when it is run as an executable image.

A control area in turn points to subsection structures that describe the mapping information
for each section of the file (read-only, read-write, copy-on-write, and so on). The control area
also points to a segment structure allocated in paged pool, which in turn points to the proto-
type PTEs used to map to the actual pages mapped by the section object. As described earlier
in the chapter, process page tables point to these prototype PTEs, which in turn map the pages
being referenced.

Although Windows ensures that any process that accesses (reads or writes) a file will always
see the same, consistent data, there is one case in which two copies of pages of a file can reside
in physical memory (but even in this case, all accessors get the latest copy and data consistency

File object

File object

VAD
Section
object

Segment

Prototype
PTEs

PFN
database

entry
Next

subsection

Subsection

Data section
control area

Image section control area
(if file is an executable image)

Page
directory

Page table

Section object
pointers

454 Microsoft Windows Internals, Fourth Edition
is maintained). This duplication can happen when an image file has been accessed as a data file
(having been read or written) and then run as an executable image (for example, when an
image is linked and then run—the linker had the file open for data access, and then when
the image was run, the image loader mapped it as an executable). Internally, the following
actions occur:

1. If the executable file was created using the file mapping APIs (or the cache manager), a
data control area is created to represent the data pages in the image file being read or
written.

2. When the image is run and the section object is created to map the image as an execut-
able, the memory manager finds that the section object pointers for the image file point
to a data control area and flushes the section. This step is necessary to ensure that any
modified pages have been written to disk before accessing the image through the image
control area.

3. The memory manager then creates a control area for the image file.

4. As the image begins execution, its (read-only) pages are faulted in from the image file.

Because the pages mapped by the data control area might still be resident (on the standby
list), this is the one case in which two copies of the same data are in two different pages in
memory. However, this duplication doesn’t result in a data consistency issue because, as men-
tioned, the data control area has already been flushed to disk, so the pages read from the
image are up to date (and these pages are never written back to disk).

EXPERIMENT: Viewing Control Areas
To find the address of the control area structures for a file, you must first get the address of
the file object in question. You can obtain this address through the kernel debugger by
dumping the process handle table with the !handle command and noting the object
address of a file object. Although the kernel debugger !file command displays the basic
information in a file object, it doesn’t display the pointer to the section object pointers
structure. Then, using the dt command, format the file object to get the address of the sec-
tion object pointers structure. This structure consists of three pointers: a pointer to the
data control area, a pointer to the shared cache map (explained in Chapter 11), and a
pointer to the image control area. From the section object pointers structure, you can
obtain the address of a control area for the file (if one exists) and feed that address into the
!ca command.

Chapter 7: Memory Management 455
For example, if you open a PowerPoint file and display the handle table for that process
using !handle, you will find an open handle to the PowerPoint file as shown below. (For
information on using !handle, see the “Object Manager” section in Chapter 3.)

lkd> !handle 1 f 5c4 file

.

.

0284: Object: 8645c038 GrantedAccess: 00120089

Object: 8645c038 Type: (867ddca0) File

ObjectHeader: 8645c020

HandleCount: 1 PointerCount: 1

Directory Object: 00000000 Name: \slides\ntint\new\

3-systemarchitecture.ppt {HarddiskVolume1}

Taking the file object address (8645c038) and formatting it with dt results in this:

lkd> dt nt!_file_object 8645c038

nt!_FILE_OBJECT

+0x000 Type : 5

+0x002 Size : 112

+0x004 DeviceObject : 0x86742e30

+0x008 Vpb : 0x867a3090

+0x00c FsContext : 0xe2786530

+0x010 FsContext2 : 0xe309a378

+0x014 SectionObjectPointer : 0x85512fec

Then taking the address of the section object pointers structure (0x85512fec) and for-
matting it with dt results in this:

lkd> dt nt!_section_object_pointers 0x85512fec

nt!_SECTION_OBJECT_POINTERS

+0x000 DataSectionObject : 0x8564f8a0

+0x004 SharedCacheMap : (null)

+0x008 ImageSectionObject : (null)

Finally, use !ca to display the control area using the address:

lkd> !ca 0x8564f8a0

ControlArea @8564f8a0

Segment: e3817528 Flink 0 Blink 0

Section Ref 1 Pfn Ref 25c Mapped Views 1

User Ref 2 WaitForDel 0 Flush Count 0

File Object 85774580 ModWriteCount 0 System Views 0

Flags (9008080) File WasPurged HadUserReference Accessed

File: \slides\ntint\new\3-systemarchitecture.ppt

456 Microsoft Windows Internals, Fourth Edition
Another technique is to display the list of all control areas with the !memusage com-
mand. The following excerpt is from the output of this command:

kd> !memusage

loading PFN database

loading (99% complete)

Zeroed: 9 (36 kb)

Free: 0 (0 kb)

Standby: 2103 (8412 kb)

Modified: 300 (1200 kb)

ModifiedNoWrite: 1 (4 kb)

Active/Valid: 30318 (121272 kb)

Transition: 3 (12 kb)

Unknown: 0 (0 kb)

TOTAL: 32734 (130936 kb)

Building kernel map

Finished building kernel map

Usage Summary (in Kb):

Control Valid Standby Dirty Shared Locked PageTables name

8119b608 3000 528 0 0 0 0 mapped_file(WINWORD.EXE)

849e7c68 96 0 0 0 0 0 No Name for File

8109c388 24 0 0 0 0 0 mapped_file(DEVDTG.PKG)

81402488 236 0 0 0 0 0 No Name for File

80fba0a8 268 0 0 0 0 0 mapped_file(kernel32.pdb)

810ab168 1504 380 0 0 0 0 mapped_file(OUTLLIB.DLL)

81126a08 0 276 0 0 0 0 mapped_file(H)

81112d28 656 0 0 0 0 0 No Name for File

The Control column points to the control area structure that describes the mapped file.
You can display control areas, segments, and subsections with the kernel debugger !ca
command. For example, to dump the control area for the mapped file Winword.exe in
this example, type the !ca command followed by the Control number, as shown here:

kd> !ca 8119b608

ControlArea @8119b608

Segment: e2c28000 Flink 0 Blink: 0

Section Ref 1 Pfn Ref 372 Mapped Views: 1

User Ref 2 Subsections 6 Flush Count: 0

File Object 8213fb98 ModWriteCount 0 System Views: 0

WaitForDel 0 Paged Usage 3000 NonPaged Usage 100

Flags (90000a0) Image File HadUserReference Accessed

File: \Program Files\Microsoft Office\Office\WINWORD.EXE

Segment @ e2c28000:

Base address 0 Total Ptes 86a NonExtendPtes: 86a

Image commit d7 ControlArea 8119b608 SizeOfSegment: 86a000

Image Base 0 Committed 0 PTE Template: 919b6c38

Based Addr 30000000 ProtoPtes e2c28038 Image Info: e2c2a1e4

Subsection 1. @ 8119b640

ControlArea: 8119b608 Starting Sector 0 Number Of Sectors 8

Chapter 7: Memory Management 457
Base Pte e2c28038 Ptes In subsect 1 Unused Ptes 0

Flags 15 Sector Offset 0 Protection 1

ReadOnly CopyOnWrite

Subsection 2. @ 8119b660

ControlArea: 8119b608 Starting Sector 10 Number Of Sectors 3c00

Base Pte e2c2803c Ptes In subsect 780 Unused Ptes 0

Flags 35 Sector Offset 0 Protection 3

ReadOnly CopyOnWrite

Subsection 3. @ 8119b680

ControlArea: 8119b608 Starting Sector 3C10 Number Of Sectors 5d8

Base Pte e2c29e3c Ptes In subsect c1 Unused Ptes 0

Flags 55 Sector Offset 0 Protection 5

ReadOnly CopyOnWrite

Subsection 4. @ 8119b6a0

ControlArea: 8119b608 Starting Sector 41E8 Number Of Sectors a8

Base Pte e2c2a140 Ptes In subsect 15 Unused Ptes 0

Flags 55 Sector Offset 0 Protection 5

ReadOnly CopyOnWrite

Subsection 5. @ 8119b6c0

ControlArea: 8119b608 Starting Sector 0 Number Of Sectors 0

Base Pte e2c2a194 Ptes In subsect 1 Unused Ptes 0

Flags 55 Sector Offset 0 Protection 5

ReadOnly CopyOnWrite

 Subsection 6. @ 8119b6e0

ControlArea: 8119b608 Starting Sector 4290 Number Of Sectors 90

Base Pte e2c2a198 Ptes In subsect 12 Unused Ptes 0

Flags 15 Sector Offset 0 Protection 1

ReadOnly CopyOnWrite

Working Sets
In the last several sections, we’ve concentrated on the virtual view of a Windows process—
page tables, PTEs, and VADs. In the remainder of this chapter, we’ll explain how Windows
keeps a subset of virtual addresses in physical memory.

As you’ll recall, the term used to describe a subset of virtual pages resident in physical mem-
ory is called a working set. There are three kinds of working sets:

■ Process working sets contain the pages referenced by threads within a single process.

■ The system working set contains the resident subset of the pageable system code (for
example, Ntoskrnl.exe and drivers), paged pool, and the system cache.

■ On systems with terminal services enabled, each session has a working set that contains
the resident subset of the kernel-mode session-specific data structures allocated by the
kernel-mode part of the Windows subsystem (Win32k.sys), session paged pool, session
mapped views, and other session-space device drivers.

458 Microsoft Windows Internals, Fourth Edition
Before examining the details of each type of working set, let’s look at the overall policy for
deciding which pages are brought into physical memory and how long they remain. After that,
we’ll explore the various types of working sets.

Demand Paging

The Windows memory manager uses a demand-paging algorithm with clustering to load
pages into memory. When a thread receives a page fault, the memory manager loads into
memory the faulted page plus a small number of pages preceding and/or following it. This
strategy attempts to minimize the number of paging I/Os a thread will incur. Because pro-
grams, especially large ones, tend to execute in small regions of their address space at any
given time, loading clusters of virtual pages reduces the number of disk reads. For page faults
that reference data pages in images, the cluster size is 3 pages. For all other page faults, the
cluster size is 7 pages.

However, a demand paging policy can result in a process incurring many page faults when its
threads first begin executing or when they resume execution at a later point. To optimize the
startup of a process (and the system), Windows XP and Windows Server 2003 have an intel-
ligent prefetch engine called the logical prefetcher, described in the next section.

Logical Prefetcher
During a typical system boot or application startup, the order of faults is such that some pages
are brought in from one part of a file, then perhaps from a distant part of the same file, then
from a different file, perhaps from a directory, and then again from the first file. This jumping
around slows down each access considerably and, thus, analysis shows that disk seek times
are a dominant factor in slowing boot and application startup times. By prefetching batches of
pages all at once, a more sensible ordering of access, without excessive backtracking, can be
achieved, thus improving the overall time for system and application startup. The pages that
are needed can be known in advance because of the high correlation in accesses across boots
or application starts.

The prefetcher, introduced in Windows XP, tries to speed the boot process and application
startup by monitoring the data and code accessed by boot and application startups and using
that information at the beginning of a subsequent boot or application startup to read in the
code and data. When the prefetcher is active, the memory manager notifies the prefetcher
code in the kernel of page faults, both those that require that data be read from disk (hard
faults) and those that simply require data already in memory be added to a process’s working
set (soft faults). The prefetcher monitors the first 10 seconds of application startup. For boot,
the prefetcher by default traces from system start through the 30 seconds following the start
of the user’s shell (typically Explorer) or, failing that, up through 60 seconds following Win-
dows service initialization or through 120 seconds, whichever comes first.

Chapter 7: Memory Management 459
The trace assembled in the kernel notes faults taken on the NTFS Master File Table (MFT)
metadata file (if the application accesses files or directories on NTFS volumes), on referenced
files, and on referenced directories. With the trace assembled, the kernel prefetcher code noti-
fies the prefetcher component of the Task Scheduler service (\Windows\System32\
Schedsvc.dll), running in a copy of Svchost, by signaling an event object named PrefetchTraces-
Ready.

Note You can enable or disable prefetching of the boot or application startups by editing
the DWORD registry value HKLM\System\CurrentControlSet\Control\Session Manager\Mem-
ory Management\PrefetchParameters\EnablePrefetcher. Set it to 0 to disable prefetching alto-
gether, 1 to enable prefetching of only applications, 2 for prefetching of boot only, and 3 for
both boot and applications.

When the PrefetchTracesReady event is signaled, the Task Scheduler performs a call to the inter-
nal NtQuerySystemInformation system call requesting the trace data. The Task Scheduler post
processes the trace data, combining it with previously collected data, and writes it out to a file
in the \Windows\Prefetch folder, which is shown in Figure 7-31. The file’s name is the name
of the application to which the trace applies followed by a dash and the hexadecimal represen-
tation of a hash of the file’s path. The file has a “.pf” extension, so an example would be NOTE-
PAD.EXE-AF43252301.PF.

Figure 7-31 Prefetch folder

There are two exceptions to the file name rule. The first is for images that host other compo-
nents, including the Microsoft Management Console (\Windows\System32\Mmc.exe) and Dll-
host (\Windows\System32\Dllhost.exe). Because add-on components are specified on the
command line for these applications, the prefetcher includes the command line in the generated
hash. Thus, invocations of these applications with different components on the command line
will result in different traces. The prefetcher reads the list of executables that it should treat this

460 Microsoft Windows Internals, Fourth Edition
way from the HostingAppList value in its parameters registry key, HKLM\System\CurrentCon-
trolSet\Control\Session Manager\Memory Management\PrefetchParameters.

The other exception to the file name rule is the file that stores the boot’s trace, which is always
named NTOSBOOT-B00DFAAD.PF. (If read as a word, “boodfaad” sounds similar to the
English words boot fast.) Only after the prefetcher has finished the boot trace (the time of
which was defined earlier) does it collect page fault information for specific applications.

EXPERIMENT: Looking Inside a Prefetch File
A prefetch file’s contents serve as a record of files and directories accessed during the
boot or an application startup, and you can use the Strings utility from www.sysinter-
nals.com to see the record. The following command lists all the files and directories ref-
erenced during the last boot:

C:\Windows\Prefetch>Strings ntosboot-boodfaad.pf

Strings v2.1

Copyright (C) 1999-2003 Mark Russinovich

Systems Internals - www.sysinternals.com

NTOSBOOT

SCCA

\DEVICE\HARDDISKVOLUME2\$MFT

\DEVICE\HARDDISKVOLUME2\WINDOWS\PREFETCH\NTOSBOOT-B00DFAAD.PF

\DEVICE\HARDDISKVOLUME2\SYSTEM VOLUME INFORMATION_RESTORE{987E0331-0F01-427C-A5

8A-7A2E4AABF84D}\RP24\CHANGE.LOG

\DEVICE\HARDDISKVOLUME2\WINDOWS\SYSTEM32\DRIVERS\PROCESSR.SYS

\DEVICE\HARDDISKVOLUME2\WINDOWS\SYSTEM32\DRIVERS\FGLRYM.SYS

\DEVICE\HARDDISKVOLUME2\WINDOWS\SYSTEM32\DRIVERS\VIDEOPRT.SYS

\DEVICE\HARDDISKVOLUME2\WINDOWS\SYSTEM32\DRIVERS\E1000325.SYS

\DEVICE\HARDDISKVOLUME2\WINDOWS\SYSTEM32\DRIVERS\USBUHCI.SYS

\DEVICE\HARDDISKVOLUME2\WINDOWS\SYSTEM32\DRIVERS\USBPORT.SYS

\DEVICE\HARDDISKVOLUME2\WINDOWS\SYSTEM32\DRIVERS\USBEHCI.SYS

\DEVICE\HARDDISKVOLUME2\WINDOWS\SYSTEM32\DRIVERS\NIC1394.SYS

…

When the system boots or an application starts, the prefetcher is called to give it an opportu-
nity to perform prefetching. The prefetcher looks in the prefetch directory to see if a trace file
exists for the prefetch scenario in question. If it does, the prefetcher calls NTFS to prefetch any
MFT metadata file references, reads in the contents of each of the directories referenced, and
finally opens each file referenced. It then calls the memory manager function MmPrefetchPages
to read in any data and code specified in the trace that’s not already in memory. The memory
manager initiates all the reads asynchronously and then waits for them to complete before let-
ting an application’s startup continue.

Chapter 7: Memory Management 461
EXPERIMENT: Watching Prefetch File Reads and Writes
If you capture a trace of application startup with Filemon from www.sysinternals.com in
Windows XP, you can see the prefetcher check for and read the application’s prefetch
file (if it exists), and roughly ten seconds after the application started, see the prefetcher
write out a new copy of the file. Below is a capture of Notepad startup with an Include
filter set to “prefetch” so that Filemon shows only accesses to the \Windows\Prefetch
directory:

Lines 1 through 3 show the Notepad prefetch file being read in the context of the Note-
pad process during its startup. Lines 4 through 10, which have time stamps 10 seconds
later than the first 3 lines, show the Task Scheduler, which is running in the context of
a Svchost process, write out the updated prefetch file.

To minimize seeking even further, every three days or so, during system idle periods, the Task
Scheduler organizes a list of files and directories in the order that they are referenced during
a boot or application start and stores the list in a file named Windows\Prefech\Layout.ini,
shown in Figure 7-32.

Figure 7-32 Prefetch defragmentation layout file

462 Microsoft Windows Internals, Fourth Edition
Then it launches the system defragmenter with a command-line option that tells the defrag-
menter to defragment based on the contents of the file instead of performing a full defrag. The
defragmenter finds a contiguous area on each volume large enough to hold all the listed files
and directories that reside on that volume and then moves them in their entirety into the area
so that they are stored one after the other. Thus, future prefetch operations will even be more
efficient because all the data read in is now stored physically on the disk in the order it will be
read. Because the files defragmented for prefetching usually number only in the hundreds,
this defragmentation is much faster than full volume defragmentations. (See Chapter 12 for
more information on defragmentation.)

Placement Policy

When a thread receives a page fault, the memory manager must also determine where in phys-
ical memory to put the virtual page. The set of rules it uses to determine the best position is
called a placement policy. Windows considers the size of CPU memory caches when choosing
page frames to minimize unnecessary thrashing of the cache.

If physical memory is full when a page fault occurs, a replacement policy is used to determine
which virtual page must be removed from memory to make room for the new page. Common
replacement policies include least recently used (LRU) and first in, first out (FIFO). The LRU
algorithm (also known as the clock algorithm, as implemented in most versions of UNIX)
requires the virtual memory system to track when a page in memory is used. When a new
page frame is required, the page that hasn’t been used for the greatest amount of time is
removed from the working set. The FIFO algorithm is somewhat simpler; it removes the page
that has been in physical memory for the greatest amount of time, regardless of how often it’s
been used.

Replacement policies can be further characterized as either global or local. A global replace-
ment policy allows a page fault to be satisfied by any page frame, whether or not that frame is
owned by another process. For example, a global replacement policy using the FIFO algo-
rithm would locate the page that has been in memory the longest and would free it to satisfy
a page fault; a local replacement policy would limit its search for the oldest page to the set of
pages already owned by the process that incurred the page fault. Global replacement policies
make processes vulnerable to the behavior of other processes—an ill-behaved application can
undermine the entire operating system by inducing excessive paging activity in all processes.

Windows implements a combination of local and global replacement policy. When a working
set reaches its limit and/or needs to be trimmed because of demands for physical memory, the
memory manager removes pages from working sets until it has determined there are enough
free pages.

Chapter 7: Memory Management 463
Working Set Management

Every process starts with a default working set minimum of 50 pages and a working set max-
imum of 345 pages. Although it has little effect, you can change the process working set limits
with the Windows SetProcessWorkingSetSize function, though you must have the “increase
scheduling priority” user right to do this. However, unless you have configured the process to
use hard working set limits (new in Windows Server 2003), these limits are ignored, in that
the memory manager will permit a process to grow beyond its maximum if it is paging heavily
and there is ample memory (and conversely, the memory manager will shrink a process below
its working set minimum if it is not paging and there is a high demand for physical memory
on the system). Although in Windows 2000, the extent to which a process was over its work-
ing set maximum was a factor in its priority to be trimmed, as of Windows XP, this decision is
based solely on how many pages have been accessed.

In Windows Server 2003, hard working set limits can be set using the SetProcessWorkingSet-
SizeEx function along with the QUOTA_LIMITS_HARDWS_ENABLE flag. An sample con-
sumer of this function is the Windows System Resource Manager (WSRM), described in
Chapter 6.

The maximum working set size can’t exceed the systemwide maximum calculated at system
initialization time and stored in the kernel variable MmMaximumWorkingSetSize. This value is
set to be the number of available pages (the size of the zero, free, and standby list) at the time
the computation is made minus 512 pages. However, there are hard upper limits for working
set sizes—these are listed in Table 7-17.

When a page fault occurs, the process’s working set limits and the amount of free memory on
the system are examined. If conditions permit, the memory manager allows a process to grow
to its working set maximum (or beyond if the process does not have a hard working set limit
and there are enough free pages available). However, if memory is tight, Windows replaces
rather than adds pages in a working set when a fault occurs.

Table 7-17 Upper Limit for Working Set Maximums

Windows Version Working Set Maximum

x86 versions of Windows 2000, Windows XP, Windows XP SP1,
Windows Server 2003

1984 MB

x86 versions of Windows XP SP2, Windows Server 2003 SP1 2047.9 MB

x86 versions of Windows booted /3GB 3008 MB

IA-64 7152 GB

x64 8192 GB

464 Microsoft Windows Internals, Fourth Edition
Although Windows attempts to keep memory available by writing modified pages to disk,
when modified pages are being generated at a very high rate, more memory is required in
order to meet memory demands. Therefore, when physical memory runs low, the working set
manager, a routine that runs in the context of the balance set manager system thread
(described in the next section), initiates automatic working set trimming to increase the
amount of free memory available in the system. (With the Windows SetProcessWorkingSetSize
function mentioned earlier, you can also initiate working set trimming of your own process—
for example, after process initialization.)

The working set manager examines available memory and decides which, if any, working sets
need to be trimmed. If there is ample memory, the working set manager calculates how many
pages could be removed from working sets if needed. If trimming is needed, it looks at work-
ing sets that are above their minimum setting. It also dynamically adjusts the rate at which it
examines working sets as well as arranges the list of processes that are candidates to be
trimmed into an optimal order. For example, processes with many pages that have not been
accessed recently are examined first; larger processes that have been idle longer are consid-
ered before smaller processes that are running more often; the process running the fore-
ground application is considered last; and so on.

When it finds processes using more than their minimums, the working set manager looks for
pages to remove from their working sets, making the pages available for other uses. If the
amount of free memory is still too low, the working set manager continues removing pages
from processes’ working sets until it achieves a minimum number of free pages on the system.

On a single-processor Windows 2000 system and all systems running Windows XP and Win-
dows Server 2003, the working set manager tries to remove pages that haven’t been accessed
recently. It does this by checking the accessed bit in the hardware PTE to see whether the page
has been accessed. If the bit is clear, the page is aged, that is, a count is incremented indicating
that the page hasn’t been referenced since the last working set trim scan. Later, the age of
pages is used to locate candidate pages to remove from the working set.

Note On a Windows 2000 multiprocessor system, the working set manager mistakenly
didn’t check the access bit, resulting in pages being removed from the working set without
regard to the state of the accessed bit.

If the hardware PTE accessed bit is set, the working set manager clears it and goes on to examine
the next page in the working set. In this way, if the accessed bit is clear the next time the working
set manager examines the page, it knows that the page hasn’t been accessed since the last time
it was examined. This scan for pages to remove continues through the working set list until
either the number of desired pages has been removed or the scan has returned to the starting
point. (The next time the working set is trimmed, the scan picks up where it left off last.)

Chapter 7: Memory Management 465
EXPERIMENT: Viewing Process Working Set Sizes
You can use the Performance tool to examine process working set sizes by looking at the
following performance counters:

Several other process viewer utilities (such as Task Manager, Pview, and Pviewer) also
display the process working set size.

You can also get the total of all the process working sets by selecting the _Total process
in the instance box in the Performance tool. This process isn’t real—it’s simply a total of
the process-specific counters for all processes currently running on the system. The
total you see is misleading, however, because the size of each process working set
includes pages being shared by other processes. Thus, if two or more processes share a
page, the page is counted in each process’s working set.

EXPERIMENT: Viewing the Working Set List
You can view the individual entries in the working set by using the kernel debugger !wsle
command. The following example shows a partial output of the working set list of
LiveKd. (This command was run on the LiveKd process.)

kd> !wsle 7

Working Set @ c0502000

Quota: 9f FirstFree: 40 FirstDynamic: 3

LastEntry 1fe NextSlot: 3 LastInitialized 257

NonDirect 5c HashTable: 0 HashTableSize: 0

Virtual Address Age Locked ReferenceCount

c0300203 0 1 1

c0301203 0 1 1

c0502203 0 1 1

c01df201 0 0 1

c01ff201 0 0 1

c0005201 0 0 1

c0001201 0 0 1

c0002201 0 0 1

c0000201 0 0 1

c0006201 0 0 1

77e87119 0 0 1

Counter Description

Process: Working Set Current size of the selected process’s working set in bytes

Process: Working Set Peak Peak size of the selected process’s working set in bytes

Process: Page Faults/Sec Number of page faults for the process that occur each second

466 Microsoft Windows Internals, Fourth Edition
00402319 0 0 1

77e01201 0 0 1

7ffdf201 0 0 1

00130201 0 0 1

77e9e119 0 0 1

78033201 0 0 1

00230221 0 0 1

00131201 0 0 1

77d50119 0 0 1

00132201 0 0 1

c01e0201 0 0 1

00411309 0 0 1

0040d201 0 0 1

77edf201 0 0 1

77ee0201 0 0 1

77fcd201 0 0 1

0040e201 0 0 1

7ffc1009 0 0 1

00401319 0 0 1

Notice that some entries in the working set list are page table pages (the ones with
addresses greater than 0xC0000000), some are from system DLLs (the ones in the
0x7nnnnnnn range), and some are from the code of LiveKd.exe itself (those in the
0x004nnnnn range).

Balance Set Manager and Swapper

Working set expansion and trimming take place in the context of a system thread called the
balance set manager (routine KeBalanceSetManager). The balance set manager is created during
system initialization. Although the balance set manager is technically part of the kernel, it calls
the memory manager’s working set manager to perform working set analysis and adjustment.

The balance set manager waits for two different event objects: an event that is signaled when a
periodic timer set to fire once per second expires and an internal working set manager event that
the memory manager signals at various points when it determines that working sets need to be
adjusted. For example, if the system is experiencing a high page fault rate or the free list is too
small, the memory manager wakes up the balance set manager so that it will call the working set
manager to begin trimming working sets. When memory is more plentiful, the working set man-
ager will permit faulting processes to gradually increase the size of their working sets by faulting
pages back into memory, but the working sets will grow only as needed.

When the balance set manager wakes up as the result of its 1-second timer expiring, it takes
the following four steps:

1. Every fourth time the balance set manager wakes up because its 1-second timer has
expired, it signals an event that wakes up another system thread called the swapper
(routine KeSwapProcessOrStack).

Chapter 7: Memory Management 467
2. The balance set manager then checks the look-aside lists and adjusts their depths if nec-
essary (to improve access time and to reduce pool usage and pool fragmentation).

3. It looks for threads that might warrant having their priority boosted because they are
CPU starved. (See the section “Priority Boosts for CPU Starvation” in Chapter 6.)

4. It calls the memory manager’s working set manager. (The working set manager has its
own internal counters that regulate when to perform working set trimming and how
aggressively to trim.)

The swapper is also awakened by the scheduling code in the kernel if a thread that needs to
run has its kernel stack swapped out or if the process has been swapped out. The swapper
looks for threads that have been in a wait state for 7 seconds in Windows 2000 and 15 sec-
onds in Windows XP and Windows Server 2003. If it finds one, it puts the thread’s kernel
stack in transition (moving the pages to the modified or standby lists) so as to reclaim its
physical memory, operating on the principle that if a thread’s been waiting that long, it’s going
to be waiting even longer. When the last thread in a process has its kernel stack removed from
memory, the process is marked to be entirely outswapped. That’s why, for example, processes
that have been idle for a long time (such as Winlogon is after you log on) can have a zero
working set size.

System Working Set

Just as processes have working sets, the pageable code and data in the operating system are
managed by a single system working set. Five different kinds of pages can reside in the system
working set:

■ System cache pages

■ Paged pool

■ Pageable code and data in Ntoskrnl.exe

■ Pageable code and data in device drivers

■ System mapped views

You can examine the size of the system working set or the size of the five components that
contribute to it with the performance counters or system variables shown in Table 7-18. Keep
in mind that the performance counter values are in bytes whereas the system variables are
measured in terms of pages.

You can also examine the paging activity in the system working set by examining the Memory:
Cache Faults/Sec performance counter, which describes page faults that occur in the system
working set (both hard and soft).

468 Microsoft Windows Internals, Fourth Edition
The system variable that contains the value for this counter is MmSystemCacheWs.PageFaultCount.

The minimum and maximum system working set size is computed at system initialization
time based on the amount of physical memory on the machine and whether the system is run-
ning a client or server edition of Windows. The calculated working set minimum and maxi-
mum are stored in the kernel variables shown in Table 7-19. These variables aren’t available
through any performance counter, but you can examine them with the kernel debugger.

You can configure the system to give priority to the system working set (as opposed to process
working sets) by changing the value of HKLM\SYSTEM\CurrentControlSet\Control\Session
Manager\Memory Management\LargeSystemCache. In Windows 2000 Server systems, you
can adjust this value indirectly by setting the properties of the file server service; in Windows
XP and Windows Server 2003, you can adjust this by going to My Computer, choosing Prop-
erties, clicking the Advanced tab, pressing the Settings button in the Performance section, and
finally clicking the Advanced tab. (See Chapter 11 for details.)

Table 7-18 System Working Set Performance Counters

Performance Counter (in
Bytes) System Variable (in Pages) Description

Memory: Cache Bytes* MmSystemCacheWs.WorkingSetSize Total size of system working
set (including the cache, paged
pool, pageable Ntoskrnl and
driver code, and system
mapped views); this is not the
size of the system cache alone,
even though the name implies
that it is.

Memory: Cache Bytes
Peak

MmSystemCacheWs.Peak Peak system working set size.

Memory: System Cache
Resident Bytes

MmSystemCachePage Physical memory consumed
by the system cache.

Memory: System Code
Resident Bytes

MmSystemCodePage Physical memory consumed
by pageable code in
Ntoskrnl.exe.

Memory: System Driver
Resident Bytes

MmSystemDriverPage Physical memory consumed by
pageable device driver code.

Memory: Pool Paged
Resident Bytes

MmPagedPoolPage Physical memory consumed
by paged pool.

* Internally, this working set is called the system cache working set, even though the system cache is just one of
five different components in it. Thus, several utilities think they are displaying the size of the file cache when
they are displaying the total size of the system working set.

Table 7-19 System Variables That Store Working Set Minimums or Maximums

Variable Type Description

MmSystemCacheWs.MinimumWorkingSetSize ULONG Minimum working set size

MmSystemCacheWs.MaximumWorkingSetSize ULONG Maximum working set size

Chapter 7: Memory Management 469
Page Frame Number Database
Whereas working sets describe the resident pages owned by a process or the system, the page
frame number (PFN) database describes the state of each page in physical memory. The page
states are listed in Table 7-20.

The PFN database consists of an array of structures that represent each physical page of
memory on the system. The PFN database and its relationship to page tables are shown in

Table 7-20 Page States

Status Description

Active (also called Valid) The page is part of a working set (either a process working set or the
system working set) or it’s not in any working set (for example, non-
paged kernel page), and a valid PTE points to it.

Transition A temporary state for a page that isn’t owned by a working set and
isn’t on any paging list. A page is in this state when an I/O to the
page is in progress. The PTE is encoded so that collided page faults
can be recognized and handled properly. (Note that this use of the
term “transition” differs from the use of the word in the section on
Invalid PTEs; an invalid transition PTE refers to a page on the standby
or modified list.)

Standby The page previously belonged to a working set but was removed.
The page wasn’t modified since it was last written to disk. The PTE
still refers to the physical page but is marked invalid and in transi-
tion.

Modified The page previously belonged to a working set but was removed.
However, the page was modified while it was in use and its current
contents haven’t yet been written to disk. The PTE still refers to the
physical page but is marked invalid and in transition. It must be writ-
ten to disk before the physical page can be reused.

Modified no-write Same as a modified page, except that it has been marked so that the
memory manager’s modified page writer won’t write it to disk. The
cache manager marks pages as modified no-write at the request of
file system drivers. For example, NTFS uses this state for pages con-
taining file system metadata so that it can first ensure that transac-
tion log entries are flushed to disk before the pages they are
protecting are written to disk. (NTFS transaction logging is explained
in Chapter 12.)

Free The page is free but has unspecified dirty data in it. (These pages
can’t be given as a user page to a user process without being initial-
ized with zeros, for security reasons.)

Zeroed The page is free and has been initialized with zeros by the zero page
thread.

Rom The page has been faulted in from read-only memory (new as of
Windows XP).

Bad The page has generated parity or other hardware errors and can’t be
used.

470 Microsoft Windows Internals, Fourth Edition
Figure 7-33. As this figure shows, valid PTEs point to entries in the PFN database, and the
PFN database entries (for nonprototype PFNs) point back to the page table that is using
them. For prototype PFNs, they point back to the prototype PTE.

Figure 7-33 Page tables and the page frame number database

Process 2
page table

.

.

.

Process 3
page table

.

.

.

Process 1
page table

Valid

Invalid:
disk address

Invalid:
transition

Valid

Invalid:
disk address

Valid

Valid

Invalid:
transition
Invalid:

disk address

.

.

.

PFN database

In use

Standby list

In use

In use

Modified list

Prototype PTE

Forward pointer

.

.

.

Backward pointer

Chapter 7: Memory Management 471
Of the page states listed in Table 7-20, six are organized into linked lists so that the memory
manager can quickly locate pages of a specific type. (Active/valid pages and transition pages
aren’t in any systemwide page list.) Figure 7-34 shows an example of how these entries are
linked together.

Figure 7-34 Page lists in the PFN database

In the next section, you’ll find out how these linked lists are used to satisfy page faults and
how pages move to and from the various lists.

.

.

.

PFN database

Active

Zeroed

Free

Standby

Bad

Modified no-
write

Read only
memory

Modified

Active

Active

472 Microsoft Windows Internals, Fourth Edition
EXPERIMENT: Viewing the PFN Database
Using the kernel debugger !memusage command, you can dump the size of the various
paging lists. The following is the output from this command:

lkd> !memusage

loading PFN database

loading (100% complete)

Compiling memory usage data (99% Complete).

Zeroed: 8474 (33896 kb)

Free: 256 (1024 kb)

Standby: 50790 (203160 kb)

Modified: 496 (1984 kb)

ModifiedNoWrite: 0 (0 kb)

Active/Valid: 201980 (807920 kb)

Transition: 1 (4 kb)

Unknown: 0 (0 kb)

TOTAL: 261997 (1047988 kb)

Page List Dynamics

Figure 7-35 shows a state diagram for page frame transitions. For simplicity, the modified-no-
write list isn’t shown.

Page frames move between the paging lists in the following ways:

■ When the memory manager needs a zero-initialized page to service a demand-zero page
fault (a reference to a page that is defined to be all zeros or to a user-mode committed
private page that has never been accessed), it first attempts to get one from the zero page
list. If the list is empty, it gets one from the free page list and zeroes the page. If the free
list is empty, it goes to the standby list and zeroes that page.

One reason zero-initialized pages are required is to meet C2 security requirements. C2
specifies that user-mode processes must be given initialized page frames to prevent
them from reading a previous process’s memory contents. Therefore, the memory man-
ager gives user-mode processes zeroed page frames unless the page is being read in from
a mapped file. If that’s the case, the memory manager prefers to use nonzeroed page
frames, initializing them with the data off the disk.

Chapter 7: Memory Management 473
Figure 7-35 State diagram for page frames

The zero page list is populated from the free list by a system thread called the zero page
thread (thread 0 in the System process). The zero page thread waits on an event object to
signal it to go to work. When the free list has eight or more pages, this event is signaled.
However, the zero page thread will run only if no other threads are running, because the
zero page thread runs at priority 0 and the lowest priority that a user thread can be set
to is 1.

Note In Windows Server 2003 and later, when memory needs to be zeroed as a result
of a physical page allocation by a driver that calls MmAllocatePagesForMdl or a Windows
application that calls AllocateUserPhysicalPages, or when an application allocates large
pages, the memory manager zeroes the memory using a higher performing function
called MiZeroInParallel, which maps larger regions than the zero page thread, which
only zeroes a page at a time. In addition, on multiprocessor systems, it creates additional
system threads to perform the zeroing in parallel (and in a NUMA-optimized fashion on
NUMA platforms).

Demand-zero
page faults

Page read from
disk or kernel
allocations

Standby
page list

ROM
page list

Process
working

sets

Working set
replacement

Modified
page list

“Soft”
page
faults

Free
page
list

Zero
page
list

Bad
page
list

Zero
page

thread

Modified
page
writer

474 Microsoft Windows Internals, Fourth Edition
■ When the memory manager doesn’t require a zero-initialized page, it goes first to the
free list. If that’s empty, it goes to the zeroed list. If the zeroed list is empty, it goes to the
standby list. Before the memory manager can use a page frame from the standby list, it
must first backtrack and remove the reference from the invalid PTE (or prototype PTE)
that still points to the page frame. Because entries in the PFN database contain pointers
back to the previous user’s page table (or to a prototype PTE for shared pages), the mem-
ory manager can quickly find the PTE and make the appropriate change.

■ When a process has to give up a page out of its working set (either because it referenced
a new page and its working set was full or the memory manager trimmed its working
set), the page goes to the standby list if the page was clean (not modified) or to the mod-
ified list if the page was modified while it was resident. When a process exits, all the pri-
vate pages go to the free list. Also, when the last reference to a page file backed section is
closed, these pages also go to the free list.

EXPERIMENT: Viewing Page Fault Behavior
With the Pfmon tool (in the Windows 2000 and 2003 resource kits, as well as in the
Windows XP Support Tools), you can watch page fault behavior as it occurs. A soft fault
refers to a page fault satisfied from one of the transition lists. Hard faults refer to a disk-
read. The following example is a portion of output you’ll see if you start Notepad with
Pfmon and then exit. Be sure to notice the summary of page fault activity at the end.

C:\> pfmon notepad

SOFT: KiUserApcDispatcher : KiUserApcDispatcher

SOFT: LdrInitializeThunk : LdrInitializeThunk

SOFT: 0x77f61016 : : 0x77f61016

SOFT: 0x77f6105b : : fltused+0xe00

HARD: 0x77f6105b : : fltused+0xe00

SOFT: LdrQueryImageFileExecutionOptions :

LdrQueryImageFileExecutionOptions

SOFT: RtlAppendUnicodeToString : RtlAppendUnicodeToString

SOFT: RtlInitUnicodeString : RtlInitUnicodeString

notepad Caused 8 faults had 9 Soft 5 Hard faulted VA’s

ntdll Caused 94 faults had 42 Soft 8 Hard faulted VA’s

comdlg32 Caused 3 faults had 0 Soft 3 Hard faulted VA’s

shlwapi Caused 2 faults had 2 Soft 2 Hard faulted VA’s

gdi32 Caused 18 faults had 10 Soft 2 Hard faulted VA’s

kernel32 Caused 48 faults had 36 Soft 3 Hard faulted VA’s

user32 Caused 38 faults had 26 Soft 6 Hard faulted VA’s

advapi32 Caused 7 faults had 6 Soft 3 Hard faulted VA’s

rpcrt4 Caused 6 faults had 4 Soft 2 Hard faulted VA’s

comctl32 Caused 6 faults had 5 Soft 2 Hard faulted VA’s

shell32 Caused 6 faults had 5 Soft 2 Hard faulted VA’s

Caused 10 faults had 9 Soft 5 Hard faulted VA’s

winspool Caused 4 faults had 2 Soft 2 Hard faulted VA’s

PFMON: Total Faults 250

(KM 74 UM 250 Soft 204, Hard 46, Code 121, Data 129)

Chapter 7: Memory Management 475
Modified Page Writer

When the modified list gets too big, or if the size of the zeroed and standby lists falls below a
minimum threshold (as indicated by the kernel variable MmMinimumFreePages, which is com-
puted at system boot time), one of two system threads are awakened to write pages back to
disk and move the pages to the standby list. One system thread writes out modified pages
(MiModifiedPageWriter) to the paging file, and a second one writes modified pages to mapped
files (MiMappedPageWriter). Two threads are required to avoid creating a deadlock, which
would occur if the writing of mapped file pages caused a page fault that in turn required a free
page when no free pages were available (thus requiring the modified page writer to create
more free pages). By having the modified page writer perform mapped file paging I/Os from
a second system thread, that thread can wait without blocking regular page file I/O.

Both threads run at priority 17 and, after initialization, wait for separate event objects to trig-
ger their operation. The modified page writer event is triggered for one of two reasons:

■ When the number of modified pages exceeds the maximum value computed at system
initialization (MmModifiedPageMaximum)—currently 800 pages for all systems

■ When the number of available pages (MmAvailablePages) goes below MmMinimum-
FreePages

The modified page writer waits for an additional event (MiMappedPagesTooOldEvent) that is
set after a predetermined number of seconds (MmModifiedPageLifeInSeconds) to indicate that
mapped pages (not modified pages) should be written to disk. By default, this value is 300
seconds (5 minutes). (You can override this value by adding the DWORD registry value
HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\Memory Management\
ModifiedPageLife). The reason for this additional event is to reduce data loss in the case of a
system crash or power failure by eventually writing out modified mapped pages even if the
modified list hasn’t reached its threshold of 800 pages.

When invoked, the mapped page writer attempts to write as many pages as possible to disk
with a single I/O request. It accomplishes this by examining the original PTE field of the PFN
database elements for pages on the modified page list to locate pages in contiguous locations
on the disk. Once a list is created, the pages are removed from the modified list, an I/O request
is issued, and at successful completion of the I/O request, the pages are placed at the tail of
the standby list.

Pages that are in the process of being written can be referenced by another thread. When this
happens, the reference count and the share count in the PFN entry that represents the physi-
cal page are incremented to indicate that another process is using the page. When the I/O
operation completes, the modified page writer notices that the share count is no longer 0 and
doesn’t place the page on the standby list.

476 Microsoft Windows Internals, Fourth Edition
PFN Data Structures

Although PFN database entries are of fixed length, they can be in several different states,
depending on the state of the page. Thus, individual fields have different meanings depending
on the state. The states of a PFN entry are shown in Figure 7-36.

Figure 7-36 States of PFN database entries

Several fields are the same for several PFN types, but others are specific to a given type of PFN.
The following fields appear in more than one PFN type:

■ PTE address Virtual address of the PTE that points to this page.

■ Reference count The number of references to this page. The reference count is incre-
mented when a page is first added to a working set and/or when the page is locked in
memory for I/O (for example, by a device driver). The reference count is decremented
when the share count becomes 0 or when pages are unlocked from memory. When the
share count becomes 0, the page is no longer owned by a working set. Then, if the refer-
ence count is also zero, the PFN database entry that describes the page is updated to
add the page to the free, standby, or modified list.

■ Type The type of page represented by this PFN. (Types include active/valid, transition,
standby, modified, modified-no-write, free, zeroed, bad, and transition.)

■ Flags The information contained in the flags field is shown in Table 7-21.

Working set index

PTE address

Share count

Original PTE contents

PFN of PTE

Flags Type Reference count

PFN for a page in a
working set

Forward link

PTE address

Backward link

Original PTE contents

PFN of PTE

Flags Type Reference count

PFN for a page on the standby
or the modified list

Forward link

PTE address

Color chain PFN number

Original PTE contents

PFN of PTE

Flags Type Reference count

PFN for a page on
the zero or free list

Event address

PTE address

Share count

Original PTE contents

PFN of PTE

Flags Type Reference count

PFN for a page with
an I/O in progress

Chapter 7: Memory Management 477
■ Original PTE contents All PFN database entries contain the original contents of the PTE
that pointed to the page (which could be a prototype PTE). Saving the contents of the
PTE allows it to be restored when the physical page is no longer resident.

■ PFN of PTE Physical page number of the page table page containing the PTE that points
to this page.

The remaining fields are specific to the type of PFN. For example, the first PFN in Figure 7-36
represents a page that is active and part of a working set. The share count field represents the
number of PTEs that refer to this page. (Pages marked read-only, copy-on-write, or shared
read/write can be shared by multiple processes.) For page table pages, this field is the number
of valid PTEs in the page table. As long as the share count is greater than 0, the page isn’t eli-
gible for removal from memory.

The working set index field is an index into the process working set list (or the system or ses-
sion working set list, or zero if not in any working set) where the virtual address that maps this
physical page resides. If the page is a private page, the working set index field refers directly to
the entry in the working set list because the page is mapped only at a single virtual address. In
the case of a shared page, the working set index is a hint that is guaranteed to be correct only
for the first process that made the page valid. (Other processes will try to use the same index

Table 7-21 Flags Within PFN Database Entries

Flag Meaning

Modified state Indicates whether the page was modified. (If the page is modified,
its contents must be saved to disk before removing it from memo-
ry.)

Prototype PTE Indicates that the PTE referenced by the PFN entry is a prototype
PTE. (For example, this page is shareable.)

Parity error Indicates that the physical page contains parity or error correction
control errors.

Read in progress Indicates that an in-page operation is in progress for the page. The
first DWORD contains the address of the event object that will be
signaled when the I/O is complete; also used to indicate the first
PFN for nonpaged pool allocations.

Write in progress Indicates that a page write operation is in progress. The first
DWORD contains the address of the event object that will be sig-
naled when the I/O is complete; also used to indicate the last PFN
for nonpaged pool allocations.

Start of nonpaged pool For nonpaged pool pages, indicates that this is the first PFN for a
given nonpaged pool allocation.

End of nonpaged pool For nonpaged pool pages, indicates that this is the last PFN for a
given nonpaged pool allocation.

In-page error Indicates that an I/O error occurred during the in-page operation
on this page. (In this case, the first field in the PFN contains the er-
ror code.)

478 Microsoft Windows Internals, Fourth Edition
where possible.) The process that initially sets this field is guaranteed to refer to the proper
index and doesn’t need to add a working set list hash entry referenced by the virtual address
into its working set hash tree. This guarantee reduces the size of the working set hash tree and
makes searches faster for these particular direct entries.

The second PFN in Figure 7-36 is for a page on either the standby or the modified list. In this
case, the forward and backward link fields link the elements of the list together within the list.
This linking allows pages to be easily manipulated to satisfy page faults. When a page is on
one of the lists, the share count is by definition 0 (because no working set is using the page)
and therefore can be overlaid with the backward link. The reference count is also 0 if the page
is on one of the lists. If it is nonzero (because an I/O could be in progress for this page—for
example, when the page is being written to disk), it is first removed from the list.

The third PFN in Figure 7-36 is for a page on the free or zeroed list. Besides being linked
together within the two lists, these PFN database entries use an additional field to link physi-
cal pages by “color,” their location in the processor CPU memory cache. Windows attempts to
minimize unnecessary thrashing of CPU memory caches by using different physical pages in
the CPU cache. It achieves this optimization by avoiding using the same cache entry for two
different pages wherever possible. For systems with direct mapped caches, optimally using
the hardware’s capabilities can result in a significant performance advantage.

The fourth PFN in Figure 7-36 is for a page that has an I/O in progress (for example, a page
read). While the I/O is in progress, the first field points to an event object that will be signaled
when the I/O completes. If an in-page error occurs, this field contains the Windows error sta-
tus code representing the I/O error. This PFN type is used to resolve collided page faults.

EXPERIMENT: Viewing PFN Entries
You can examine individual PFN entries with the kernel debugger !pfn command. You
first need to supply the PFN as an argument. (For example, !pfn 0 shows the first entry,
!pfn 1 shows the second, and so on.) In the following example, the PTE for virtual
address 0x50000 is displayed, followed by the PFN that contains the page directory, and
then the actual page:

kd> !pte 50000

00050000 - PDE at C0300000 PTE at C0000140

contains 00700067 contains 00DAA047

pfn 00700 --DA--UWV pfn 00DAA --D---UWV

kd> !pfn 700

PFN 00000700 at address 827CD800

flink 00000004 blink / share count 00000010 pteaddress C0300000

reference count 0001 color 0

restore pte 00000080 containing page 00030 Active M

Modified

kd> !pfn daa

PFN 00000DAA at address 827D77F0

Chapter 7: Memory Management 479
flink 00000077 blink / share count 00000001 pteaddress C0000140

reference count 0001 color 0

restore pte 00000080 containing page 00700 Active M

Modified

In addition to the PFN database, the system variables in Table 7-22 describe the overall state
of physical memory.

Low and High Memory Notification

Windows XP and Windows Server 2003 provide a way for user mode processes to be notified
when physical memory is low and/or plentiful. This information can be used to determine
memory usage as appropriate. For example, if available memory is low, the application can
reduce memory consumption. If available memory is high, the application can allocate more
memory.

To be notified of low or high memory conditions, call the CreateMemoryResourceNotification
function, specifying whether low or high memory notification is desired. A handle can be pro-
vided to any of the wait functions. When memory is low (or high), the wait completes, thus
notifying the thread of the condition. Alternatively, the QueryMemoryResourceNotification can
be used to query the system memory condition at any time.

Notification is implemented by the memory manager signaling a globally named event object
LowMemoryCondition or HighMemoryCondition. These named objects are not in the normal
\BaseNamedObjects object manager directory, but in a special directory called \KernelOb-
jects. When low (or high) memory condition is detected, the appropriate event is signaled,
thus waking up any waiting threads.

The default level of available memory that signals a low-memory-resource notification event is
approximately 32 MB per 4 GB, to a maximum of 64 MB. The default level that signals a high-
memory-resource notification event is three times the default low-memory value. These values
can be overridden by adding a DWORD registry value LowMemoryThreshold or HighMemo-
ryThreshold under HKEY_LOCAL_MACHINE\System\CurrentControlSet\Session Man-
ager\Memory Management that specifies the number of megabytes to use as the low or high
threshold.

Table 7-22 System Variables That Describe Physical Memory

Variable Description

MmNumberOfPhysicalPages Total number of physical pages available on the system

MmAvailablePages Total number of available pages on the system—the sum of
the pages on the zeroed, free, and standby lists

MmResidentAvailablePages Total number of physical pages that would be available if ev-
ery process were at its minimum working set size

480 Microsoft Windows Internals, Fourth Edition
EXPERIMENT: Viewing the Memory Resource Notification Events
To see the memory resource notification events, run Winobj from www.sysinternals.com
and click on the KernelObjects folder. You will see both the low and high memory con-
dition events shown on the right pane:

If you double-click either event, you can see how many handles and/or references have
been made to the objects.

To see whether any processes in the system have requested memory resource notifica-
tion, search the handle table for references to “LowMemoryCondition” or “HighMemo-
ryCondition”. You can do this by using Process Explorer’s Find menu and choosing the
Handle capability or by using the Oh.exe tool from the Resource Kits. (For a description
of the handle table, see the section on the “Object Manager” in Chapter 3.)

RAM Optimizers: Fact or Fiction?
As you’ve surfed the Web, you’ve probably seen browser pop-ups such as “Defragment
your memory and improve performance” and “Minimize application and system failures
and free unused memory.” The links lead you to utilities that promise to do all that and
more. Do they really work?

Memory optimizers typically present a UI that shows a graph labeled “available mem-
ory” and a line representing a threshold below which the product will take action.
Another line typically shows the amount of memory that the optimizer will try to free
when it runs. You can usually configure one or both levels, as well as trigger manual
memory optimization or schedule optimizations. Some tools also display the processes
running on the system. When a scheduled optimization job runs, the utility’s available
memory counter often goes up, sometimes dramatically, which implies that the tool is
actually freeing up memory for your applications to use. But what it’s really doing is
causing useful memory to be zeroed to artificially increase the available memory.

RAM optimizers work by allocating and then freeing large amounts of virtual memory.
The figure below shows the effect a RAM optimizer has on a system:

Chapter 7: Memory Management 481
The “before” bar depicts the working sets and available memory before optimization.
The “during” bar shows that the RAM optimizer creates a high memory demand, which
it does by incurring many page faults in a short time. In response, the memory manager
increases the RAM optimizer’s working set. This working-set expansion occurs at the
expense of available memory and—when available memory becomes low—at the
expense of other process working sets. The “after” bar illustrates how, after the RAM
optimizer frees its memory, the memory manager moves all the pages that were assigned
to the RAM optimizer to the free page list (which ultimately get zeroed by the zero page
thread and moved to the zero page list), thus contributing to the available memory
value. Most optimizers hide the rapid decline in available memory that occurs during
the first step, but if you run Task Manager during an optimization, you can often see the
decline as it takes place.

While gaining more available memory might seem like a good thing, it isn’t. As RAM
optimizers force the available memory counter up, they force other processes’ data and
code out of memory. If you’re running Word, for example, the text of open documents
and the program code that was part of Word’s working set before the optimization (and
was therefore present in physical memory) must be reread from disk as you continue to
edit your document. The performance degradation can be severe on servers, on which
file data that was cached in the standby list and in the system working set (as well as the
code and data used by any running server applications) would be discarded.

Some vendors make additional claims for their RAM-optimizer products. One claim you
might see is that a product frees memory that’s needlessly consumed by unused pro-
cesses, such as those that run in the Taskbar tray. That claim could be true only if those
processes had sizable working sets at the time of optimization. However, because Win-
dows automatically trims idle processes’ working sets, all such claims are untrue. The
memory manager handles all necessary memory optimization.

Before:

Notepad Word Explorer System Available

During:

Avail. RAM optimizer

Available

After:

Word

Notepad

System
Explorer

482 Microsoft Windows Internals, Fourth Edition
Developers of RAM optimizers also claim that their products defragment memory. The
act of allocating and then freeing a large amount of virtual memory might, as a conceiv-
able side-effect, lead to large blocks of contiguous available memory. However, because
virtual memory masks the layout of physical memory from processes, they can’t directly
benefit from having virtual memory backed by contiguous physical memory. As pro-
cesses execute and undergo working-set trimming and growth, their virtual-memory-to-
physical-memory mappings will become fragmented despite the availability of contigu-
ous memory. Having contiguous available memory can result in increased performance
in one case: To try to maximize the behavior of the CPU memory caches, the memory
manager uses a mechanism called page coloring to decide which page from the free or
zeroed list to assign to a process. However, any minor benefit that might result from
making available physical memory contiguous is heavily outweighed by the negative
effect of discarding valuable code and data from memory.

Finally, vendors often claim that RAM optimizers regain memory lost to leaks. This is
perhaps the most patently false assertion of all. The memory manager knows at all times
what physical and virtual memory belongs to a process. However, if a process allocates
memory and then doesn’t free it because of a bug (an occurrence known as a leak), the
Memory Manager can’t recognize that the allocated memory won’t be accessed again at
some point and must wait until the process exits to reclaim the memory. Even for leak-
ing processes that do not exit, as a result of working-set trimming, the memory manager
eventually will steal from the process’s working set any physical pages that are assigned
to leaked virtual memory. That process sends the leaked pages to the paging file and lets
physical memory be used for other purposes. Thus, a memory leak has only a limited
effect on available physical memory. The real effect is on virtual memory consumption,
which Task Manager calls both PF Usage and Commit Charge. No utility can do any-
thing about virtual memory consumption other than kill processes that are consuming
memory.

In summary, common sense suggests that if RAM optimization were possible (and
could be implemented by so many small-time upstarts), Microsoft developers would
have long since integrated the technology into the kernel.

Chapter 7: Memory Management 483
Conclusion
In this chapter, we’ve examined how the Windows memory manager implements virtual
memory management. As with most modern operating systems, each process is given access
to a private address space, protecting one process’s memory from another’s but allowing pro-
cesses to share memory efficiently and securely. Advanced capabilities, such as the inclusion
of mapped files and the ability to sparsely allocate memory, are also available. The Windows
environment subsystem makes most of the memory manager’s capabilities available to appli-
cations through the Windows API.

The memory manager’s implementation relies on lazy-evaluation techniques whenever possi-
ble to avoid performing time-consuming and unnecessary operations unless they are
required. It is also self-tuning, adapting to both large multiprocessor servers as well as unipro-
cessor desktop workstations.

One aspect of the memory manager that we didn’t describe in this chapter is its tight integra-
tion with the cache manager, which we’ll cover in Chapter 11. But before we get to that, let’s
take a closer look at the Windows security mechanisms.

Chapter 8

Security

Preventing unauthorized access to sensitive data is essential in any environment in which mul-
tiple users have access to the same physical or network resources. An operating system, as well
as individual users, must be able to protect files, memory, and configuration settings from
unwanted viewing and modification. Operating system security includes obvious mechanisms
such as accounts, passwords, and file protection. It also includes less obvious mechanisms such
as protecting the operating system from corruption, preventing less privileged users from per-
forming actions (rebooting the computer, for example), and not allowing user programs to
adversely affect the programs of other users or the operating system.

In this chapter, we explain how every aspect of the design and implementation of Microsoft
Windows was influenced in some way by the stringent requirements of providing robust
security.

Security Ratings

Having software, including operating systems, rated against well-defined standards helps the
government, corporations, and home users protect proprietary and personal data stored in
computer systems. The current security rating standard used by the United States and many
other countries is the Common Criteria (CC). To understand the security capabilities
designed into Windows, however, it’s useful to know the history of the security ratings system
that influenced the design of Windows, the Trusted Computer System Evaluation Criteria
(TCSEC).

Trusted Computer System Evaluation Critiera

The National Computer Security Center (NCSC, at www.radium.ncsc.mil/tpep/) was estab-
lished in 1981 as part of the U.S. Department of Defense’s (DoD) National Security Agency
(NSA). One goal of the NCSC was to create a range of security ratings, listed in Table 8-1, to be
used to indicate the degree of protection commercial operating systems, network compo-
nents, and trusted applications offer. These security ratings, which can be found at
www.radium.ncsc.mil/tpep/library/rainbow/5200.28-STD.html, were defined in 1983 and are
commonly referred to as “the Orange Book.”
485

486 Microsoft Windows Internals, Fourth Edition
The TCSEC standard consists of “levels of trust” ratings, where higher levels build on lower
levels by adding more rigorous protection and validation requirements. No operating system
meets the A1, or “Verified Design,” rating. Although a few operating systems have earned one
of the B-level ratings, C2 is considered sufficient and the highest rating practical for a general-
purpose operating system.

In July 1995, Windows NT 3.5 (Workstation and Server) with Service Pack 3 was the first ver-
sion of Windows NT to earn the C2 rating. In March 1999, Windows NT 4 with Service Pack 3
achieved an E3 rating from the U.K. government’s Information Technology Security (ITSEC)
organization, a rating equivalent to a U.S. C2 rating. In November 1999, Windows NT 4 with
Service Pack 6a earned a C2 rating in both stand-alone and networked configurations.

The following were the key requirements for a C2 security rating, and they are still considered
the core requirements for any secure operating system:

■ A secure logon facility, which requires that users can be uniquely identified and that
they must be granted access to the computer only after they have been authenticated
in some way.

■ Discretionary access control, which allows the owner of a resource to determine who can
access the resource and what they can do with it. The owner grants rights that permit
various kinds of access to a user or to a group of users.

■ Security auditing, which affords the ability to detect and record security-related events or any
attempts to create, access, or delete system resources. Logon identifiers record the identities
of all users, making it easy to trace anyone who performs an unauthorized action.

■ Object reuse protection, which prevents users from seeing data that another user has
deleted or from accessing memory that another user previously used and then released.
For example, in some operating systems, it’s possible to create a new file of a certain
length and then examine the contents of the file to see data that happens to have occu-
pied the location on the disk where the file is allocated. This data might be sensitive
information that was stored in another user’s file but that has been deleted. Object reuse
protection prevents this potential security hole by initializing all objects, including files
and memory, before they are allocated to a user.

Table 8-1 TCSEC Rating Levels

Rating Description

A1 Verified Design

B3 Security Domains

B2 Structured Protection

B1 Labeled Security Protection

C2 Controlled Access Protection

C1 Discretionary Access Protection (obsolete)

D Minimal Protection

Chapter 8: Security 487
Windows also meets two requirements of B-level security:

■ Trusted path functionality, which prevents Trojan horse programs from being able to
intercept users’ names and passwords as they try to log in. The trusted path functional-
ity in Windows comes in the form of its Ctrl+Alt+Delete logon-attention sequence,
which cannot be intercepted by nonprivileged applications. This sequence of key-
strokes, which is also known as the secure attention sequence (SAS), always pops up a
logon dialog box, so would-be Trojan horses can easily be recognized. A Trojan horse
presenting a fake logon dialog box will be bypassed when the SAS is entered.

■ Trusted facility management, which requires support for separate account roles for admin-
istrative functions. For example, separate accounts are provided for administration
(Administrators), user accounts charged with backing up the computer, and standard
users.

Windows meets all of these requirements through its security subsystem and related
components.

The Common Criteria

In January 1996, the United States, United Kingdom, Germany, France, Canada, and the
Netherlands released the jointly developed Common Criteria for Information Technology
Security Evaluation (CCITSE) security evaluation specification. CCITSE, which is usually
referred to as the Common Criteria (CC), is the recognized multinational standard for prod-
uct security evaluation. The CC home page is at csrc.nist.gov/cc.

The CC is more flexible than the TCSEC trust ratings and has a structure closer to the ITSEC
than to the TCSEC. The CC includes the concept of a Protection Profile (PP) to collect security
requirements into easily specified and compared sets, and the concept of a Security Target
(ST) that contains a set of security requirements that can be made by reference to a PP.

Windows 2000 was evaluated as meeting the requirements of the Controlled Access PP,
which is the equivalent of TCSEC C2, and additional Common Criteria functional and assur-
ance requirements in October of 2002. Details of its conformance can be found at
niap.nist.gov/cc-scheme.html. The additional requirements satisfied by Windows 2000 can be
found in the certified Windows 2000 Common Criteria Security Target at niap.nist.gov/
cc-scheme/CCEVS-VID402-ST.pdf. Notable requirements not included on the Controlled
Access PP but included in the Windows 2000 Security Target include:

■ Discretionary Access Control Functions based on the use of cryptography. This is implemented
by Windows 2000 Encrypting File System and Windows 2000 Data Protection API.

■ Discretionary Access Control Policy for additional User Data Objects such as Desktops, Win-
dow Stations (as implemented by Windows 2000 Windowing System), and Active Directory
Objects (as implemented by Windows 2000 Directory Service).

488 Microsoft Windows Internals, Fourth Edition
■ Internal Replication for ensuring security-relevant data items are synchronized between phys-
ically separated parts of Windows 2000 system as distributed Operating System. This is imple-
mented Windows 2000 Directory Service using a multimaster loose consistency with
convergence directory replication model.

■ Resource Utilization for physical disk spaces. This is implemented by Windows 2000 NTFS.

■ Interactive Session Locking and Trusted Path for initial user logging on. This is implemented
by Windows 2000 Winlogon.

■ Internal Data Transfer Protection to protect data from disclosure and modification when trans-
mitted between physically separate parts of Windows 2000 system as distributed Operating
System. This is implemented by Windows 2000 IPSEC service.

■ Systematic Flaw Remediation. This is implemented by procedures undertaken by the
Microsoft Security Response Center and Windows Sustained Engineering Team.

At the time of writing this book, Windows XP Embedded, Windows XP Professional, and
Windows Server 2003 were still undergoing evaluation under the Common Criteria. The
scope of evaluation is extended even further from that for Windows 2000. The Common Cri-
teria authority currently recognizes Windows XP and Windows Server 2003 (Standard, Enter-
prise, and Datacenter Edition) as an evaluation of the following technology types as shown on
niap.nist.gov/cc-scheme/in_evaluation.html:

■ Distributed Operating System

■ Sensitive Data Protection

■ Network Management

■ Directory Service

■ Firewall

■ VPN (Virtual Private Network)

■ Desktop Management

■ Public Key Infrastructure

■ Public Key Certificate Issuing and Management

■ Embedded System Operating System

Security System Components
These are the core components and databases that implement Windows security:

■ Security reference monitor (SRM) A component in the Windows executive (\Windows\
System32\Ntoskrnl.exe) that is responsible for defining the access token data structure to
represent a security context, performing security access checks on objects, manipulating
privileges (user rights), and generating any resulting security audit messages.

Chapter 8: Security 489
■ Local security authority subsystem (Lsass) A user-mode process running the image
\Windows\System32\Lsass.exe that is responsible for the local system security policy
(such as which users are allowed to log on to the machine, password policies, privileges
granted to users and groups, and the system security auditing settings), user authentica-
tion, and sending security audit messages to the Event Log. The local security authority
service (Lsasrv—\Windows\System32\Lsasrv.dll), a library that Lsass loads, imple-
ments most of this functionality.

■ Lsass policy database A database that contains the local system security policy settings.
This database is stored in the registry under HKLM\SECURITY. It includes such infor-
mation as what domains are entrusted to authenticate logon attempts, who has permis-
sion to access the system and how (interactive, network, and service logons), who is
assigned which privileges, and what kind of security auditing is to be performed. The
Lsass policy database also stores “secrets” that include logon information used for
cached domain logons and Windows service user-account logons. (See Chapter 5 for
more information on Windows services.)

■ Security Accounts Manager (SAM) service A set of subroutines responsible for manag-
ing the database that contains the usernames and groups defined on the local machine.
The SAM service, which is implemented as \Windows\System32\Samsrv.dll, runs in
the Lsass process.

■ SAM database A database that on systems not functioning as domain controllers con-
tains the defined local users and groups, along with their passwords and other
attributes. On domain controllers the SAM stores the system’s administrator recovery
account definition and password. This database is stored in the registry under
HKLM\SAM.

■ Active Directory A directory service that contains a database that stores information
about objects in a domain. A domain is a collection of computers and their associated
security groups that are managed as a single entity. Active Directory stores information
about the objects in the domain, including users, groups, and computers. Password
information and privileges for domain users and groups are stored in Active Directory,
which is replicated across the computers that are designated as domain controllers of the
domain. The Active Directory server, implemented as \Windows\System32\Ntdsa.dll,
runs in the Lsass process. For more information on Active Directory, see Chapter 13.

■ Authentication packages These include dynamic-link libraries (DLLs) that run both in
the context of the Lsass process and client processes and that implement Windows
authentication policy. An authentication DLL is responsible for checking whether a
given username and password match, and if so, returning to the Lsass information
detailing the user’s security identity, which LSASS uses to generate a token.

■ Logon process (Winlogon) A user-mode process running \Windows\System32\
Winlogon.exe that is responsible for responding to the SAS and for managing interactive
logon sessions. Winlogon creates a user’s shell (user-interface) process when the user
logs on, for example.

490 Microsoft Windows Internals, Fourth Edition
■ Graphical Identification and Authentication (GINA) A user-mode DLL that runs in the
Winlogon process and that Winlogon uses to obtain a user’s name and password or
smartcard PIN. The standard GINA is \Windows\System32\Msgina.dll.

■ Network logon service (Netlogon) A Windows service (\Windows\System32\
Netlogon.dll) that sets up the secure channel to a domain controller, over which security
requests—such an interactive logon (if the domain controller is running Windows NT 4)
or LAN Manager and NT LAN Manager (v1 and v2) authentication validation—are sent.

■ Kernel Security Device Driver (KSecDD) A kernel-mode library of functions that imple-
ment the local procedure call (LPC) interfaces that other kernel-mode security compo-
nents, including the Encrypting File System (EFS), use to communicate with Lsass in
user mode. KSecDD is located in \Windows\System32\Drivers\Ksecdd.sys.

Figure 8-1 shows the relationships among some of these components and the databases they
manage.

Figure 8-1 Windows security components

Hardware abstraction layer (HAL)

Kernel

System service dispatcher

(Kernel-mode callable interfaces)
Win32 USER,

GDI

Graphics
drivers

Device
and file
system
drivers

I/O manager Local procedure
call

C
onfiguration

m
anager (registry)

Processes and
threads

V
irtual m

em
ory

Security reference
m

onitor

Pow
er m

anager

PnP m
anager

O
bject m

anager

File system
 cache

LSA policy SAM

Winlogon

Msgina

System
threads

Event
Logger

Lsass

Netlogon Active
Directory

LSA
server

SAM
server

Msv1_0.dll

Kerberos.dll

Hardware interfaces
(Buses, I/O devices, interrupts, interval timers, DMA, memory cache control, and so on)

Active
Directory

User mode

Kernel mode

Chapter 8: Security 491
EXPERIMENT: Looking Inside HKLM\SAM and HKLM\Security
The security descriptors associated with the SAM and Security keys in the Registry pre-
vent access by any account other than the Local System. One way to gain access to these
keys for exploration is to reset their security, but that can weaken the system’s security.
Another way is to execute Regedit.exe in the Local System account, and PsExec from
www.sysinternals.com supports an option that enables you to launch processes in the
Local System account. Run Regedit using the PsExec command, shown below, to gain
access to the SAM and Security databases without disturbing their security settings:

C:>psexec –s –i –d c:\windows\regedit.exe

The SRM, which runs in kernel mode, and Lsass, which runs in user mode, communicate
using the LPC facility described in Chapter 3. During system initialization, the SRM creates a
port, named SeRmCommandPort, to which Lsass connects. When the Lsass process starts, it
creates an LPC port named SeLsaCommandPort. The SRM connects to this port, resulting in
the creation of private communication ports. The SRM creates a shared memory section for
messages longer than 256 bytes, passing a handle in the connect call. Once the SRM and
Lsass connect to each other during system initialization, they no longer listen on their respec-
tive connect ports. Therefore, a later user process has no way to connect successfully to either
of these ports for malicious purposes—the connect request will never complete.

492 Microsoft Windows Internals, Fourth Edition
Figure 8-2 shows the communication paths as they exist after system initialization.

Figure 8-2 Communication between the SRM and Lsass

Protecting Objects
Object protection and access logging is the essence of discretionary access control and audit-
ing. The objects that can be protected on Windows include files, devices, mailslots, pipes
(named and anonymous), jobs, processes, threads, events, keyed events, event pairs, mutexes,
semaphores, shared memory sections, I/O completion ports, LPC ports, waitable timers,
access tokens, volumes, window stations, desktops, network shares, services, registry keys,
printers, and Active Directory objects.

Because system resources that are exported to user mode (and hence require security valida-
tion) are implemented as objects in kernel mode, the Windows object manager plays a key
role in enforcing object security. (For more information on the object manager, see Chapter 3.)
To control who can manipulate an object, the security system must first be sure of each user’s
identity. This need to guarantee the user’s identity is the reason that Windows requires
authenticated logon before accessing any system resources. When a process requests a handle
to an object, the object manager and the security system use the caller’s security identification
to determine whether the caller should be assigned a handle that grants the process access to
the object it desires.

As discussed later in this chapter, a thread can assume a different security context than that of
its process. This mechanism is called impersonation, and when a thread is impersonating, secu-
rity validation mechanisms use the thread’s security context instead of that of the thread’s
process. When a thread isn’t impersonating, security validation falls back on using the secu-
rity context of the thread’s owning process. It’s important to keep in mind that all the threads
in a process share the same handle table, so when a thread opens an object—even if it’s imper-
sonating—all the threads of the process have access to the object.

Communication
port

User mode

Kernel mode

Communication
port

SeLsaCommandPort

Local security
authority (LSA) server

Communication
port

Communication
port

SeRmCommandPort

Security reference
monitor (SRM)

Set audit event
Create logon session
Delete logon session

Write audit message
Delete logon session

Shared
section

Chapter 8: Security 493
Access Checks

The Windows security model requires that a thread specify up front, at the time that it opens
an object, what types of actions it wants to perform on the object. The system performs access
checks based on a thread’s desired access, and if the access is granted, a handle is assigned to
the thread’s process with which the thread (or other threads in the process) can perform fur-
ther operations on the object. As explained in Chapter 3, the object manager records the
access permissions granted for a handle in the process’s handle table.

One event that causes the object manager to perform security access validation is when a pro-
cess opens an existing object using a name. When an object is opened by name, the object
manager performs a lookup of the specified object in the object manager namespace. If the
object isn’t located in a secondary namespace, such as the configuration manager’s registry
namespace or a file system driver’s file system namespace, the object manager calls the inter-
nal function ObpCreateHandle once it locates the object. As its name implies, ObpCreateHandle
creates an entry in the process’s handle table that becomes associated with the object. How-
ever, ObpCreateHandle calls the executive function ExCreateHandle instead to create the han-
dle only if another object manager function, ObpIncrementHandleCount, indicates that the
thread has permission to access the object. Another object manager function, ObCheckObject-
Access, actually carries out the security access check and returns the results to ObpIncrement-
HandleCount.

ObpIncrementHandleCount passes ObCheckObjectAccess the security credentials of the thread
opening the object, the types of access to the object that the thread is requesting (read, write,
delete, and so forth), and a pointer to the object. ObCheckObjectAccess first locks the object’s
security and the security context of the thread. The object security lock prevents another
thread in the system from changing the object’s security while the access check is in progress.
The lock on the thread’s security context prevents another thread of that process or a different
process from altering the security identity of the thread while security validation is in
progress. ObCheckObjectAccess then calls the object’s security method to obtain the security
settings of the object. (See Chapter 3 for a description of object methods.) The call to the secu-
rity method might invoke a function in a different executive component. However, many exec-
utive objects rely on the system’s default security management support.

When an executive component defining an object doesn’t want to override the SRM’s default
security policy, it marks the object type as having default security. Whenever the SRM calls an
object’s security method, it first checks to see whether the object has default security. An
object with default security stores its security information in its header, and its security
method is SeDefaultObjectMethod. An object that doesn’t rely on default security must manage
its own security information and supply a specific security method. Objects that rely on
default security include mutexes, events, and semaphores. A file object is an example of an
object that overrides default security. The I/O manager, which defines the file object type, has
the file system driver on which a file resides manage (or choose not to implement) the security
for its files. Thus, when the system queries the security on a file object that represents a file on

494 Microsoft Windows Internals, Fourth Edition
an NTFS volume, the I/O manager file object security method retrieves the file’s security using
the NTFS file system driver. Note, however, that ObCheckObjectAccess isn’t executed when files
are opened, because they reside in secondary namespaces; the system invokes a file object’s
security method only when a thread explicitly queries or sets the security on a file (with the
Windows SetFileSecurity or GetFileSecurity functions, for example).

After obtaining an object’s security information, ObCheckObjectAccess invokes the SRM func-
tion SeAccessCheck. SeAccessCheck is one of the functions at the heart of the Windows security
model. Among the input parameters SeAccessCheck accepts are the object’s security informa-
tion, the security identity of the thread as captured by ObCheckObjectAccess, and the access
that the thread is requesting. SeAccessCheck returns True or False, depending on whether the
thread is granted the access it requested to the object.

Another event that causes the object manager to execute access validation is when a process
references an object using an existing handle. Such references often occur indirectly, as when
a process calls on a Windows API to manipulate an object and passes an object handle. For
example, a thread opening a file can request access to the object that permits it to read from
the file. If the thread has permission to access the object in this way, as dictated by its security
context and the security settings of the file, the object manager creates a handle—representing
the file—in the handle table of the thread’s process. The accesses the process is granted
through the handle are stored with the handle by the object manager.

Subsequently, the thread can attempt to write to the file using the WriteFile Windows func-
tion, passing the file’s handle as a parameter. The system service NtWriteFile, which WriteFile
calls via Ntdll.dll, uses the object manager function ObReferenceObjectByHandle to obtain a
pointer to the file object from the handle. ObReferenceObjectByHandle accepts the access that
the caller wants from the object as a parameter. After finding the handle entry in the process’s
handle table, ObReferenceObjectByHandle compares the access being requested with the access
granted at the time the file was opened. In this case, ObReferenceObjectByHandle will indicate
that the write operation should fail because the caller didn’t obtain write access when the file
was opened.

The Windows security functions also enable Windows applications to define their own pri-
vate objects and to call on the services of the SRM to enforce the Windows security model on
those objects. Many kernel-mode functions that the object manager and other executive com-
ponents use to protect their own objects are exported as Windows user-mode APIs. The user-
mode equivalent of SeAccessCheck is AccessCheck, for example. Windows applications can
therefore leverage the flexibility of the security model and transparently integrate with the
authentication and administrative interfaces that are present in Windows.

The essence of the SRM’s security model is an equation that takes three inputs: the security
identity of a thread, the access that the thread wants to an object, and the security settings of
the object. The output is either “yes” or “no” and indicates whether or not the security model

Chapter 8: Security 495
grants the thread the access it desires. The following sections describe the inputs in more
detail and then document the model’s access validation algorithm.

Security Identifiers (SIDs)

Instead of using names (which might or might not be unique) to identify entities that perform
actions in a system, Windows uses security identifiers (SIDs). Users have SIDs, and so do local
and domain groups, local computers, domains, and domain members. A SID is a variable-
length numeric value that consists of a SID structure revision number, a 48-bit identifier
authority value, and a variable number of 32-bit subauthority or relative identifier (RID) values.
The authority value identifies the agent that issued the SID, and this agent is typically a Win-
dows local system or a domain. Subauthority values identify trustees relative to the issuing
authority, and RIDs are simply a way for Windows to create unique SIDs based on a common-
base SID. Because SIDs are long and Windows takes care to generate truly random values
within each SID, it is virtually impossible for Windows to issue the same SID twice on
machines or domains anywhere in the world.

When displayed textually, each SID carries an S prefix, and its various components are sepa-
rated with hyphens:

S-1-5-21-1463437245-1224812800-863842198-1128

In this SID, the revision number is 1, the identifier authority value is 5 (the Windows security
authority), and four subauthority values plus one RID (1128) make up the remainder of the
SID. This SID is a domain SID, but a local computer on the domain would have a SID with the
same revision number, identifier authority value, and number of subauthority values.

When you install Windows, the Windows Setup program issues the computer a SID. Win-
dows assigns SIDs to local accounts on the computer. Each local-account SID is based on the
source computer’s SID and has a RID at the end. RIDs for user accounts and groups start at
1000 and increase in increments of 1 for each new user or group. Similarly, Dcpromo.exe, the
utility used to create a new Windows domain, issues a SID to domains it creates. Windows
issues to new domain accounts SIDS that are based on the domain SID and have an appended
RID (again starting at 1000 and increasing in increments of 1 for each new user or group). A
RID of 1028 indicates that the SID is the 29th SID the domain issued.

Windows issues SIDS that consist of a computer or domain SID with a predefined RID to
many predefined accounts and groups. For example, the RID for the administrator account is
500, and the RID for the guest account is 501. A computer’s local administrator account, for
example, has the computer SID as its base with the RID of 500 appended to it:

S-1-5-21-13124455-12541255-61235125-500

496 Microsoft Windows Internals, Fourth Edition
Windows also defines a number of built-in local and domain SIDs to represent groups. For
example, a SID that identifies any and every account is the Everyone, or World, SID: S-1–1–0.
Another example of a group that a SID can represent is the network group, which is the group
that represents users who have logged on to a machine from the network. The network-group
SID is S-1-5-2. Table 8-2, reproduced here from the Platform SDK documentation, shows some
basic well-known SIDs, their numeric values, and their use.

Finally, Winlogon creates a unique logon SID for each interactive logon session. A typical use
of a logon SID is in an access-control entry (ACE) that allows access for the duration of a cli-
ent’s logon session. For example, a Windows service can use the LogonUser function to start a
new logon session. The LogonUser function returns an access token from which the service
can extract the logon SID. The service can then use the SID in an ACE that allows the client’s
logon session to access the interactive window station and desktop. The SID for a logon ses-
sion is S-1-5-5-0, and the RID is randomly generated.

EXPERIMENT: Using PsGetSid to View Account SIDs
You can easily see the SID representation for any account you’re using by running the
PsGetSid utility (from www.sysinternals.com). It has the following interface:

C:\>psgetsid -?

PsGetSid displays the machine SID for the local or remote Windows system.

Usage: psgetsid [\\RemoteComputer [-u Username [-p Password]]] [account | SID]

-u Specifies optional user name for login to

remote computer.

-p Specifies optional password for user name. If you omit this

you will be prompted to enter a hidden password.

account PsGetSid will report the SID for the specified user account

rather than the computer.

SID PsGetSid will report the account for the specified SID.

Table 8-2 Well-Known SIDs

SID Group Use

S-1–1–0 Everyone A group that includes all users.

S-1-2-0 Local Users who log on to terminals locally (physically) connect-
ed to the system.

S-1–3–0 Creator Owner ID A security identifier to be replaced by the security identi-
fier of the user who created a new object. This SID is used
in inheritable ACEs.

S-1–3–1 Creator Group ID Identifies a security identifier to be replaced by the
primary-group SID of the user who created a new object.
Use this SID in inheritable ACEs.

Chapter 8: Security 497
PsGetSid’s options allow you to translate machine and user account names to their cor-
responding SIDs and vice versa.

If you run PsGetSid with no options, it prints the SID assigned to the local computer. By
using the fact that the Administrator’s account always has a RID of 500, you can deter-
mine the name assigned to the account (in cases where a system administrator has
renamed the account for security reasons) simply by passing the machine SID appended
with “-500” as PsGetSid’s command-line argument.

To obtain the SID of a domain account, enter the user name with the domain as a prefix:

c:\>psgetsid redmond\daryl

You can determine the SID of a domain by specifying the domain’s name as the argu-
ment to PsGetSid:

c:\>psgetsid Redmond

Finally, by examining the RID of your own account, you know at least a number of secu-
rity accounts equal to the number resulting from subtracting 999 from your RID have
been created in your domain or on your local machine (depending on whether you are
using a domain or local machine account). You can determine what accounts have been
assigned RIDs by passing a SID with the RID you want to query to PsGetSid. If PsGetSid
reports that no mapping between the SID and an account name was possible and the
RID is lower than that of your account, you know that the account assigned the RID has
been deleted.

For example, to find out the name of the account assigned the twenty-eighth RID, pass
the domain SID appended with “-1027” to PsGetSid:

c:\>psgetsid S-1-5-21-1787744166-3910675280-2727264193-1027

Account for S-1-5-21-1787744166-3910675280-2727264193-1027:

User: redmond\daryl

Tokens

The SRM uses an object called a token (or access token) to identify the security context of a pro-
cess or thread. A security context consists of information that describes the privileges,
accounts, and groups associated with the process or thread. During the logon process
(described at the end of this chapter), Winlogon creates an initial token to represent the user
logging on and attaches the token to the initial process(es) it starts (by default, Userinit.exe).
Because child processes by default inherit a copy of the token of its creator, all processes in the
user’s session run under the same token. You can also generate a token by using the Windows

498 Microsoft Windows Internals, Fourth Edition
LogonUser function. You can then use this token to create a process that runs within the secu-
rity context of the user logged on by the LogonUser function by passing the token to the Win-
dows CreateProcessAsUser function. The CreateProcessWithLogon function also creates a token
by creating a new logon session with an initial process. This is how the Runas command
launches processes under alternate tokens.

Tokens vary in size because different user accounts have different sets of privileges and associ-
ated group accounts. However, all tokens contain the same information, shown in Figure 8-3.

Figure 8-3 Access tokens

The security mechanisms in Windows use two token components to determine what objects
can be accessed and what secure operations can be performed. One component comprises
the token’s user account SID and group SID fields. The SRM uses SIDs to determine whether
a process or thread can obtain requested access to a securable object, such as an NTFS file.

The group SIDs in a token signify which groups a user’s account is a member of. A server
application can disable specific groups to restrict a token’s credentials when the server appli-
cation is performing actions a client requests. Disabling a group produces nearly the same

Token source

Impersonation type

Token ID

Authentication ID

Modified ID

Expiration time

Default primary group

Default DACL

User account SID

Group 1 SID

Group n SID

Restricted SID 1

Restricted SID n

Privilege 1

Privilege n

Chapter 8: Security 499
effect as if the group wasn’t present in the token. (Disabled SIDs are used as part of security
access checks, described later in the chapter.)

The second component in a token that determines what the token’s thread or process can do
is the privilege array. A token’s privilege array is a list of rights associated with the token. An
example privilege is the right for the process or thread associated with the token to shut down
the computer. Privileges are described in more detail later in this chapter. A token’s default pri-
mary group field and default discretionary access-control list (DACL) field are security
attributes that Windows applies to objects that a process or thread creates when it uses the
token. By including security information in tokens, Windows makes it convenient for a pro-
cess or thread to create objects with standard security attributes, because the process or
thread doesn’t need to request discrete security information for every object it creates.

Each token’s type distinguishes a primary token (a token that identifies the security context of
a process) from an impersonation token (a type of token that threads use to temporarily adopt
a different security context, usually of another user). Impersonation tokens carry an imper-
sonation level that signifies what type of impersonation is active in the token. (Impersonation
is described later in this chapter.)

The remainder of the fields in a token serve informational purposes. The token source field
contains a short textual description of the entity that created the token. Programs that want to
know where a token originated use the token source to distinguish among sources such as the
Windows Session Manager, a network file server, or the remote procedure call (RPC) server.
The token identifier is a locally unique identifier (LUID) that the SRM assigns to the token
when it creates the token. The Windows executive maintains the executive LUID, a counter it
uses to assign a unique numeric identifier to each token.

The token authentication ID is another kind of LUID. A token’s creator assigns the token’s
authentication ID when calling the LsaLogonUser function. If the creator doesn’t specify a
LUID, Lsass obtains the LUID from the executive LUID. Lsass copies the authentication ID
for all tokens descended from an initial logon token. A program can obtain a token’s authen-
tication ID to see whether the token belongs to the same logon session as other tokens the
program has examined.

The executive LUID refreshes the modified ID every time a token’s characteristics are modi-
fied. An application can test the modified ID to discover changes in a security context since
the context’s last use.

Tokens contain an expiration time field that has been present but unused in Windows NT
technology since Windows NT 3.1. A future version of Windows might allow for tokens that
are valid for a period of time before expiring. Consider a user for which the systems adminis-
trator sets an account expiration time. Currently, if the user logs on and remains logged on
past the account expiration, the system will let the user continue to access resources. The only
way to prevent the user from accessing resources is to forcibly log the user off the machine. If
Windows supported token expiration, the system could prevent the user from opening
resources past the token expiration time.

500 Microsoft Windows Internals, Fourth Edition
EXPERIMENT: Viewing Access Tokens
The kernel debugger dt _TOKEN command displays the format of an internal token
object. Although this structure differs from the user-mode token structure returned by
Windows API security functions, the fields are similar. For further information on
tokens, see the description in the Platform SDK documentation.

The following output is from the kernel debugger’s dtTOKEN command:

kd> dt _TOKEN

+0x000 TokenSource : _TOKEN_SOURCE

+0x010 TokenId : _LUID

+0x018 AuthenticationId : _LUID

+0x020 ParentTokenId : _LUID

+0x028 ExpirationTime : _LARGE_INTEGER

+0x030 TokenLock : Ptr32 _ERESOURCE

+0x034 ModifiedId : _LUID

+0x03c SessionId : Uint4B

+0x040 UserAndGroupCount : Uint4B

+0x044 RestrictedSidCount : Uint4B

+0x048 PrivilegeCount : Uint4B

+0x04c VariableLength : Uint4B

+0x050 DynamicCharged : Uint4B

+0x054 DynamicAvailable : Uint4B

+0x058 DefaultOwnerIndex : Uint4B

+0x05c UserAndGroups : Ptr32 _SID_AND_ATTRIBUTES

+0x060 RestrictedSids : Ptr32 _SID_AND_ATTRIBUTES

+0x064 PrimaryGroup : Ptr32 Void

+0x068 Privileges : Ptr32 _LUID_AND_ATTRIBUTES

+0x06c DynamicPart : Ptr32 Uint4B

+0x070 DefaultDacl : Ptr32 _ACL

+0x074 TokenType : _TOKEN_TYPE

+0x078 ImpersonationLevel : _SECURITY_IMPERSONATION_LEVEL

+0x07c TokenFlags : UChar

+0x07d TokenInUse : UChar

+0x080 ProxyData : Ptr32 _SECURITY_TOKEN_PROXY_DATA

+0x084 AuditData : Ptr32 _SECURITY_TOKEN_AUDIT_DATA

+0x088 VariablePart : Uint4B

You can examine the token for a process with the !token command. You’ll find the
address of the token in the output of the !process command, as shown here:

kd> !process 380 1

!process 380 1

Searching for Process with Cid == 380

PROCESS ff8027a0 SessionId: 0 Cid: 0380 Peb: 7ffdf000 ParentCid: 0124

DirBase: 06433000 ObjectTable: ff7e0b68 TableSize: 23.

Image: cmd.exe

VadRoot 84c30568 Clone 0 Private 77. Modified 0. Locked 0.

DeviceMap 818a3368

Token e22bc730

ElapsedTime 14:22:56.0536

UserTime 0:00:00.0040

Chapter 8: Security 501
KernelTime 0:00:00.0100

QuotaPoolUsage[PagedPool] 13628

QuotaPoolUsage[NonPagedPool] 1616

Working Set Sizes (now,min,max) (261, 50, 345)(1044KB, 200KB, 1380KB)

PeakWorkingSetSize 262

VirtualSize 11 Mb

PeakVirtualSize 11 Mb

PageFaultCount 313

MemoryPriority FOREGROUND

BasePriority 8

CommitCharge 86

kd> !token e22bc730

_TOKEN e22bc730

TS Session ID: 0

User: S-1-5-21-1787744166-3910675280-2727264193-500

Groups:

00 S-1-5-21-1787744166-3910675280-2727264193-513

Attributes - Mandatory Default Enabled

01 S-1-1-0

Attributes - Mandatory Default Enabled

02 S-1-5-32-544

Attributes - Mandatory Default Enabled Owner

03 S-1-5-32-545

Attributes - Mandatory Default Enabled

04 S-1-5-5-0-92587

Attributes - Mandatory Default Enabled LogonId

05 S-1-2-0

Attributes - Mandatory Default Enabled

06 S-1-5-14

Attributes - Mandatory Default Enabled

07 S-1-5-4

Attributes - Mandatory Default Enabled

08 S-1-5-11

Attributes - Mandatory Default Enabled

Primary Group: S-1-5-21-1787744166-3910675280-2727264193-513

Privs:

00 0x000000017 SeChangeNotifyPrivilege Attributes - Enabled Default

01 0x000000008 SeSecurityPrivilege Attributes -

02 0x000000011 SeBackupPrivilege Attributes -

03 0x000000012 SeRestorePrivilege Attributes -

04 0x00000000c SeSystemtimePrivilege Attributes -

05 0x000000013 SeShutdownPrivilege Attributes -

06 0x000000018 SeRemoteShutdownPrivilege Attributes -

07 0x000000009 SeTakeOwnershipPrivilege Attributes -

08 0x000000014 SeDebugPrivilege Attributes -

09 0x000000016 SeSystemEnvironmentPrivilege Attributes -

10 0x00000000b SeSystemProfilePrivilege Attributes -

11 0x00000000d SeProfileSingleProcessPrivilege Attributes -

12 0x00000000e SeIncreaseBasePriorityPrivilege Attributes -

13 0x00000000a SeLoadDriverPrivilege Attributes - Enabled

14 0x00000000f SeCreatePagefilePrivilege Attributes -

15 0x000000005 SeIncreaseQuotaPrivilege Attributes -

16 0x000000019 SeUndockPrivilege Attributes - Enabled

17 0x00000001c SeManageVolumePrivilege Attributes -

502 Microsoft Windows Internals, Fourth Edition
Authentication ID: (0,169e4)

Impersonation Level: Anonymous

TokenType: Primary

Source: User32 TokenFlags: 0x9 (Token in use)

Token ID: 3a86d0d ParentToken ID: 0

Modified ID: (0, 3a86d0f)

RestrictedSidCount: 0 RestrictedSids: 00000000

You can indirectly view token contents with Process Explorer’s (available from www.sys-
internals.com) security tab of its process properties dialog box. The dialog box shows the
groups and privileges included in the token of the process you examine.

Impersonation

Impersonation is a powerful feature Windows uses frequently in its security model. Windows
also uses impersonation in its client/server programming model. For example, a server appli-
cation can export resources such as files, printers, or databases. Clients wanting to access a
resource send a request to the server. When the server receives the request, it must ensure that
the client has permission to perform the desired operations on the resource. For example, if a
user on a remote machine tries to delete a file on an NTFS share, the server exporting the
share must determine whether the user is allowed to delete the file. The obvious process to
determine whether a user has permission is for the server to query the user’s account and
group SIDs and scan the security attributes on the file. This process is tedious to program,
prone to errors, and wouldn’t permit new security features to be supported transparently.
Thus, Windows provides impersonation services to simplify the server’s job.

Impersonation lets a server notify the SRM that the server is temporarily adopting the security
profile of a client making a resource request. The server can then access resources on behalf of
the client, and the SRM carries out the access validations. Usually, a server has access to more
resources than a client does and loses some of its security credentials during impersonation.
However, the reverse can be true: the server can gain security credentials during imperson-
ation.

A server impersonates a client only within the thread that makes the impersonation request.
Thread-control data structures contain an optional entry for an impersonation token. How-
ever, a thread’s primary token, which represents the thread’s real security credentials, is
always accessible in the process’s control structure.

Windows makes impersonation available through several mechanisms. If a server communi-
cates with a client through a named pipe, the server can use the ImpersonateNamedPipeClient
Windows API function to tell the SRM that it wants to impersonate the user on the other end
of the pipe. If the server is communicating with the client through Dynamic Data Exchange
(DDE) or an RPC, it can make similar impersonation requests using DdeImpersonateClient and
RpcImpersonateClient. A thread can create an impersonation token that’s simply a copy of its
process token with the ImpersonateSelf function. The thread can then alter its impersonation

Chapter 8: Security 503
token, to disable SIDs or privileges, for example. Finally, a Security Support Provider Interface
(SSPI) package can impersonate its clients with ImpersonateSecurityContext. SSPIs implement
a network security model such as LAN Manager version 2 or Kerberos.

After the server thread finishes its task, it reverts to its primary security profile. These forms of
impersonation are convenient for carrying out specific actions at the request of a client and for
ensuring that object accesses are audited correctly. (For example, the audit that is generated
gives the identity of the impersonated client rather than that of the server process.) The disad-
vantage to these forms of impersonation is that they can’t execute an entire program in the
context of a client. In addition, an impersonation token can’t access files or printers on net-
work shares unless it is a delegation-level impersonation (described shortly) and has sufficient
credentials to authenticate to the remote machine, or the file or printer share supports null
sessions. (A null session is one that results from an anonymous logon.)

If an entire application must execute in a client’s security context or must access network
resources, the client must be logged on to the system. The LogonUser Windows API function
enables this action. LogonUser takes an account name, a password, a domain or computer
name, a logon type (such as interactive, batch, or service), and a logon provider as input, and
it returns a primary token. A server thread can adopt the token as an impersonation token, or
the server can start a program that has the client’s credentials as its primary token. From a
security standpoint, a process created using the token returned from an interactive logon via
LogonUser, such as with the CreateProcessAsUser API, looks like a program a user starts by log-
ging on to the machine interactively. The disadvantage to this approach is that a server must
obtain the user’s account name and password. If the server transmits this information across
the network, the server must encrypt it securely so that a malicious user snooping network
traffic can’t capture it.

To prevent the misuse of impersonation, Windows doesn’t let servers perform impersonation
without a client’s consent. A client process can limit the level of impersonation that a server
process can perform by specifying a security quality of service (SQOS) when connecting to the
server. A process can specify SECURITY_ANONYMOUS, SECURITY_IDENTIFICATION,
SECURITY_IMPERSONATION, and SECURITY_DELEGATION as flags for the Windows
CreateFile function. Each level lets a server perform different types of operations with respect
to the client’s security context:

■ SecurityAnonymous is the most restrictive level of impersonation—the server can’t imper-
sonate or identify the client.

■ SecurityIdentification level lets the server obtain the identity (the SIDs) of the client and
the client’s privileges, but the server can’t impersonate the client.

■ SecurityImpersonation level lets the server identify and impersonate the client on the
local system.

■ SecurityDelegation is the most permissive level of impersonation. It lets the server imper-
sonate the client on local and remote systems. Windows NT 4 and earlier don’t fully
support SecurityDelegation-level impersonation.

504 Microsoft Windows Internals, Fourth Edition
If the client doesn’t set an impersonation level, Windows chooses the SecurityImpersonation
level by default. The CreateFile function also accepts SECURITY_EFFECTIVE_ONLY and
SECURITY_CONTEXT_TRACKING as modifiers for the impersonation setting:

■ SECURITY_EFFECTIVE_ONLY prevents a server from enabling or disabling a client’s
privileges or groups while the server is impersonating.

■ SECURITY_CONTEXT_TRACKING specifies that any changes a client makes to its
security context is reflected in a server that is impersonating it. If this option isn’t speci-
fied, the server adopts the context of the client at the time of the impersonation and
doesn’t receive any changes. This option is honored only when the client and server pro-
cess are on the same system.

Restricted Tokens

A restricted token is created from a primary or impersonation token using the CreateRestricted-
Token function. The restricted token is a copy of the token it’s derived from, with the following
possible modifications:

■ Privileges can be removed from the token’s privilege array.

■ SIDs in the token can be marked as deny-only.

■ SIDs in the token can be marked as restricted.

The behavior of deny-only and restricted SIDs is covered shortly. Restricted tokens are useful
when an application wants to impersonate a client at a reduced security level, primarily for
safety reasons when running untrusted code. For example, the restricted token can have the
shutdown-system privilege removed from it to prevent code executed in the restricted token’s
security context from rebooting the system.

EXPERIMENT: Looking at Restricted Tokens
You can make Explorer create a process with a restricted token by following these steps
on Windows XP or Windows Server 2003:

1. Create a shortcut to \Windows\Notepad.exe on your desktop.

2. Edit the properties of the shortcut, and select the Run With Different Credentials
check box. Note that the descriptive text for the check box tells you that you can
run the program as yourself while protecting your computer from unauthorized
program activity.

3. Dismiss the shortcut properties, and launch the shortcut.

4. Accept the default options of running in the current account and protecting your
computer from unauthorized program activity that the resulting Run As dialog
displays.

Chapter 8: Security 505
5. Run Process Explorer, and view the Security tab of the properties of the Notepad
process you launched. Note that the token contains restricted SIDs and a deny-
only SID, and that it has only one privilege. The properties on the left in the follow-
ing screen shot are from a Notepad running with a nonrestricted token, and the
properties on the right are from one launched using these steps:

There are several side-effects of the restricted token you see:

■ All privileges except SeChangeNotifyPrivilege are removed.

■ Any Administrators or Power Users SIDs are marked Deny-Only. This SID removes
access to any resources for which administrator access is denied with a matching
access-denied ACE, but that would otherwise be overridden by an ACE granting
the administrator’s group access earlier in the security descriptor.

■ The RESTRICTED SID is added to the Restricted SIDs list, as are all other token
SIDs except for the user SID and any Administrators or Power Users SIDs.

■ The SID of the account from which you ran the process is not listed as a restricted
SID. This means that the process won’t be able to access any objects that permit
access to your user account but not to any of the groups that you belong to. For exam-
ple, your profile directory under \Documents and Settings has a default security
descriptor granting your account, the administrator’s group, and the System account
access. When you try to open that directory from the Notepad you launched, you’ll
be denied access because the internal second access check, performed with restricted
SIDs, will fail because the user SID isn’t present in the list of restricted SIDs.

506 Microsoft Windows Internals, Fourth Edition
Security Descriptors and Access Control

Tokens, which identify a user’s credentials, are only part of the object security equation.
Another part of the equation is the security information associated with an object, which spec-
ifies who can perform what actions on the object. The data structure for this information is
called a security descriptor. A security descriptor consists of the following attributes:

■ Revision number The version of the SRM security model used to create the descriptor.

■ Flags Optional modifiers that define the behavior or characteristics of the descriptor.
An example is the SE_DACL_PROTECTED flag, which prevents the descriptor from
inheriting a security setting from another object.

■ Owner SID The owner’s security ID.

■ Group SID The security ID of the primary group for the object (used only by POSIX).

■ Discretionary access-control list (DACL) Specifies who has what access to the object.

■ System access-control list (SACL) Specifies which operations by which users should be
logged in the security audit log.

An access-control list (ACL) is made up of a header and zero or more access-control entry (ACE)
structures. There are two types of ACLs: DACLs and SACLs. In a DACL, each ACE contains a
SID and an access mask (and a set of flags, explained shortly). Four types of ACEs can appear
in a DACL: access allowed, access denied, allowed-object, and denied-object. As you would
expect, the access-allowed ACE grants access to a user, and the access-denied ACE denies the
access rights specified in the access mask.

The difference between allowed-object and access allowed, and between denied-object and
access denied, is that the object types are used only within Active Directory. ACEs of these
types have a GUID (globally unique identifier) field that indicates that the ACE applies only to
particular objects or subobjects (those that have GUID identifiers). In addition, another
optional GUID indicates what type of child object will inherit the ACE when a child is created
within an Active Directory container that has the ACE applied to it. (A GUID is a 128-bit iden-
tifier guaranteed to be universally unique.)

The accumulation of access rights granted by individual ACEs forms the set of access rights
granted by an ACL. If no DACL is present (a null DACL) in a security descriptor, everyone has full
access to the object. If the DACL is empty (that is, it has 0 ACEs), no user has access to the object.

The ACEs used in DACLs also have a set of flags that control and specify characteristics of the
ACE related to inheritance. Some object namespaces have container objects and leaf objects (or
just objects). A container can hold other container objects and leaf objects, which are its child
objects. Examples of containers are directories in the file system namespace and keys in the
registry namespace. Certain flags in an ACE control how the ACE propagates to child objects
of the container associated with the ACE. Table 8-3, reproduced in part from the Platform
SDK, lists the inheritance rules for ACE flags.

Chapter 8: Security 507
A SACL contains two types of ACEs, system audit ACEs and system audit-object ACEs. These
ACEs specify which operations performed on the object by specific users or groups should be
audited. Audit information is stored in the system Audit Log. Both successful and unsuccess-
ful attempts can be audited. Like their DACL object-specific ACE cousins, system audit-object
ACEs specify a GUID indicating the types of objects or subobjects that the ACE applies to and
an optional GUID that controls propagation of the ACE to particular child object types. If a
SACL is null, no auditing takes place on the object. (Security auditing is described later in this
chapter.) The inheritance flags that apply to DACL ACEs also apply to system audit and sys-
tem audit-object ACEs.

Figure 8-4 is a simplified picture of a file object and its DACL.

Figure 8-4 Discretionary access-control list (DACL)

As shown in Figure 8-4, the first ACE allows USER1 to query the file. The second ACE allows
members of the group TEAM1 to have read and write access to the file, and the third ACE
grants all other users (Everyone) execute access.

Table 8-3 Inheritance Rules for ACE Flags

Flag Inheritance rule

CONTAINER_INHERIT_ACE Child objects that are containers, such as directories, inherit
the ACE as an effective ACE. The inherited ACE is inheritable
unless the NO_PROPAGATE_INHERIT_ACE bit flag is also set.

INHERIT_ONLY_ACE This flag indicates an inherit-only ACE that doesn’t control
access to the object it’s attached to.

INHERITED_ACE This flag indicates that the ACE was inherited. The system sets
this bit when it propagates an inheritable ACE to a child
object.

NO_PROPAGATE_INHERIT_ACE If the ACE is inherited by a child object, the system clears the
OBJECT_INHERIT_ACE and CONTAINER_INHERIT_ACE flags
in the inherited ACE. This action prevents the ACE from being
inherited by subsequent generations of objects.

OBJECT_INHERIT_ACE Noncontainer child objects inherit the ACE as an effective
ACE. For child objects that are containers, the ACE is inherited
as an inherit-only ACE unless the
NO_PROPAGATE_INHERIT_ACE bit flag is also set.

File
object

Security
descriptor

Allow
USER1

Read data

Allow
TEAM1

Read data
Write data

Allow
Everyone

File execute

ACE ACE ACE

DACL

508 Microsoft Windows Internals, Fourth Edition
EXPERIMENT: Viewing a Security Descriptor
Most executive subsystems rely on the object manager's default security functionality to
manage security descriptors for their objects. The object manager's default security func-
tions use the security descriptor pointer to store security descriptors for such objects.
For example, the Process Manager uses default security so the object manager stores
process and thread security descriptors in the object headers of process and thread
objects, respectively. The security descriptor pointer of events, mutexes and sema-
phores, also store their security descriptors. You can use live kernel debugging to view
the security descriptors of these objects once you locate their object header, as outlined
in the following steps:

1. Start the kernel debugger.

2. Type !process 0 0 to show the address of a Winlogon. (There will be multiple Win-
logon’s running on a system with more than one active Terminal Server session.)
Then type !process again with the address of one of the Winlogon processes:

kd> !process 88d0c020

PROCESS 88d0c020 SessionId: 0 Cid: 0bdc Peb: 7ffdf000 ParentCid: 00a8

DirBase: 59a58000 ObjectTable: e21df920 HandleCount: 62.

Image: winlogon.exe

3. Type !object with the address following the word PROCESS of the output of the
previous command as the argument to show the object data structure:

kd> !object 88d0c020

Object: 88d0c020 Type: (8a0ed388) Process

ObjectHeader: 88d0c008

HandleCount: 1 PointerCount: 32

4. Type dt _OBJECT_HEADER and the address of the object header field from the
previous command’s output to show the object header data structure, including
the security descriptor pointer value:

lkd> dt _OBJECT_HEADER 88d0c008

+0x000 PointerCount : 36

+0x004 HandleCount : 1

+0x004 NextToFree : 0x00000001

+0x008 Type : 0x8a0ed388

+0x00c NameInfoOffset : 0 ’’

+0x00d HandleInfoOffset : 0 ’’

+0x00e QuotaInfoOffset : 0 ’’

+0x00f Flags : 0x20 ’ ’

+0x010 ObjectCreateInfo : 0x89e596a0

+0x010 QuotaBlockCharged : 0x89e596a0

+0x014 SecurityDescriptor : 0xe242b864

+0x018 Body : _QUAD

5. Security descriptor pointers in the object header use the low three bits as flags, so
type the following command to dump the security descriptor by entering the

Chapter 8: Security 509
address displayed in the object header structure, but with the low three bits
removed:

lkd> !sd 0xe242b864 & -8

->Revision: 0x1

->Sbz1 : 0x0

->Control : 0x8004

SE_DACL_PRESENT

SE_SELF_RELATIVE

->Owner : S-1-5-21-1787744166-3910675280-2727264193-500

->Group : S-1-5-21-1787744166-3910675280-2727264193-513

->Dacl :

->Dacl : ->AclRevision: 0x2

->Dacl : ->Sbz1 : 0x0

->Dacl : ->AclSize : 0x40

->Dacl : ->AceCount : 0x2

->Dacl : ->Sbz2 : 0x0

->Dacl : ->Ace[0]: ->AceType: ACCESS_ALLOWED_ACE_TYPE

->Dacl : ->Ace[0]: ->AceFlags: 0x0

->Dacl : ->Ace[0]: ->AceSize: 0x24

->Dacl : ->Ace[0]: ->Mask : 0x001f0fff

->Dacl : ->Ace[0]: ->SID: S-1-5-21-1787744166-3910675280-2727264193-500

->Dacl : ->Ace[1]: ->AceType: ACCESS_ALLOWED_ACE_TYPE

->Dacl : ->Ace[1]: ->AceFlags: 0x0

->Dacl : ->Ace[1]: ->AceSize: 0x14

->Dacl : ->Ace[1]: ->Mask : 0x001f0fff

->Dacl : ->Ace[1]: ->SID: S-1-5-18

->Sacl : is NULL

The security descriptor contains two access-allowed ACEs with one specifying the
administrator’s account (recognizable by its RID of 500) and the other specifying the
System account (which is always S-1-5-18). Without decoding the bits that are set in the
access masks of the ACEs and determining which process access types they map to, it’s
not possible to easily say what accesses each account has to Winlogon’s process object.
However, doing so, with the help of SDK header files, reveals that both have full access.

ACL Assignment

To determine which DACL to assign to a new object, the security system uses the first applica-
ble rule of the following four assignment rules:

1. If a caller explicitly provides a security descriptor when creating the object, the security
system applies it to the object. If the object has a name and resides in a container object
(for example, a named event object in the \BaseNamedObjects object manager
namespace directory), the system merges any inheritable ACEs (ACEs that might prop-
agate from the object’s container) into the DACL unless the security descriptor has the
SE_DACL_PROTECTED flag set, which prevents inheritance.

510 Microsoft Windows Internals, Fourth Edition
2. If a caller doesn’t supply a security descriptor and the object has a name, the security
system looks at the security descriptor in the container in which the new object name is
stored. Some of the object directory’s ACEs might be marked as inheritable, meaning
that they should be applied to new objects created in the object directory. If any of these
inheritable ACEs are present, the security system forms them into an ACL, which it
attaches to the new object. (Separate flags indicate ACEs that should be inherited only
by container objects rather than by objects that aren’t containers.)

3. If no security descriptor is specified and the object doesn’t inherit any ACEs, the security
system retrieves the default DACL from the caller’s access token and applies it to the
new object. Several subsystems on Windows have hard-coded DACLs that they assign
on object creation (for example, services, LSA, and SAM objects).

4. If there is no specified descriptor, no inherited ACEs, and no default DACL, the system
creates the object with no DACL, which allows everyone (all users and groups) full
access to the object. This rule is the same as the third rule in which a token contains a
null default DACL.

The rules the system uses when assigning a SACL to a new object are similar to those used for
DACL assignment, with some exceptions. The first is that inherited system audit ACEs don’t
propagate to objects with security descriptors marked with the SE_SACL_PROTECTED flag
(similar to the SE_DACL_PROTECTED flag, which protects DACLs). Second, if there are no
specified security audit ACEs and there is no inherited SACL, no SACL is applied to the object.
This behavior is different from that used to apply default DACLs because tokens don’t have a
default SACL.

When a new security descriptor containing inheritable ACEs is applied to a container, the sys-
tem automatically propagates the inheritable ACEs to the security descriptors of child objects.
(Note that a security descriptor’s DACL doesn’t accept inherited DACL ACEs if its
SE_DACL_PROTECTED flag is enabled, and its SACL doesn’t inherit SACL ACEs if the
descriptor has the SE_SACL_PROTECTED flag set.) The order with which inheritable ACEs
are merged with an existing child object’s security descriptor is such that any ACEs that were
explicitly applied to the ACL are kept ahead of ACEs that the object inherits. The system uses
the following rules for propagating inheritable ACEs:

■ If a child object with no DACL inherits an ACE, the result is a child object with a DACL
containing only the inherited ACE.

■ If a child object with an empty DACL inherits an ACE, the result is a child object with a
DACL containing only the inherited ACE.

■ For objects in Active Directory only, if an inheritable ACE is removed from a parent
object, automatic inheritance removes any copies of the ACE inherited by child objects.

■ For objects in Active Directory only, if automatic inheritance results in the removal of all
ACEs from a child object’s DACL, the child object has an empty DACL rather than no
DACL.

Chapter 8: Security 511
As you’ll soon discover, the order of ACEs in an ACL is an important aspect of the Windows
security model.

Note Inheritance is generally not directly supported by the object stores such as file sys-
tems, the Registry, or Active Directory. Windows APIs that support inheritance, including Set-
SecurityInfo and SetNamedSecurityInfo, do so by invoking appropriate functions within the
security inheritance support DLL (\Windows\System32\Ntmarta.Dll) that know how to traverse
those object stores.

Determining Access

Two algorithms are used for determining access to an object:

■ One to determine the maximum access allowed to the object, a form of which is
exported to user mode with the Windows GetEffectiveRightsFromAcl function

■ One to determine whether a specific desired access is allowed, which can be done with
the Windows AccessCheck function or the AccessCheckByType function

The first algorithm examines the entries in the DACL as follows:

1. If the object has no DACL (a null DACL), the object has no protection and the security
system grants all access.

2. If the caller has the take-ownership privilege, the security system grants write-owner
access before examining the DACL. (Take-ownership privilege and write-owner access
are explained in a moment.)

3. If the caller is the owner of the object, the read-control and write-DACL access rights are
granted.

4. For each access-denied ACE that contains a SID that matches one in the caller’s access
token, the ACE’s access mask is removed from the granted-access mask.

5. For each access-allowed ACE that contains a SID that matches one in the caller’s access
token, the ACE’s access mask is added to the granted-access mask being computed,
unless that access has already been denied.

When all the entries in the DACL have been examined, the computed granted-access mask is
returned to the caller as the maximum allowed access to the object. This mask represents the
total set of access types that the caller will be able to successfully request when opening the
object.

The preceding description applies only to the kernel-mode form of the algorithm. The Windows
version implemented by GetEffectiveRightsFromAcl differs in that it doesn’t perform step 2, and it
considers a single user or group SID rather than an access token.

512 Microsoft Windows Internals, Fourth Edition
The second algorithm is used to determine whether a specific access request can be granted,
based on the caller’s access token. Each open function in the Windows API that deals with
securable objects has a parameter that specifies the desired access mask, which is the last
component of the security equation. To determine whether the caller has access, the following
steps are performed:

1. If the object has no DACL (a null DACL), the object has no protection and the security
system grants the desired access.

2. If the caller has the take-ownership privilege, the security system grants write-owner
access and then examines the DACL. However, if write-owner access was the only access
requested by a caller with take-ownership privilege, the security system grants that
access and never examines the DACL.

3. If the caller is the owner of the object, the read-control and write-DACL access rights are
granted. If these rights were the only access rights that caller requested, access is
granted without examining the DACL.

4. Each ACE in the DACL is examined from first to last. An ACE is processed if one of the
following conditions is satisfied:

a. The ACE is an access-deny ACE, and the SID in the ACE matches an enabled SID
(SIDs can be enabled or disabled) or a deny-only SID in the caller’s access token.

b. The ACE is an access-allowed ACE, and the SID in the ACE matches an enabled
SID in the caller’s token that isn’t of type deny-only.

c. It is the second pass through the descriptor for restricted-SID checks, and the SID
in the ACE matches a restricted SID in the caller’s access token.

5. If it is an access-allowed ACE, the rights in the access mask in the ACE that were
requested are granted; if all the requested access rights have been granted, the access
check succeeds. If it is an access-denied ACE and any of the requested access rights are
in the denied-access rights, access is denied to the object.

6. If the end of the DACL is reached and some of the requested access rights still haven’t
been granted, access is denied.

7. If all accesses are granted but the caller’s access token has at least one restricted SID, the
system rescans the DACL’s ACEs looking for ACEs with access-mask matches for the
accesses the user is requesting and a match of the ACE’s SID with any of the caller’s
restricted SIDs. Only if both scans of the DACL grant the requested access rights is the
user granted access to the object.

The behavior of both access-validation algorithms depends on the relative ordering of allow
and deny ACEs. Consider an object with only two ACEs where one ACE specifies that a certain
user is allowed full access to an object and the other ACE denies the user access. If the allow
ACE precedes the deny ACE, the user can obtain full access to the object, but if the order is
reversed, the user can not gain any access to the object.

Chapter 8: Security 513
Older Windows functions, such as AddAccessAllowedAce, add ACEs to the end of a DACL,
which usually isn’t the desired behavior, so most Windows applications prior to Windows
2000 have no choice but to construct DACLs manually, with deny ACEs placed at the front of
the list. Several Windows functions, such as SetSecurityInfo and SetNamedSecurityInfo, apply
ACEs in the preferred order of deny ACEs preceding allow ACEs. Note that the security editor
dialog boxes with which you edit permissions on NTFS files and registry keys, for example,
use these functions. SetSecurityInfo and SetNamedSecurityInfo also apply ACE inheritance rules
to the security descriptor on which they are applied.

Figure 8-5 shows an example access validation demonstrating the importance of ACE order-
ing. In the example, access is denied a user wanting to open a file even though an ACE in the
object’s DACL grants the access because the ACE denying the user access (by virtue of the
user’s membership in the Writers group) precedes the ACE granting access.

Figure 8-5 Access validation example

Revision

Flags

Owner SID

Primary group

DACL pointer

SACL pointer

Deny

Writers

Read, Write

Allow

DaveC

Read, Write

User: DaveC

Group1: Administrators

Group2: Writers

ACE

ACE

Security descriptor

Access token

Object

Open access requested: Write

Denied

514 Microsoft Windows Internals, Fourth Edition
As we stated earlier, because it wouldn’t be efficient for the security system to process the
DACL every time a process uses a handle, the SRM makes this access check only when a han-
dle is opened, not each time the handle is used. Thus, once a process successfully opens a
handle, the security system can’t revoke the access rights that have been granted, even if the
object’s DACL changes. Also keep in mind that because kernel-mode code uses pointers
rather than handles to access objects, the access check isn’t performed when the operating
system uses objects. In other words, the Windows executive “trusts” itself in a security sense.

The fact that an object’s owner is always granted write-DACL access to an object means that
users can never be prevented from accessing the objects they own. If, for some reason, an
object had an empty DACL (no access), the owner would still be able to open the object with
write-DACL access and then apply a new DACL with the desired access permissions.

A Warning Regarding the GUI Security Editors
When you use the GUI permissions editors to modify security settings on a file, Registry,
Active Directory object, or other securable object, the main security dialog box shows
you a potentially misleading view of the security that’s applied to the object. The top
portion of the dialog box shows in alphabetical ordering the groups and users that have
ACEs in the object’s access control list. If you allow Full Control to the Administrators
group and deny the Everyone group Full Control, the list might lead you to believe that
the Administrators group access-allowed ACE precedes the Everyone deny ACE because
that’s the order in which they appear. However, as we’ve said, the editors place deny
ACEs before allow ACEs when they apply the ACL to the object.

Chapter 8: Security 515
The Permissions tab of the Advanced Security Settings dialog box shows the order of
ACEs in the DACL. However, even this dialog box can be confusing because a complex
DACL can have deny ACEs for various accesses followed by allow ACEs for other access
types.

The only definitive way to know what accesses a particular user or group will have to an
object (other than having that user or a member of the group try to access the object) is
to use the Effective Permissions tab of the dialog box that displays when you press the
Advanced button on the dialog box. Enter the name of the user or group you want to
check and the dialog box shows you what permissions they are allowed for the object.

516 Microsoft Windows Internals, Fourth Edition
The AuthZ API
The AuthZ Windows API, which was introduced in Windows XP, implements the same
security model as the Security Reference Monitor, but implements it totally in user mode
in the \Windows\System32\Authz.Dll library. This gives applications that want to pro-
tect their own private objects, such as database tables, the ability to leverage the Win-
dows security model without incurring the cost of user-mode to kernel-mode transitions
that they would make if they relied on the Security Reference Monitor.

The AuthZ API uses standard security descriptor data structures, SIDs, and privileges.
Instead of using tokens to represent clients, AuthZ uses the
AUTHZ_CLIENT_CONTEXT. AuthZ includes user-mode equivalents of all access-
check and Windows security functions—for example, AuthzAccessCheck is the AuthZ ver-
sion of the AccessCheck Windows API that uses the SeAccessCheck Security Reference
Monitor function.

Another advantage available to applications that use AuthZ is that they can direct AuthZ
to cache the results of security checks to improve subsequent checks that use the same
client context and security descriptor.

AuthZ is fully documented in the Platform SDK.

Account Rights and Privileges
Many operations performed by processes as they execute cannot be authorized through object
access protection because they do not involve interaction with a particular object. For example,
the ability to bypass security checks when opening files for backup is an attribute of an account,
not of a particular object. Windows uses both privileges and account rights to allow a system
administrator to control what accounts can perform security-related operations.

A privilege is the right of an account to perform a particular system-related operation, such as
shutting down the computer or changing the system time. An account right grants or denies
the account to which it’s assigned the ability to perform a particular type of logon, such as a
local logon or interactive logon, to a computer.

A system administrator assigns privileges to groups and accounts using tools such as the
Active Directory Users and Groups MMC snap-in for domain accounts or the Local Security
Policy Editor. You access the Local Security Policy Editor in the Administrative Tools folder of
the Control Panel or the Start menu (if you’ve configured your Start menu to contain an
Administrative Tools link). Figure 8-6 shows User Rights Assignment configuration in the
Local Security Policy Editor, which displays the complete list of privileges and account rights
available on Windows Server 2003. Note that the tool makes no distinction between privi-
leges and account rights. However, you can differentiate between them because any user right
that contains the word logon is an account privilege.

Chapter 8: Security 517
Figure 8-6 Local Security Policy Editor User Rights Assignment

Account Rights

Account Rights are not enforced by the Security Reference Monitor, nor are they stored in tokens.
The function responsible for logon is LsaLogonUser. WinLogon, for example, calls the LogonUser
API when a user logs on interactively to a computer and LogonUser calls LsaLogonUser. The func-
tion takes a parameter that indicates the type of logon being performed, which includes interac-
tive, network, batch, service, terminal server client, and unlock.

In response to logon requests, the Local Security Authority (LSA) retrieves account rights
assigned to a user from the LSA policy database at the time that a user attempts to log on to
the system. LSA checks the logon type against the account rights assigned to the user account
logging on and denies the logon if the account does not have the right that permits the logon
type or it has the right that denies the logon type. Table 8-4 lists the user rights defined by
Windows.

Windows applications can add and remove user rights from an account by using the LsaAdd-
AccountRights and LsaRemoveAccountRights functions, and they can determine what rights are
assigned to an account with LsaEnumerateAccountRights.

518 Microsoft Windows Internals, Fourth Edition
Privileges

The number of privileges defined by the operating system has grown over time. Unlike user
rights, which are enforced in one place by LSA, different privileges are defined by different
components and enforced by those components. For example, the debug privilege, which
allows a process to bypass security checks when opening a handle to another process with the
OpenProcess Windows API, is checked for by the Process Manager. Table 8-5 is a full list of priv-
ileges, and it describes how and when system components check for them.

When a component wants to check a token to see whether a privilege is present, it uses the
PrivilegeCheck or LsaEnumerateAccountRights APIs if running in user mode and SeSinglePrivi-
legeCheck or SePrivilegeCheck if running in kernel mode. The privilege-related APIs are not
account-right aware, but the account-right APIs are privilege-aware.

Unlike account rights, privileges can be enabled and disabled. For a privilege check to suc-
ceed, the privilege must be in the specified token and it must be enabled. The idea behind this
scheme is that privileges should be enabled only when their use is required so that a process
cannot inadvertently perform a privileged security operation.

Table 8-4 Account Rights

User Right Role

Deny logon interactively,
Allow logon interactively

Used for interactive logons that originate on the local
machine

Deny logon over the network,
Allow logon over the network

Used for logons that originate from a remote machine

Deny logon through Terminal Services1,
Allow logon through Terminal Services1

Used for logons through a Terminal Server client

Deny logon as a service,
Allow logon as a service

Used by the Service Control Manager when starting a
service in a particular user account

Deny logon as a batch job,
Allow logon as a batch job

Used when performing a logon of type batch

1 Introduced in Windows XP

Chapter 8: Security 519
EXPERIMENT: Seeing a Privilege Get Enabled
By following these steps, you can see that the Date and Time Control Panel applet
enables the SeSystemTimePrivilege privilege in anticipation of you using its interface to
change the clock or the date of the computer.

1. Log on to a system with an account that has the “Change the system time” user
right (such as an account that is a member of the Power Users or Administrators
group).

2. Run Process Explorer, and set the refresh rate to Paused.

3. View the Security tab of the process properties dialog for your Explorer shell pro-
cess. You should see that the SeChangeSystemTimePrivilege privilege is disabled,
which is indicated by its flag and the fact that it’s shown in gray.

4. Open the Date and Time applet from the Control Panel, and refresh Process
Explorer. A new Rundll process will appear with a green highlight.

5. Open the process properties for the Rundll process (by double-clicking on the
process), and verify that the command line contains the text “Timedate.Cpl”. The
presence of this argument tells Rundll, which is a Control Panel DLL hosting pro-
cess, to load the DLL that implements the user interface (UI) that enables you to
change the time and date.

520 Microsoft Windows Internals, Fourth Edition
6. Switch to the Security tab of the Rundll process properties dialog box, and you
should see that SeSystemTimePrivilege is enabled.

Table 8-5 Privileges

Privilege User Right Privilege Usage

SeAssignPrimaryTokenPrivilege Replace a process-
level token

Checked for by various components, such as
NtSetInformationJob, that set a process’s token.

SeAuditPrivilege Generate security
audits

Required to generate events for the Security
event log with the ReportEvent API.

SeBackupPrivilege Backup files and
directories

Causes NTFS to grant the following access to any
file or directory, regardless of the security descrip-
tor that’s present:

READ_CONTROL

ACCESS_SYSTEM_SECURITY

FILE_GENERIC_READ

FILE_TRAVERSE

Note that when opening a file for backup, the
caller must specify the
FILE_FLAG_BACKUP_SEMANTICS flag.

SeChangeNotifyPrivilege Bypass traverse
checking

Used by NTFS to avoid checking permissions on
intermediate directories of a multilevel directory
lookup. Also used by file systems when applica-
tions register for notification of changes to the file
system structure.

SeCreateGlobalPrivilege1 Create global
objects

Required for a process to create section and
symbolic link objects in the directories of the
Object Manager namespace that are assigned to
a different session than the caller.

Chapter 8: Security 521
SeCreatePagefilePrivilege Create a pagefile Checked for by NtCreatePagingFile, which is the
function used to create a new paging file.

SeCreatePermanentPrivilege Create permanent
shared objects

Checked for by the object manager when creating
a permanent object (one that doesn’t get deallo-
cated when there are no more references to it).

SeCreateTokenPrivilege Create a token
object

NtCreateToken, the function that creates a token
object, checks for this privilege.

SeDebugPrivilege Debug programs If the caller has this privilege enabled, the Process
Manager allows access to any process using
NtOpenProcess, regardless of the process’s
security descriptor.

SeEnableDelegationPrivilege2 Enable computer
and user accounts
to be trusted for
delegation

Used by Active Directory services to delegate
authenticated credentials.

SeImpersonatePrivilege1 Impersonate a
client after
authentication

The Process Manager checks for this when a
thread wants to use a token for impersonation
and the token represents a different user than
that of the thread’s process token.

SeIncreaseBasePriorityPrivilege Increase scheduling
priority

Checked for by the Process Manager and is
required to raise the priority of a process.

SeIncreaseQuotaPrivilege Windows 2000:
Increase quotas

Windows XP/
Windows Server
2003: Adjust
memory quotas for
a process

Enforced when changing the Registry’s quota
(Windows 2000 only), a process’s working set
thresholds, and a process’s paged and nonpaged
pool quotas.

SeLoadDriverPrivilege Load and unload
device drivers

Checked for by the NtLoadDriver and NtUnload-
Driver driver functions.

SeLockMemoryPrivilege Lock pages in
memory

Checked for by NtLockVirtualMemory, the kernel
implementation of VirtualLock.

SeMachineAccountPrivilege Add workstations
to the domain

Checked for by the Security Accounts Manager
on a domain controller when creating a machine
account in a domain.

SeManageVolumePrivilege2 Perform volume
maintenance tasks

Enforced by file system drivers during a volume
open operation, which is required to perform disk
checking and defragmenting activities.

SeProfileSingleProcessPrivilege Profile single
process

Checked for by prefetcher’s function that returns
prefetch information for an individual process.

SeRemoteShutdownPrivilege Force shutdown
from a remote
system

Winlogon checks that remote callers of the Ini-
tiateSystemShutdown function have this privilege.

Table 8-5 Privileges

Privilege User Right Privilege Usage

522 Microsoft Windows Internals, Fourth Edition
SeRestorePrivilege Restore files and
directories

This privilege causes NTFS to grant the following
access to any file or directory, regardless of the
security descriptor that’s present:
WRITE_DAC
WRITE_OWNER
ACCESS_SYSTEM_SECURITY
FILE_GENERIC_WRITE
FILE_ADD_FILE
FILE_ADD_SUBDIRECTORY
DELETE
Note that when opening a file for restore, the
caller must specify the
FILE_FLAG_BACKUP_SEMANTICS flag.

SeSecurityPrivilege Manage auditing
and security log

Required to access the SACL of a security descrip-
tor, read and clear the security event log.

SeShutdownPrivilege Shut down the
system

This privilege is checked for by NtShutdownSystem
and NtRaiseHardError, which presents a system
error dialog box on the interactive console.

SeSyncAgentPrivilege Synchronize
directory service
data

Required to use the LDAP directory synchroniza-
tion services and allows the holder to read all
objects and properties in the directory, regardless
of the protection on the objects and properties.

SeSystemEnvironmentPrivilege Modify firmware
environment
variables

Required by NtSetSystemEnvironmentValue and
NtQuerySystemEnvironmentValue to modify and
read firmware environment variables using the HAL.

SeSystemProfilePrivilege Profile system
performance

Checked for by NtCreateProfile, the function used
to perform profiling of the system. This is used by
the Kernprof tool, for example.

SeSystemtimePrivilege Change the system
time

Required to change the time or date.

SeTakeOwnership Take ownership of
files and other
objects

Required to take ownership of an object without
being granted discretionary access.

SeTcbPrivilege Act as part of the
operating system

Checked for by the Security Reference Monitor
when the session ID is set in a token, by the Plug
and Play Manager for Plug and Play event creation
and management, the Windows 2000 implemen-
tation of LogonUser, BroadcastSystemMessageEx
when called with BSM_ALLDESKTOPS, and LsaReg-
isterLogonProcess.

SeUndockPrivilege Remove computer
from a docking
station

Checked for by the user-mode Plug and Play
Manager when either a computer undock is initi-
ated or a device eject request is made.

1 Introduced in Windows Server 2003
2 Introduced in Windows XP

Table 8-5 Privileges

Privilege User Right Privilege Usage

Chapter 8: Security 523
EXPERIMENT: The Bypass Traverse Checking Privilege
If you are a systems administrator, you must be aware of the Bypass Traverse Checking
privilege (internally called SeNotifyPrivilege) and its implications. This experiment dem-
onstrates that not understanding its behavior can lead to improperly applied security.

1. Create a folder and, within that folder, a new text file with some sample text.

2. Navigate in Explorer to the new file, and go to the Security tab of its Properties dia-
log box. Click the Advanced button, and deselect the check box that controls
inheritance. Select Copy when you are prompted as to whether you want to
remove or copy inherited permissions.

3. Next, modify the security of the new folder so that your account does not have any
access to the folder. Do this by selecting your account and selecting all the Deny
boxes in the permissions list.

4. Run Notepad, and browse using the File|Open dialog box to the new directory.
You should be denied access to the directory.

5. In the File Name field of the open dialog box, type the full path of the new file. The
file should open.

If your account does not have the Bypass Traverse Checking privilege, NTFS performs
an access check on each directory of the path to a file when you try to open a file, which
results in you being denied access to the file in this example.

Super Privileges

Several privileges are so powerful that a user to which they are assigned is effectively a “super
user” who has full control over a computer. These privileges can be used in an infinite number
of ways to gain unauthorized access to otherwise off-limit resources and to perform unautho-
rized operations. However, we’ll focus on using the privilege to execute code that grants the
user privileges not assigned to the user, with the knowledge that this capability can be lever-
aged to perform any operation on the local machine that the user desires. This section lists the
privileges and discusses the ways that they can be exploited. Other privileges, such as Lock
Pages In Physical Memory, can be exploited for denial of service attacks on a system, but are
not discussed.

■ Debug programs A user with this privilege can open any process on the system without
regard to the security descriptor present on the process. The user could implement a
program that opens the LSASS process, for example, copy executable code into its
address space, and then inject a thread with the CreateRemoteThread Windows API to
execute the injected code in a more-privileged security context. The code could grant
the user additional privileges and group memberships.

524 Microsoft Windows Internals, Fourth Edition
■ Take ownership This privilege allows a holder to take ownership of any securable
object by writing his own SID into the owner field of the object’s security descriptor.
Recall that an owner is always granted permission to read and modify the DACL of the
security descriptor, so a process with this privilege could modify the DACL to grant itself
full access to the object and then close and reopen the object with full access. This
would allow the owner to see sensitive data and to even replace system files that execute
as part of normal system operation, such as LSASS, with his own programs that grant a
user elevated privileges.

■ Restore files and directories A user assigned this privilege can replace any file on the
system with her own. She could exploit this power by replacing system files as described
in the preceding paragraph.

■ Load and unload device drivers A malicious user could use this privilege to load a
device driver into the system. Device drivers are considered trusted parts of the operat-
ing system that can execute within it with System account credentials, so a driver could
launch privileged programs that assign the user other rights.

■ Create a token object This privilege can be used in the obvious way to generate tokens
that represent arbitrary user accounts with arbitrary group membership and privilege
assignment.

■ Act as part of operating system LsaRegisterLogonProcess, the function a process calls
to establish a trusted connection to Lsass, checks for this privilege. A malicious user
with this privilege can establish a trusted-Lsass connection and then execute LsaLogo-
nUser, a function used to create new logon sessions. LsaLogonUser requires a valid user
name and password and accepts an optional list of SIDs that it adds to the initial token
created for a new logon session. The user could therefore use her own user name and
password to create a new logon session that includes the SIDs of more privileged groups
or users in the resulting token.

Note that the use of elevated privilege does not extend past the machine boundary to the net-
work, because any interaction with another computer requires authentication with a domain
controller and validation of domain passwords. Domain passwords are not stored on a com-
puter either in plain text or encrypted form, so they are not accessible to malicious code.

Security Auditing
The object manager can generate audit events as a result of an access check, and Windows func-
tions available to user applications can generate them directly. Kernel-mode code is always
allowed to generate an audit event. Two privileges, SeSecurityPrivilege and SeAuditPrivilege,
relate to auditing. A process must have the SeSecurityPrivilege privilege to manage the security
Event Log and to view or set an object’s SACL. Processes that call audit system services, however,
must have the SeAuditPrivilege privilege to successfully generate an audit record.

The audit policy of the local system controls the decision to audit a particular type of security
event. The audit policy, also called the local security policy, is one part of the security policy

Chapter 8: Security 525
Lsass maintains on the local system, and it is configured with the Local Security Policy editor
shown in Figure 8-7.

Figure 8-7 Security Policy Editor audit policy configuration

Lsass sends messages to the SRM to inform it of the auditing policy at system initialization
time and when the policy changes. Lsass is responsible for receiving audit records generated
based on the audit events from the SRM, editing the records, and sending them to the Event
Logger. Lsass (instead of the SRM) sends these records because it adds pertinent details, such
as the information needed to more completely identify the process that is being audited.

The SRM sends audit records via its LPC connection to Lsass. The Event Logger then writes
the audit record to the security Event Log. In addition to audit records the SRM passes, both
Lsass and the SAM generate audit records that Lsass sends directly to the Event Logger, and
the AuthZ API allows for applications to generate application-defined audits. Figure 8-8
depicts this overall flow.

Figure 8-8 Flow of security audit records

User mode

Kernel mode

Security
reference

monitor (SRM)

To Security Log

Protected
subsystem

Windows
server

Event
Logger

LSA
authentication

LSA
auditing

SAM

Object manager
I/O parse
NTFS
Mailslot
NPFS
Configuration registry
Process manager

RPC

Audit recordsAudit policy

LPCLPC
Audit system
service calls

Audit calls

Security subsystem

526 Microsoft Windows Internals, Fourth Edition
Audit records are put on a queue to be sent to the LSA as they are received—they are not sub-
mitted in batches. The audit records are moved from the SRM to the security subsystem in one
of two ways. If the audit record is small (less than the maximum LPC message size), it is sent
as an LPC message. The audit records are copied from the address space of the SRM to the
address space of the Lsass process. If the audit record is large, the SRM uses shared memory
to make the message available to Lsass and simply passes a pointer in an LPC message.

Figure 8-9 brings together the concepts covered so far in this chapter by illustrating the basic pro-
cess and thread security structures. In the figure, notice that the process object and the thread
objects have ACLs, as do the access-token objects themselves. Also in this figure, thread 2 and
thread 3 each has an impersonation token, whereas thread 1 defaults to the process access token.

Figure 8-9 Process and thread security structures

Logon
Interactive logon (as opposed to network logon) occurs through the interaction of the logon
process (Winlogon), Lsass, one or more authentication packages, and the SAM or Active
Directory. Authentication packages are DLLs that perform authentication checks. Kerberos is

ACL

User's SID

Group SIDs

Privileges

Owner SID

Primary group SID

Default ACL

Access token

User's SID

Group SIDs

Privileges

Owner SID

Primary group SID

Default ACL

Access token

User's SID

Group SIDs

Privileges

Owner SID

Primary group SID

Default ACL

Access tokenProcess
ACL

ACL
ACL

ACL Thread 1 ACL Thread 2 ACL Thread 3

2

3
1

4

5

6

Chapter 8: Security 527
the Windows authentication package for interactive logon to a domain, and MSV1_0 is the
Windows authentication package for interactive logon to a local computer, for domain logons
to trusted pre-Windows 2000 domains, and for when no domain controller is accessible.

Winlogon is a trusted process responsible for managing security-related user interactions. It
coordinates logon, starts the user's first process at logon, handles logoff, and manages various
other operations relevant to security, including entering passwords at logon, changing pass-
words, and locking and unlocking the workstation. The Winlogon process must ensure that
operations relevant to security aren’t visible to any other active processes. For example, Winl-
ogon guarantees that an untrusted process can’t get control of the desktop during one of
these operations and thus gain access to the password.

Winlogon relies on a Graphical Identification and Authentication (GINA) DLL to obtain a
user’s account name and password. The default GINA is Msgina (\Windows\System32\
Msgina.dll). Msgina presents the standard Windows logon dialog box. Allowing for other
GINAs to replace Msgina enables Windows to use different user identification mechanisms.
For example, a third party might supply a GINA that uses a thumbprint recognition device to
identify users and extract their passwords from an encrypted database.

Winlogon is the only process that intercepts logon requests from the keyboard. After obtain-
ing a username and password from the GINA, Winlogon calls Lsass to authenticate the user
attempting to log on. If the user is authenticated, the logon process activates a logon shell on
behalf of that user. The interaction between the components involved in logon is illustrated in
Figure 8-10.

Figure 8-10 Components involved in logon

Net Logon
service

Winlogon
process

Active Directory
server

Active
Directory

Msgina Kerb
eros

M
SV

1_0

O
ther

LSA server

Kerberos
Key Distribution
Center Service

SAM
server

Netw

SAM SECURITY

Authentication
packages

LPC

Lsass

528 Microsoft Windows Internals, Fourth Edition
In addition to supporting alternate GINAs, Winlogon can load additional network provider
DLLs that need to perform secondary authentication. This capability allows multiple network
providers to gather identification and authentication information all at one time during nor-
mal logon. A user logging into a Windows system might simultaneously be authenticated on
a UNIX server. That user would then be able to access resources of the UNIX server from the
Windows machine without requiring additional authentication. Such a capability is known as
one form of single sign-on.

Winlogon Initialization

During system initialization, before any user applications are active, Winlogon performs the
following steps to ensure that it controls the workstation once the system is ready for user
interaction:

1. Creates and opens an interactive window station (for example, \Windows\WindowSta-
tions\WinSta0 in the Object Manager namespace) to represent the keyboard, mouse,
and monitor. Winlogon creates a security descriptor for the station that has one and
only one ACE containing only the System SID. This unique security descriptor ensures
that no other process can access the workstation unless explicitly allowed by Winlogon.

2. Creates and opens two desktops: an application desktop (\Windows\WinSta0\Default,
also known as the interactive desktop) and a Winlogon desktop (\Windows\WinSta0\
Winlogon, also known as the secure desktop). The security on the Winlogon desktop is
created so that only Winlogon can access that desktop. The other desktop allows both
Winlogon and users to access them. This arrangement means that any time the Winl-
ogon desktop is active, no other process has access to any active code or data associated
with the desktop. Windows uses this feature to protect the secure operations that
involve passwords and locking and unlocking the desktop.

3. Before anyone logs on to a computer, the visible desktop is Winlogon’s. After a user logs
on, pressing Ctrl+Alt+Delete switches the desktop from Default to Winlogon. (This
explains why all the windows on your interactive desktop seem to disappear when you
press Ctrl+Alt+Delete and then return when you dismiss the Windows Security dialog
box.) Thus, the SAS always brings up a secure desktop controlled by Winlogon.

4. Establishes an LPC connection with Lsass’s LsaAuthenticationPort. This connection will
be used for exchanging information during logon, logoff, and password operations and
is made by calling LsaRegisterLogonProcess.

Winlogon then performs the following Windows operations to set up the window envi-
ronment:

5. It initializes and registers a window class data structure that associates a Winlogon pro-
cedure with the window it subsequently creates.

Chapter 8: Security 529
6. It registers the SAS associating it with the window just created, guaranteeing that
Winlogon’s window procedure is called whenever the user enters the SAS. This measure
prevents Trojan horse programs from gaining control of the screen when the SAS is
entered.

7. It registers the window so that the procedure associated with this window gets called if
a user logs off or if the screen saver times out. The Windows subsystem checks to verify
that the process requesting notification is the Winlogon process.

How SAS Is Implemented
The SAS is secure because no application can intercept the Ctrl+Alt+Delete keystroke
combination or prevent Winlogon from receiving it. Winlogon uses a documented Win-
dows API, RegisterHotKey, to reserve the Ctrl+Alt+Delete key combination so that when-
ever the Windows input system sees the combination, it sends a special message to a
window that Winlogon creates to receive such notifications. The keystrokes that map to
a registered hot key are otherwise not sent to any process other than the one that regis-
tered it, and only the thread that registered a hot key can unregister it (using the Unreg-
isterHotKey API), so a Trojan horse application cannot deregister Winlogon’s ownership
of the SAS.

A Windows function, SetWindowsHook, enables an application to install a hook proce-
dure that’s invoked every time a keystroke is pressed, even before hot keys are pro-
cessed, and it allows the hook to squash keystrokes. However, the Windows hot key
processing code contains a special case for Ctrl+Alt+Delete that disables hooks so that
the keystroke sequence can’t be intercepted. In addition, if the interactive desktop is
locked, only hot keys owned by Winlogon are processed.

Once the Winlogon desktop is created during initialization, it becomes the active desktop.
When the Winlogon desktop is active, it is always locked. Winlogon unlocks its desktop only
to switch to the application desktop or the screen-saver desktop. (Only the Winlogon process
can lock or unlock a desktop.)

User Logon Steps

Logon begins when a user presses the SAS (Ctrl+Alt+Delete). After the SAS is pressed, Win-
logon calls the GINA to obtain a username and password. Winlogon also creates a unique
local logon SID for this user that it assigns to this instance of the desktop (keyboard, screen,
and mouse). Winlogon passes this SID to Lsass as part of the LsaLogonUser call. If the user is
successfully logged on, this SID will be included in the logon process token—a step that pro-
tects access to the desktop. For example, another logon to the same account but on a different
system will be unable to write to the first machine’s desktop because this second logon won’t
be in the first logon’s desktop token.

530 Microsoft Windows Internals, Fourth Edition
When the username and password have been entered, Winlogon retrieves a handle to a pack-
age by calling the Lsass function LsaLookupAuthenticationPackage. Authentication packages
are listed in the Registry under HKLM\SYSTEM\CurrentControlSet\Control\Lsa. Winlogon
passes logon information to the authentication package via LsaLogonUser. Once a package
authenticates a user, Winlogon continues the logon process for that user. If none of the
authentication packages indicates a successful logon, the logon process is aborted.

Windows uses two standard authentication packages for interactive logons: Kerberos and
MSV1_0. The default authentication package on a stand-alone Windows system is MSV1_0
(\Windows\System32\Msv1_0.dll), an authentication package that implements LAN Man-
ager 2 protocol. Lsass also uses MSV1_0 on domain-member computers to authenticate to
pre-Windows 2000 domains and computers that can’t locate a domain controller for
authentication. (Laptop computers that are disconnected from the network fall into this lat-
ter category.) The Kerberos authentication package, \Windows\System32\Kerberos.dll, is
used on computers that are members of Windows domains. The Windows Kerberos pack-
age, with the cooperation of Kerberos services running on a domain controller, supports
version 5, revision 6, of the Kerberos protocol. This protocol is based on Internet RFC 1510.
(Visit the Internet Engineering Task Force [IETF] Web site, www.ietf.org, for detailed infor-
mation on the Kerberos standard.)

The MSV1_0 authentication package takes the username and a hashed version of the pass-
word and sends a request to the local SAM to retrieve the account information, which includes
the password, the groups to which the user belongs, and any account restrictions. MSV1_0
first checks the account restrictions, such as hours or type of accesses allowed. If the user can’t
log on because of the restrictions in the SAM database, the logon call fails and MSV1_0
returns a failure status to the LSA.

MSV1_0 then compares the hashed password and username to that stored by the SAM. In the
case of a cached domain logon, MSV1_0 accesses the cached information by using Lsass func-
tions that store and retrieve “secrets” from the LSA database (the SECURITY hive of the regis-
try). If the information matches, MSV1_0 generates an LUID for the logon session and creates
the logon session by calling Lsass, associating this unique identifier with the session and pass-
ing the information needed to ultimately create an access token for the user. (Recall that an
access token includes the user’s SID, group SIDs, and assigned privileges.)

Note MSV1_0 does not cache a user’s entire password hash in the registry because that
would enable someone with physical access to the system to easily compromise a user’s
domain account and gain access to encrypted files and to network resources the user is autho-
rized to access. Instead, it caches half of the hash. The cached half-hash is sufficient to verify
that user’s password is correct, but it isn’t sufficient to gain access to EFS keys and to authenti-
cate as the user on a domain because these actions require the full hash.

Chapter 8: Security 531
If MSV1_0 needs to authenticate using a remote system, as when a user logs on to a trusted
pre–Windows 2000 domain, MSV1_0 uses the Netlogon service to communicate with an
instance of Netlogon on the remote system. Netlogon on the remote system interacts with the
MSV1_0 authentication package on that system, passing back authentication results to the
system on which the logon is being performed.

The basic control flow for Kerberos authentication is the same as the flow for MSV1_0. However,
in most cases, domain logons are performed from member workstations or servers (rather than
on a domain controller), so the authentication package must communicate across the network
as part of the authentication process. The package does so by communicating via the Kerberos
TCP/IP port (port 88) with the Kerberos service on a domain controller. The Kerberos Key Dis-
tribution Center service (\Windows\System32\Kdcsvc.dll), which implements the Kerberos
authentication protocol, runs in the LSASS process on domain controllers.

After validating hashed username and password information with Active Directory’s user
account objects (using the Active Directory server \Windows\System32\Ntdsa.dll), Kdcsvc
returns domain credentials to LSASS, which returns the result of the authentication and the
user’s domain logon credentials (if the logon was successful) across the network to the system
where the logon is taking place.

Note This description of Kerberos authentication is highly simplified, but it highlights the
roles of the various components involved. Although the Kerberos authentication protocol
plays a key role in distributed domain security in Windows, its details are outside the scope of
this book.

After a logon has been authenticated, LSASS looks in the local policy database for the user’s
allowed access, including interactive, network, batch, or service process. If the requested
logon doesn’t match the allowed access, the logon attempt will be terminated. LSASS deletes
the newly created logon session by cleaning up any of its data structures and then returns fail-
ure to Winlogon, which in turn displays an appropriate message to the user. If the requested
access is allowed, LSASS adds the appropriate additional security IDs (such as Everyone,
Interactive, and the like). It then checks its policy database for any granted privileges for all
the IDs for this user and adds these privileges to the user’s access token.

When LSASS has accumulated all the necessary information, it calls the executive to create the
access token. The executive creates a primary access token for an interactive or service logon
and an impersonation token for a network logon. After the access token is successfully cre-
ated, LSASS duplicates the token, creating a handle that can be passed to Winlogon, and
closes its own handle. If necessary, the logon operation is audited. At this point, LSASS
returns success to Winlogon along with a handle to the access token, the LUID for the logon
session, and the profile information, if any, that the authentication package returned.

532 Microsoft Windows Internals, Fourth Edition
EXPERIMENT: Listing Active Logon Sessions
As long as at least one token exists with a given logon session LUID, Windows considers
the logon session to be active. You can use the LogonSessions tool from www.sysinter-
nals.com, which uses the LsaEnumerateLogonSessions function (documented in the Plat-
form SDK) to list the active logon sessions:

C:\>logonsessions

LogonSessions 1.0

Copyright (C) 2004 Bryce Cogswell

Sysinternals - www.sysinternals.com

[0] Logon session 00000000:000003e7:

User name: AUSTIN\MARKLAP$

Auth package: NTLM

Logon type: (none)

Session: 0

Sid: S-1-5-18

Logon time: 5/13/2004 9:05:43 AM

Logon server:

DNS Domain:

UPN:

[1] Logon session 00000000:0000d37d:

User name:

Auth package: NTLM

Logon type: (none)

Session: 0

Sid: (none)

Logon time: 8/17/2004 5:08:10 PM

Logon server:

DNS Domain:

UPN:

[2] Logon session 00000000:000003e4:

User name: NT AUTHORITY\NETWORK SERVICE

Auth package: Negotiate

Logon type: Service

Session: 0

Sid: S-1-5-20

Logon time: 8/17/2004 5:08:18 PM

Logon server:

DNS Domain:

UPN:

…

[8] Logon session 00000000:0079da73:

User name: MARKLAP\Administrator

Auth package: MICROSOFT_AUTHENTICATION_PACKAGE_V1_0

Logon type: NetworkCleartext

Session: 0

Sid: S-1-5-21-1787744166-3910675280-2727264193-500

Logon time: 5/13/2004 12:14:20 PM

Logon server: MARKLAP

DNS Domain:

UPN:

Information reported for a session includes the SID and name of the user associated
with the session, as well as session’s authentication package and logon time. Note that

Chapter 8: Security 533
the Negotiate authentication package, seen in logon session 2 in the preceding output,
will attempt to authenticate via Kerberos or NTLM, depending on which is most appro-
priate for the authentication request.

The LUID for a session is displayed on the “Logon Session” line of each session block,
and using the Handle utility (also available from www.sysinternals.com), you can find the
tokens that represent a particular logon session. For example, to find the tokens for
logon session 8 in the example output just shown, you could enter this command:

C:\>handle -a 79da73

43c: Token MARKLAP\Administrator:79da73

Winlogon then looks in the registry at the value HKLM\SOFTWARE\Microsoft\Windows
NT\Current Version\Winlogon\Userinit and creates a process to run whatever the value of that
string is. (This value can be several .exes separated by commas). The default value is Userinit.exe,
which loads the user profile and then creates a process to run whatever the value is of
HKCU\SOFTWARE\Microsoft\Windows NT\Current Version\Winlogon\Shell, if that value
exists. That value does not exit by default. If it doesn’t exist, Userinit.exe does the same for
HKLM\SOFTWARE\Microsoft\Windows NT\Current Version\Winlogon\Shell, which
defaults to Explorer.exe. Userinit then exits (which is why Explorer.exe shows up as having
no parent when examined in Process Explorer). For more information on the steps followed
during the user logon process, see Chapter 5.

Software Restriction Policies
Malicious code such as viruses and worms have become an increasing problem. Windows XP
introduced a mechanism called Software Restriction Policies that enables administrators to
control what images and scripts execute on their systems. The Software Restriction Policies
node of the Security Policy Editor, shown in Figure 8-11, serves as the management interface
for a machine’s code execution policies, although per-user policies are also possible using
domain group policies.

Figure 8-11 Software Restriction Policy configuration

534 Microsoft Windows Internals, Fourth Edition
Several global policy settings appear beneath the Software Restriction Policies node.

■ The Enforcement policy configures whether restriction policies apply to libraries, such as
DLLs, and whether policies apply to users only or to administrators as well.

■ The Designated File Types policy records the extensions for files that are considered exe-
cutable code.

■ Trusted Publishers control who can select which certificate publishers are trusted.

When configuring a policy for a particular script or image, an administrator can direct the sys-
tem to recognize it using its path, its hash, its Internet Zone (as defined by Internet Explorer)
or its cryptographic certificate, and she can specify whether it is associated with the Disal-
lowed or Unrestricted security policy.

Enforcement of Software Restriction Policies takes place within various components where
files are treated as containing executable code. Some of these components are listed here:

■ The user-mode Windows CreateProcess function in \Windows\System32\Kernel32.dll
enforces it for executable images.

■ The DLL loading code of Ntdll (\Windows\System32\Ntdll.dll) enforces it for DLLs.

■ The Windows command prompt (\Windows\System32\Cmd.exe) enforces it for batch
file execution.

■ Windows Scripting Host components that start scripts—\Windows\System32\
Cscript.exe (for command-line scripts), \Windows\System32\Wscript.exe (for UI
scripts), and \Windows\System32\Scrobj.dll (for script objects)—enforce it for script
execution.

Each of these components determines whether the restriction policies are enabled by reading
the Registry value HKEY_LOCAL_MACHINE\Software\Microsoft\Policies\Windows\Safer\
CodeIdentifiers\TransparentEnabled, which if set to 1, indicates that policies are in effect.
Then it determines whether the code it’s about to execute matches one of the rules specified
in a subkey of the CodeIdentifiers key, and if so, whether or not the execution should be
allowed. If there is no match, the default policy, as specified in the DefaultLevel value of the
CodeIdentifiers key, determines whether the execution is allowed.

Software Restriction Policies are a powerful tool for preventing the unauthorized access of
code and scripts, but only if properly applied. Unless the default policy is set to disallow exe-
cution, a user can make minor changes to an image that’s been marked as disallowed so that
he can bypass the rule and execute it. For example, a user can change an innocuous byte of a
process image so that a hash rule fails to recognize it or copy a file to a different location to
avoid a path-based rule.

Chapter 8: Security 535
EXPERIMENT: Watching Software Restriction Policy Enforcement
You can indirectly see Software Restriction Policies being enforced by watching accesses
to the Registry when you attempt to execute an image that you’ve disallowed.

1. Run secpol.msc to open the Local Security Policy Editor, and navigate to the Soft-
ware Restriction Policies node.

2. Choose Create New Policies from the context menu if no policies are defined.

3. Create a path-based disallow restriction policy for \Windows\System32\
Notepad.exe.

4. Run Regmon, and set an include filter for “Safer.” (See Chapter 4 for a description
of Regmon.)

5. Open a command prompt, and run Notepad from the prompt.

Your attempt to run Notepad should result in a message telling you that you cannot exe-
cute the specified program, and Regmon should show the command prompt (cmd.exe)
querying the local machine restriction policies.

Conclusion
Windows provides an extensive array of security functions that meet the key requirements of
both government agencies and commercial installations. In this chapter, we’ve taken a brief
tour of the internal components that are the basis of these security features.

In the next chapter, we’ll look at the last major executive component considered in this book:
the I/O system.

Chapter 9

I/O System

The Microsoft Windows I/O system consists of several executive components that together
manage hardware devices and provide interfaces to hardware devices for applications and the
system. In this chapter, we’ll first list the design goals of the I/O system, which have influenced
its implementation. We’ll then cover the components that make up the I/O system, including
the I/O manager, Plug and Play (PnP) manager, and power manager. Then we’ll examine the
structure and components of the I/O system and the various types of device drivers. We’ll look
at the key data structures that describe devices, device drivers, and I/O requests, after which
we’ll describe the steps necessary to complete I/O requests as they move through the system.
Finally, we’ll present the way device detection, driver installation, and power management work.

I/O System Components
The design goals for the Windows I/O system are to provide an abstraction of devices, both
hardware (physical) and software (virtual or logical), to applications with the following fea-
tures:

■ Uniform security and naming across devices to protect shareable resources. (See
Chapter 8 for a description of the Windows security model.)

■ High performance asynchronous packet-based I/O to allow for the implementation of
scalable applications.

■ Services that allow drivers to be written in a high-level language and easily ported
between different machine architectures.

■ Layering and extensibility to allow for the addition of drivers that transparently modify
the behavior of other drivers or devices, without requiring any changes to the driver
whose behavior or device is modified.

■ Dynamic loading and unloading of device drivers so that drivers can be loaded on-
demand and not consume system resources when unneeded.

■ Support for Plug and Play where the system locates and installs drivers for newly
detected hardware and then assigns them hardware resources they require.

■ Support for power management so that the system or individual devices can enter low
power states.
537

538 Microsoft Windows Internals, Fourth Edition
■ Support for multiple installable file systems, including FAT, the CD-ROM file system
(CDFS), the Universal Disk Format (UDF) file system, and the Windows file system
(NTFS). (See Chapter 12 for more specific information on file system types and architec-
ture.)

■ Windows Management Instrumentation support and diagnosability so that drivers can
be managed and monitored through WMI applications and scripts. (WMI is described
in Chapter 4.)

To implement these features the Windows I/O system consists of several executive compo-
nents as well as device drivers, which are shown in Figure 9-1.

■ The I/O manager is the heart of the I/O system; it connects applications and system
components to virtual, logical, and physical devices; and it defines the infrastructure
that supports device drivers.

■ A device driver typically provides an I/O interface for a particular type of device. Device
drivers receive commands routed to them by the I/O manager that are directed at
devices they manage, and they inform the I/O manager when those commands com-
plete. Device drivers often use the I/O manager to forward I/O commands to other
device drivers that share in the implementation of a device’s interface or control.

■ The PnP manager works closely with the I/O manager and a type of device driver called
a bus driver to guide the allocation of hardware resources as well as to detect and
respond to the arrival and removal of hardware devices. The PnP manager and bus driv-
ers are responsible for loading a device’s driver when the device is detected. When a
device is added to a system that doesn’t have an appropriate device driver, the executive
Plug and Play component calls on the device installation services of a user-mode PnP
manager.

■ The power manager also works closely with the I/O manager to guide the system, as
well as individual device drivers, through power-state transitions.

■ Windows Management Instrumentation (WMI) support routines, called the Windows
Driver Model (WDM) WMI provider, allow device drivers to indirectly act as providers,
using the WDM WMI provider as an intermediary to communicate with the WMI ser-
vice in user mode. (For more information on WMI, see the section “Windows Manage-
ment Instrumentation” in Chapter 4.)

■ The registry serves as a database that stores a description of basic hardware devices
attached to the system as well as driver initialization and configuration settings. (See the
“The Registry” section in Chapter 4 for more information.)

Chapter 9: I/O System 539
Figure 9-1 I/O system components

■ INF files, which are designated by the .inf extension, are driver installation files. INF
files are the link between a particular hardware device and the driver that assumes pri-
mary control of the device. They are made up of scriptlike instructions describing the
device they correspond to, the source and target locations of driver files, required driver-
installation registry modifications, and driver dependency information. Digital signa-
tures that Windows uses to verify that a driver file has passed testing by the Microsoft
Windows Hardware Quality Lab (WHQL) are stored in .cat files.

■ The hardware abstraction layer (HAL) insulates drivers from the specifics of the proces-
sor and interrupt controller by providing APIs that hide differences between platforms.
In essence, the HAL is the bus driver for all the devices on the computer’s motherboard
that aren’t controlled by other drivers.

The I/O Manager

The I/O manager is the core of the I/O system because it defines the orderly framework, or model,
within which I/O requests are delivered to device drivers. The I/O system is packet driven. Most
I/O requests are represented by an I/O request packet (IRP), which travels from one I/O system
component to another. (As you’ll discover in “Fast I/O”, fast I/O is the exception; it doesn’t use
IRPs.) The design allows an individual application thread to manage multiple I/O requests

Windows
services

Applications

WMI
service

User-mode
PnP manager

User mode

Kernel mode

.inf files,
.cat files,
registry

I/O
manager

Power
manager

PnP
manager

WDM WMI
routines

I/O system

Drivers

HAL

. . .

Setup
components

540 Microsoft Windows Internals, Fourth Edition
concurrently. An IRP is a data structure that contains information completely describing an I/O
request. (You’ll find more information about IRPs in the section “I/O Request Packets.”)

The I/O manager creates an IRP that represents an I/O operation, passing a pointer to the IRP
to the correct driver and disposing of the packet when the I/O operation is complete. In con-
trast, a driver receives an IRP, performs the operation the IRP specifies, and passes the IRP
back to the I/O manager, either for completion or to be passed on to another driver for further
processing.

In addition to creating and disposing of IRPs, the I/O manager supplies code that is common
to different drivers and that the drivers call to carry out their I/O processing. By consolidating
common tasks in the I/O manager, individual drivers become simpler and more compact. For
example, the I/O manager provides a function that allows one driver to call other drivers. It
also manages buffers for I/O requests, provides timeout support for drivers, and records
which installable file systems are loaded into the operating system. There are close to a hun-
dred different routines in the I/O manager that can be called by device drivers.

The I/O manager also provides flexible I/O services that allow environment subsystems, such
as Windows and POSIX, to implement their respective I/O functions. These services include
sophisticated services for asynchronous I/O that allow developers to build scalable high-per-
formance server applications.

The uniform, modular interface that drivers present allows the I/O manager to call any driver
without requiring any special knowledge of its structure or internal details. The operating sys-
tem treats all I/O requests as if they were directed at a file; the driver converts the requests
from requests made to a virtual file to hardware-specific requests. Drivers can also call each
other (using the I/O manager) to achieve layered, independent processing of an I/O request.

Besides providing the normal open, close, read, and write functions, the Windows I/O system
provides several advanced features, such as asynchronous, direct, buffered, and scatter/gather
I/O, which are described in the “Types of I/O” section later in this chapter.

Typical I/O Processing

Most I/O operations don’t involve all the components of the I/O system. A typical I/O request
starts with an application executing an I/O-related function (for example, reading data from a
device) that is processed by the I/O manager, one or more device drivers, and the HAL.

As just mentioned, in Windows, threads perform I/O on virtual files. The operating system
abstracts all I/O requests as operations on a virtual file, hiding the fact that the target of an
I/O operation might not be a file-structured device. This abstraction generalizes an applica-
tion’s interface to devices. A virtual file refers to any source or destination for I/O that is
treated as if it were a file (such as files, directories, pipes, and mailslots). All data that is read
or written is regarded as a simple stream of bytes directed to these virtual files. User-mode

Chapter 9: I/O System 541
applications (whether Windows or POSIX) call documented functions, which in turn call
internal I/O system functions to read from a file, write to a file, and perform other operations.
The I/O manager dynamically directs these virtual file requests to the appropriate device
driver. Figure 9-2 illustrates the basic structure of a typical I/O request flow.

Figure 9-2 The flow of a typical I/O request

In the following sections, we’ll be looking at these components more closely, examining cov-
ering the various types of device drivers, how they are structured, how they load and initialize,
and how they process I/O requests. Then we’ll cover the operation and roles of the PnP man-
ager and the power manager.

Device Drivers
To integrate with the I/O manager and other I/O system components, a device driver must
conform to implementation guidelines specific to the type of device it manages and the role it
plays in managing the device. In this section, we’ll look at the types of device drivers Windows
supports as well as the internal structure of a device driver.

Types of Device Drivers

Windows supports a wide range of device driver types and programming environments. Even
within a type of device driver, programming environments can differ, depending on the spe-
cific type of device for which a driver is intended. The broadest classification of a driver is

User-mode API

I/O system services API
(Ntxxx)

I/O manager (Ioxxx)

Kernel-mode
device drivers

HAL I/O access routines

Driver
support
routines

(Io, Ex, Ke,
Mm, Hal,

FsRtl,
and so on)

I/O ports and registers

542 Microsoft Windows Internals, Fourth Edition
whether it is a user-mode or kernel-mode driver. Windows supports several types of user-
mode drivers:

■ Virtual device drivers (VDDs) are used to emulate 16-bit MS-DOS applications. They trap
what an MS-DOS application thinks are references to I/O ports and translate them into
native Windows I/O functions, which are then passed to the actual device driver.
Because Windows is a fully protected operating system, user-mode MS-DOS applica-
tions can’t access hardware directly and thus must go through a real kernel-mode device
driver.

■ Windows subsystem printer drivers translate device-independent graphics requests to
printer-specific commands. These commands are then typically forwarded to a kernel-
mode port driver such as the parallel port driver (Parport.sys) or the universal serial bus
(USB) printer port driver (Usbprint.sys).

In this chapter, the focus is on kernel-mode device drivers. There are many types of kernel-
mode drivers, which can be divided into the following basic categories:

■ File system drivers accept I/O requests to files, and satisfy the requests by issuing their
own, more explicit requests to mass storage or network device drivers.

■ Plug and Play drivers work with hardware and integrate with the Windows power man-
ager and PnP manager. They include drivers for mass storage devices, video adapters,
input devices and network adapters.

■ Non–Plug and Play drivers, also called kernel extensions, extend the functionality of the
system by providing user-mode access to kernel-mode services and drivers. They do not
integrate with the PnP or power managers. Examples include network API and protocol
drivers. Regmon’s driver, described in Chapter 4, is also an example.

Within the category of kernel-mode drivers are further classifications based on the driver
model that the driver adheres to and its role in servicing device requests.

WDM Drivers

WDM drivers are device drivers that adhere to the Windows Driver Model (WDM). WDM
includes support for Windows power management, Plug and Play, and WMI, and most Plug
and Play drivers adhere to WDM. WDM is implemented on Windows, Windows 98, and Win-
dows Millennium Edition, so WDM drivers are source-compatible between these operating
systems and in many cases are also binary compatible. There are three types of WDM drivers:

■ Bus drivers manage a logical or physical bus. Examples of buses include PCMCIA, PCI,
USB, IEEE 1394, and ISA. A bus driver is responsible for detecting and informing the
PnP manager of devices attached to the bus it controls as well as managing the power
setting of the bus.

Chapter 9: I/O System 543
■ Function drivers manage a particular type of device. Bus drivers present devices to func-
tion drivers via the PnP manager. The function driver is the driver that exports the oper-
ational interface of the device to the operating system. In general, it’s the driver with the
most knowledge about the operation of the device.

■ Filter drivers logically layer above or below function drivers, augmenting or changing the
behavior of a device or another driver. For example, a keyboard capture utility could be
implemented with a keyboard filter driver that layers above the keyboard function driver.

In WDM, no one driver is responsible for controlling all aspects of a particular device. The bus
driver is responsible for detecting bus membership changes (device addition or removal),
assisting the PnP manager in enumerating the devices on the bus, accessing bus-specific con-
figuration registers, and in some cases, controlling power to devices on the bus. The function
driver is generally the only driver that accesses the device’s hardware.

Note The role of the HAL in Windows 2000, Windows XP, and Windows Server 2003 differs
from the role it had in Windows NT. Prior to Windows 2000, third-party hardware vendors that
wanted to add support for hardware buses not natively supported had to implement a custom
HAL. Windows 2000, Windows XP, and Windows Server 2003 allow third parties to implement
a bus driver to provide support for hardware buses not natively supported.

Layered Drivers

Support for an individual piece of hardware is often divided among several drivers, each pro-
viding a part of the functionality required to make the device work properly. In addition to
WDM bus drivers, function drivers, and filter drivers, hardware support might be split
between the following components:

■ Class drivers implement the I/O processing for a particular class of devices, such as disk,
tape, or CD-ROM, where the hardware interfaces have been standardized and so one
driver can serve devices from a wide variety of manufacturers.

■ Port drivers implement the processing of an I/O request specific to a type of I/O port,
such as SCSI, and are implemented as kernel-mode libraries of functions rather than
actual device drivers.

■ Miniport drivers map a generic I/O request to a type of port into an adapter type, such as
a specific SCSI adapter. Miniport drivers are actual device drivers that import the func-
tions supplied by a port driver.

An example will help demonstrate how device drivers work. A file system driver accepts a
request to write data to a certain location within a particular file. It translates the request into
a request to write a certain number of bytes to the disk at a particular “logical” location. It then
passes this request (via the I/O manager) to a simple disk driver. The disk driver, in turn,

544 Microsoft Windows Internals, Fourth Edition
translates the request into a physical location (cylinder/track/sector) on the disk and manip-
ulates the disk heads to write the data. This layering is illustrated in Figure 9-3.

This figure illustrates the division of labor between two layered drivers. The I/O manager
receives a write request that is relative to the beginning of a particular file. The I/O manager
passes the request to the file system driver, which translates the write operation from a file-rel-
ative operation to a starting location (a sector boundary on the disk) and a number of bytes to
read. The file system driver calls the I/O manager to pass the request to the disk driver, which
translates the request to a physical disk location and transfers the data.

Figure 9-3 Layering of a file system driver and a disk driver

Because all drivers—both device drivers and file system drivers—present the same framework
to the operating system, another driver can easily be inserted into the hierarchy without alter-
ing the existing drivers or the I/O system. For example, several disks can be made to seem like
a very large single disk by adding a driver. Such a driver exists in Windows to provide fault-tol-
erant disk support. (Whereas the driver is present on all versions of Windows, fault-tolerant

Environment
subsystem

or DLL

NtWriteFile(file_handle, char_buffer)

System services

User mode

Kernel mode

Write data at specified
byte offset within a file

Translate file-relative byte
offset into volume-relative
byte offset and call next
driver (via I/O manager)

Call driver to write data
at volume-relative byte offset

I/O
managerFile system

driver

Disk driver

2

3

1

4

Translate volume-relative byte
offset into disk-relative offset
and disk offset to physical
location and transfer data

5

Chapter 9: I/O System 545
disk support is available only on Windows Server versions.) This logical, volume manager
driver is located between the file system and the disk drivers, as shown in Figure 9-4. Volume
manager drivers are described in more detail in Chapter 10.

Figure 9-4 Adding a layered driver

Environment
subsystem

or DLL

NtWriteFile(file_handle, char_buffer)

System services

User mode

Kernel mode

Write data at specified
byte offset within a file

Translate file-relative byte
offset into volume-relative
byte offset and call next
driver (via I/O manager)

Translate volume-relative
byte offset into disk
number and offset, and
call next driver (via I/O
manager)"

I/O
managerFile system

driver

Disk driver

Volume
manager disk

driver

Call driver to write data at
volume-relative byte offset

Translate disk-relative byte offset into physical
location on disk 3 and transfer data

1 2 3

2

3

1

4

5

Call next driver to write
data to disk 3 at disk-
relative byte offset

6

7

546 Microsoft Windows Internals, Fourth Edition
EXPERIMENT: Viewing the Loaded Driver List
You can see a list of registered drivers on a Windows 2000 system by going to the Driv-
ers section of the Computer Management Microsoft Management Console (MMC) snap-
in or by right-clicking the My Computer icon on the desktop and selecting Manage from
the context menu. (The Computer Management snap-in is in the Programs/Administra-
tive Tools folder of the Start menu.) Navigate to the Drivers section within Computer
Management by expanding System Tools, System Information, Software Environment
and selecting Drivers, as shown here:

In Windows XP and Windows Server 2003, you can obtain the identical information as
reported by the Windows 2000 Computer Management MMC snap-in by executing the
Msinfo32.exe utility from the Run dialog box of the Start menu. Select the System Driv-
ers entry under Software Environment to see the list of drivers configured on the sys-
tem. Those that are loaded have the text “Yes” in the Started column.

You can also view the list of loaded kernel-mode drivers with Process Explorer from
www.sysinternals.com. Run Process Explorer, select the System process, and select DLLs
from the Lower Pane menu entry in the View menu. Process Explorer lists the loaded
drivers, their names, version information including company and description, and load
address (assuming you have configured Process Explorer to display the corresponding
columns):

Chapter 9: I/O System 547
Finally, if you’re looking at a crash dump (or live system) with the kernel debugger, you
can get a similar display with the kernel debugger lm kv command:

kd> lm kv

start end module name

804d4000 806aa280 nt (pdb symbols) c:\Symbols\ntoskrnl.pdb\

FB1EDACE71FB4812A5D5132819D72E523\ntoskrnl.pdb

Loaded symbol image file: ntoskrnl.exe

Image path: ntoskrnl.exe

Timestamp: Thu Apr 24 10:57:43 2003 (3EA80977) Checksum: 001E311B

ImageSize : 001D6280

File version: 5.1.2600.1151

Product version: 5.1.2600.1151

File flags: 0 (Mask 3F)

File OS: 40004 NT Windows

File type: 1.0 App

File date: 00000000.00000000

Translations: 0409.04b0

CompanyName: Microsoft Corporation

ProductName: Microsoft" Windows« Operating System

InternalName: ntoskrnl.exe

OriginalFilename: ntoskrnl.exe

ProductVersion: 5.1.2600.1151

FileVersion: 5.1.2600.1151 (xpsp2.030422-1633)

FileDescription: NT Kernel & System

LegalCopyright: Microsoft Corporation. All rights reserved.

548 Microsoft Windows Internals, Fourth Edition
806ab000 806bde80 hal (deferred)

Image path: halacpi.dll

Timestamp: Thu Aug 29 03:05:02 2002 (3D6DD5AE) Checksum: 000203BD

ImageSize : 00012E80

Translations: 0000.04b0 0000.04e0 0409.04b0 0409.04e0

a8b8e000 a8bb4e80 kmixer (deferred)

Image path: \SystemRoot\system32\drivers\kmixer.sys

Timestamp: Thu Aug 29 03:32:28 2002 (3D6DDC1C) Checksum: 00032574

ImageSize : 00026E80

Translations: 0000.04b0 0000.04e0 0409.04b0 0409.04e0

Structure of a Driver

The I/O system drives the execution of device drivers. Device drivers consist of a set of rou-
tines that are called to process the various stages of an I/O request. Figure 9-5 illustrates the
key driver-function routines.

Figure 9-5 Primary device driver routines

■ An initialization routine The I/O manager executes a driver’s initialization routine,
which is typically named DriverEntry, when it loads the driver into the operating system.
The routine fills in system data structures to register the rest of the driver’s routines with
the I/O manager and performs any global driver initialization that’s necessary.

■ An add-device routine A driver that supports Plug and Play implements an add-device
routine. The PnP manager sends a driver notification via this routine whenever a device
for which the driver is responsible is detected. In this routine, a driver typically allocates
a device object (described later in this chapter) to represent the device.

Dispatch
routines

Start I/O
routine

Interrupt
service
routine

Add-device
routine

Initialization
routine

DPC routine

I/O
system

...

Chapter 9: I/O System 549
■ A set of dispatch routines Dispatch routines are the main functions that a device
driver provides. Some examples are open, close, read, and write and any other capabil-
ities the device, file system, or network supports. When called on to perform an I/O
operation, the I/O manager generates an IRP and calls a driver through one of the
driver’s dispatch routines.

■ A start I/O routine The driver can use a start I/O routine to initiate a data transfer to or
from a device. This routine is defined only in drivers that rely on the I/O manager to
queue its incoming I/O requests. The I/O manager serializes IRPs for a driver by ensur-
ing that the driver processes only one IRP at a time. Most drivers process multiple IRPs
concurrently, but serialization makes sense for some drivers, such as a keyboard driver.

■ An interrupt service routine (ISR) When a device interrupts, the kernel’s interrupt dis-
patcher transfers control to this routine. In the Windows I/O model, ISRs run at device
interrupt request level (DIRQL), so they perform as little work as possible to avoid block-
ing lower-level interrupts unnecessarily. (See Chapter 3 for more information on IRQLs.)
An ISR queues a deferred procedure call (DPC), which runs at a lower IRQL (DPC/dis-
patch level), to execute the remainder of interrupt processing. (Only drivers for interrupt-
driven devices have ISRs; a file system driver, for example, doesn’t have one.)

■ An interrupt-servicing DPC routine A DPC routine performs most of the work involved
in handling a device interrupt after the ISR executes. The DPC routine executes at a
lower IRQL (DPC/dispatch level) than that of the ISR, which runs at device level, to
avoid blocking other interrupts unnecessarily. A DPC routine initiates I/O completion
and starts the next queued I/O operation on a device.

Although the following routines aren’t shown in Figure 9-5, they’re found in many types of
device drivers:

■ One or more I/O completion routines A layered driver might have I/O completion rou-
tines that will notify it when a lower-level driver finishes processing an IRP. For example,
the I/O manager calls a file system driver’s I/O completion routine after a device driver
finishes transferring data to or from a file. The completion routine notifies the file sys-
tem driver about the operation’s success, failure, or cancellation, and it allows the file
system driver to perform cleanup operations.

■ A cancel I/O routine If an I/O operation can be canceled, a driver can define one or
more cancel I/O routines. When the driver receives an IRP for an I/O request that can be
canceled, it assigns a cancel routine to the IRP. If a thread that issues an I/O request exits
before the request is completed or cancels the operation (with the CancelIo Windows
function, for example), the I/O manager executes the IRP’s cancel routine if one is
assigned to it. A cancel routine is responsible for performing whatever steps are neces-
sary to release any resources acquired during the processing that has already taken
place for the IRP as well as completing the IRP with a canceled status.

550 Microsoft Windows Internals, Fourth Edition
■ An unload routine An unload routine releases any system resources a driver is using so
that the I/O manager can remove them from memory. Any resources acquired in the ini-
tialization routine are usually released in the unload routine. A driver can be loaded and
unloaded while the system is running.

■ A system shutdown notification routine This routine allows driver cleanup on system
shutdown.

■ Error-logging routines When unexpected errors occur (for example, when a disk block
goes bad), a driver’s error-logging routines note the occurrence and notify the I/O man-
ager. The I/O manager writes this information to an error log file.

Note Most device drivers are written in C. Use of assembly language is highly discouraged
because of the complexity it introduces and its effect of making a driver difficult to port
between hardware architectures such as the x86, x64, and IA64.

Driver Objects and Device Objects

When a thread opens a handle to a file object (described in the “I/O Processing” section later
in this chapter), the I/O manager must determine from the file object’s name which driver (or
drivers) it should call to process the request. Furthermore, the I/O manager must be able to
locate this information the next time a thread uses the same file handle. The following system
objects fill this need:

■ A driver object represents an individual driver in the system. The I/O manager obtains the
address of each of the driver’s dispatch routines (entry points) from the driver object.

■ A device object represents a physical or logical device on the system and describes its
characteristics, such as the alignment it requires for buffers and the location of its device
queue to hold incoming IRPs.

The I/O manager creates a driver object when a driver is loaded into the system, and it then
calls the driver’s initialization routine (for example, DriverEntry), which fills in the object
attributes with the driver’s entry points.

After loading, a driver can create device objects to represent devices, or even an interface to the
driver, at any time by calling IoCreateDevice or IoCreateDeviceSecure. However, most Plug and
Play drivers create devices with their add-device routine when the PnP manager informs them of
the presence of a device for them to manage. Non–Plug and Play drivers, on the other hand, usu-
ally create device objects when the I/O manager invokes their initialization routine. The I/O
manager unloads a driver when its last device object has been deleted and no references to the
device remain.

Chapter 9: I/O System 551
When a driver creates a device object, the driver can optionally assign the device a name. A
name places the device object in the object manager namespace, and a driver can either explic-
itly define a name or let the I/O manager autogenerate one. (The object manager namespace
is described in Chapter 3.) By convention, device objects are placed in the \Device directory in
the namespace, which is inaccessible by applications using the Windows API.

Note Some drivers place device objects in directories other than \Device. For example, the
Windows Logical Disk Manager volume manager creates device objects that represent disk
partitions in the \Device\HarddiskDmVolumes directory. See Chapter 10 for a description of
storage architecture, including the way storage drivers use device objects.

If a driver needs to make it possible for applications to open the device object, it must create
a symbolic link in the \Global?? directory (or \?? on Windows 2000) to the device object’s
name in the \Device directory. (See Chapter 3 for more information on \??.) Non–Plug and
Play and file system drivers typically create a symbolic link with a well-known name (for
example, \Device\Hardware2). Because well-known names don’t work well in an environ-
ment in which hardware appears and disappears dynamically, PnP drivers expose one or
more interfaces by calling the IoRegisterDeviceInterface function, specifying a GUID (globally
unique identifier) that represents the type of functionality exposed. GUIDs are 128-bit values
that you can generate by using a tool included with the DDK and the Platform SDK, called
Guidgen. Given the range of values that 128 bits represents, it’s statistically almost certain that
each GUID that Guidgen creates will be forever and globally unique.

IoRegisterDeviceInterface determines the symbolic link that is associated with a device
instance; however, a driver must call IoSetDeviceInterfaceState to enable the interface to the
device before the I/O manager actually creates the link. Drivers usually do this when the PnP
manager starts the device by sending the driver a start-device command.

An application wanting to open a device object represented with a GUID can call Plug and
Play setup functions in user space, such as SetupDiEnumDeviceInterfaces, to enumerate the
interfaces present for a particular GUID and to obtain the names of the symbolic links it can
use to open the device objects. For each device reported by SetupDiEnumDeviceInterfaces, an
application executes SetupDiGetDeviceInterfaceDetail to obtain additional information about
the device, such as its autogenerated name. After obtaining a device’s name from SetupDiGet-
DeviceInterfaceDetail, the application can execute the Windows function CreateFile to open the
device and obtain a handle.

552 Microsoft Windows Internals, Fourth Edition
EXPERIMENT: Looking at the \Device Directory
You can use the Winobj tool from www.sysinternals.com or the !object kernel debugger
command to view the device names under \Device in the object manager namespace.
The following screen shot shows an I/O manager–assigned symbolic link that points to
a device object in \Device with an autogenerated name:

When you run the !object kernel debugger command and specify the \Device directory,
you should see output similar to the following:

kd> !object \device

Object: e100c4a0 Type: (8a4f3178) Directory

ObjectHeader: e100c488

HandleCount: 0 PointerCount: 301

Directory Object: e10011e8 Name: Device

65535 symbolic links snapped through this directory

Hash Address Type Name

---- ------- ---- ----

00 8a437398 Device KsecDD

8a4a56f0 Device Ndis

8a0ed5c0 Device ProcExp

8a1ddb40 Device Beep

8a336d38 Device 0000008e

8a4ed730 Device 00000032

8a4ee4f0 Device 00000025

8a4b5030 Device 00000019

Chapter 9: I/O System 553
01 8a2303e8 Device Netbios

8a258030 Device 0000008f

8a4ed4f0 Device 00000033

8a4ee2b0 Device 00000026

02 8a1756d8 Device KSENUM#00000001

8a4ec730 Device 00000040

8a20fd58 Device Ip

8a2ef660 Device RDP_CONSOLE0

8a4ed2b0 Device 00000034

8a4b4030 Device 00000027

03 8a4ec4f0 Device 00000041

8a15bf18 Device 0000009e

8a2947d8 Device {EFF45047-C948-4D32-86B5-736480DDBB9C}

8a1b38e0 Device Fips

8a0b6038 Device Video0

8a288b48 Device RDP_CONSOLE1

8a2501f8 Device KeyboardClass0

8a4b3030 Device 00000035

8a4b4df0 Device 00000028

04 8a181030 Device NDProxy

8a4ec2b0 Device 00000042

8a00b038 Device Video1

8a189030 Device KeyboardClass1

§

When you execute !object and specify an object manager directory object, the kernel
debugger dumps the contents of the directory according to the way the object manager
organizes it internally. For fast lookups, a directory stores objects in a hash table based
on a hash of the object names, so the output shows the objects stored in each bucket of
the directory’s hash table.

As Figure 9-6 illustrates, a device object points back to its driver object, which is how the I/O
manager knows which driver routine to call when it receives an I/O request. It uses the device
object to find the driver object representing the driver that services the device. It then indexes
into the driver object by using the function code supplied in the original request; each func-
tion code corresponds to a driver entry point. (The function codes shown in Figure 9-6 are
described in the section “IRP Stack Locations” later in this chapter.)

A driver object often has multiple device objects associated with it. The list of device objects
represents the physical and logical devices that the driver controls. For example, each parti-
tion of a hard disk has a separate device object that contains partition-specific information.
However, the same hard disk driver is used to access all partitions. When a driver is unloaded
from the system, the I/O manager uses the queue of device objects to determine which
devices will be affected by the removal of the driver.

554 Microsoft Windows Internals, Fourth Edition
Figure 9-6 The driver object

EXPERIMENT: Displaying Driver and Device Objects
You can display driver and device objects with the kernel debugger !drvobj and !devobj
commands, respectively. In the following example, the driver object for the keyboard
class driver is examined, and its lone device object viewed:

kd> !drvobj kbdclass

Driver object (81869cb0) is for:

\Driver\Kbdclass

Driver Extension List: (id , addr)

Device Object list: 81869310

kd> !devobj 81869310

Device object (81869310) is for:

KeyboardClass0 \Driver\Kbdclass DriverObject 81869cb0

Current Irp a57a0e90 RefCount 0 Type 0000000b Flags 00002044

DevExt 818693c8 DevObjExt 818694b8

ExtensionFlags (0000000000) AttachedDevice (Upper) 818691e0 \Driver\Ctrl2cap

AttachedTo (Lower) 81869500 \Driver\i8042prt

Device queue is busy -- Queue empty.

Notice that the !devobj command also shows you the addresses and names of any device
objects that the object you’re viewing is layered over (the AttachedTo line) as well as the
device objects layered on top of the object specified (the AttachedDevice line).

Driver object

Function
code 1

Function
code 2

Function
code n

Read

Write

Device control

Start I/O

Unload

Cancel

Device
object

Device
object

Device
object

(Disk) (Disk
partition)

(Disk
partition)

Devices
operated by
this driver

.

.

.

.

.

.

.

.

.

Chapter 9: I/O System 555
Using objects to record information about drivers means that the I/O manager doesn’t need
to know details about individual drivers. The I/O manager merely follows a pointer to locate
a driver, thereby providing a layer of portability and allowing new drivers to be loaded easily.
Representing devices and drivers with different objects also makes it easy for the I/O system
to assign drivers to control additional or different devices if the system configuration changes.

Opening Devices

File objects are the kernel-mode constructs for handles to files or devices. File objects clearly
fit the criteria for objects in Windows: they are system resources that two or more user-mode
processes can share, they can have names, they are protected by object-based security, and
they support synchronization. Although most shared resources in Windows are memory-
based resources, most of those that the I/O system manages are located on physical devices or
represent actual physical devices. Despite this difference, shared resources in the I/O system,
like those in other components of the Windows executive, are manipulated as objects. (See
Chapter 3 for a description of the object manager and Chapter 8 for information on object
security.)

File objects provide a memory-based representation of resources that conform to an I/O-cen-
tric interface, in which they can be read from or written to. Table 9-1 lists some of the file
object’s attributes. For specific field declarations and sizes, see the structure definition for
FILE_OBJECT in Ntddk.h.

Table 9-1 File Object Attributes

Attribute Purpose

Filename Identifies the physical file that the file object
refers to

Current byte offset Identifies the current location in the file (valid
only for synchronous I/O)

Share modes Indicate whether other callers can open the
file for read, write, or delete operations while
the current caller is using it

Open mode flags Indicate whether I/O will be synchronous or
asynchronous, cached or noncached, sequen-
tial or random, and so on

Pointer to device object Indicates the type of device the file resides on

Pointer to the volume parameter block (VPB) Indicates the volume, or partition, that the file
resides on

Pointer to section object pointers Indicates a root structure that describes a
mapped file

Pointer to private cache map Identifies which parts of the file are cached by
the cache manager and where they reside in
the cache

556 Microsoft Windows Internals, Fourth Edition
EXPERIMENT: Viewing the File Object Data Structure
You can view the contents of the kernel-mode file object data structure with the kernel-
debuggers dt command:

kd> dt nt!_file_object

nt!_FILE_OBJECT

+0x000 Type : Int2B

+0x002 Size : Int2B

+0x004 DeviceObject : Ptr32 _DEVICE_OBJECT

+0x008 Vpb : Ptr32 _VPB

+0x00c FsContext : Ptr32 Void

+0x010 FsContext2 : Ptr32 Void

+0x014 SectionObjectPointer : Ptr32 _SECTION_OBJECT_POINTERS

+0x018 PrivateCacheMap : Ptr32 Void

+0x01c FinalStatus : Int4B

+0x020 RelatedFileObject : Ptr32 _FILE_OBJECT

+0x024 LockOperation : UChar

+0x025 DeletePending : UChar

+0x026 ReadAccess : UChar

+0x027 WriteAccess : UChar

+0x028 DeleteAccess : UChar

+0x029 SharedRead : UChar

+0x02a SharedWrite : UChar

+0x02b SharedDelete : UChar

+0x02c Flags : Uint4B

+0x030 FileName : _UNICODE_STRING

+0x038 CurrentByteOffset : _LARGE_INTEGER

+0x040 Waiters : Uint4B

+0x044 Busy : Uint4B

+0x048 LastLock : Ptr32 Void

+0x04c Lock : _KEVENT

+0x05c Event : _KEVENT

+0x06c CompletionContext : Ptr32 _IO_COMPLETION_CONTEXT

When a caller opens a file or a simple device, the I/O manager returns a handle to a file object.
Figure 9-7 illustrates what occurs when a file is opened.

In this example, (1) a C program calls the run-time library function fopen, which in turn (2)
calls the Windows CreateFile function. The Windows subsystem DLL (in this case,
Kernel32.dll) then (3) calls the native NtCreateFile function in Ntdll.dll. The routine in
Ntdll.dll contains the appropriate instruction to cause a transition into kernel mode to the
system service dispatcher, which then (4) calls the real NtCreateFile routine in Ntoskrnl.exe.
(See Chapter 3 for more information about system service dispatching.)

Chapter 9: I/O System 557
Figure 9-7 Opening a file object

Note File objects represent open instances of files, not files themselves. Unlike UNIX sys-
tems, which use vnodes, Windows does not define the representation of a file; Windows system
drivers define their own representations.

Like other executive objects, files are protected by a security descriptor that contains an
access-control list (ACL). The I/O manager consults the security subsystem to determine
whether the file’s ACL allows the process to access the file in the way its thread is requesting.
If it does, (5,6) the object manager grants the access and associates the granted access rights
with the file handle that it returns. If this thread or another thread in the process needs to per-
form additional operations not specified in the original request, the thread must open another
handle, which prompts another security check. (See Chapter 8 for more information about
object protection.)

Windows
application

Windows
subsystem

C
run-time

DLL

Windows
DLL

fp = fopen("D:\myfile.dat", r)

CreateFile("D:\myfile.dat", ...)

NtCreateFile("D:\myfile.dat", ...)

User mode

Kernel mode

System services

Create file object

Object
manager

Security
reference
monitor

Return object handle

Local
procedure
call facility

Virtual
memory
manager

I/O manager

Kernel

File systems
Cache manager

Device drivers

Network
drivers

. . .

2

3

1

4
5

Return file handle6

558 Microsoft Windows Internals, Fourth Edition
EXPERIMENT: Viewing Device Handles
Any process that has an open handle to a device will have a file object in its handle table
corresponding to the open instance. You can view these handles with Process Explorer
from www.sysinternals.com by selecting a process, checking Show Lower Pane in the
View menu and Handles in the Lower Pane View submenu of the View menu. Sort by
the Type column and scroll to where you see the handles that represent file objects,
which are labeled as “File”:

In this example the Csrss process has handles open to file objects that represent open
instances of devices with autogenerated names as well as ones that belong to the Termi-
nal Server Driver. You can look at the specific file object in the kernel debugger by first
identifying the address of the object. The following command reports information on
the highlighted handle (handle value 0xB8) in the preceding screen shot, which is in the
Csrss.exe process that has a process ID of 2332 (0x91c):

0: kd> !handle b8 f 91c

processor number 0

Searching for Process with Cid == 91c

PROCESS 86a6c020 SessionId: 0 Cid: 091c Peb: 7ffde000 ParentCid: 028c

DirBase: 1158a000 ObjectTable: e1b5d080 HandleCount: 643.

Image: csrss.exe

New version of handle table at e2b44000 with 643 Entries in use

00B8: Object: 866ae9e8 GrantedAccess: 0012019f

Object: 866ae9e8 Type: (86fe8ad0) File

ObjectHeader: 866ae9d0

HandleCount: 1 PointerCount: 3

Because the object is a file object, you can get information about it with the !fileobj
command:

Chapter 9: I/O System 559
0: kd> !fileobj 866ae9e8

File object name:

Device Object: 0x86d0c8b8 \Driver\TermDD

Vpb is NULL

Flags: 0x40000

Handle Created

FsContext: 0x866a31d8 FsContext2: 0x00000001

CurrentByteOffset: 0

Because a file object is a memory-based representation of a shareable resource and not the
resource itself, it’s different from other executive objects. A file object contains only data that
is unique to an object handle, whereas the file itself contains the data or text to be shared.
Each time a thread opens a file handle, a new file object is created with a new set of handle-
specific attributes. For example, the current byte offset attribute refers to the location in the
file at which the next read or write operation using that handle will occur. Each handle to a file
has a private byte offset even though the underlying file is shared. A file object is also unique
to a process, except when a process duplicates a file handle to another process (by using the
Windows DuplicateHandle function) or when a child process inherits a file handle from a par-
ent process. In these situations, the two processes have separate handles that refer to the same
file object.

Although a file handle might be unique to a process, the underlying physical resource is not.
Therefore, as with any shared resource, threads must synchronize their access to shareable
files, file directories, and devices. If a thread is writing to a file, for example, it should specify
exclusive write access when opening the file handle to prevent other threads from writing to
the file at the same time. Alternatively, by using the Windows LockFile function, the thread
could lock a portion of the file while writing to it.

When a file is opened, the filename includes the name of the device object on which the file
resides. For example, the name \Device\Floppy0\Myfile.dat refers to the file Myfile.dat on
floppy disk drive A. The substring \Device\Floppy0 is the name of the internal Windows
device object representing that floppy disk drive. When opening Myfile.dat, the I/O manager
creates a file object and stores a pointer to the Floppy0 device object in the file object and then
returns a file handle to the caller. Thereafter, when the caller uses the file handle, the I/O man-
ager can find the Floppy0 device object directly. Keep in mind that internal Windows device
names can’t be used in Windows applications—instead, the device name must appear in a spe-
cial directory in the object manager’s namespace, which is \?? on Windows 2000 and \Glo-
bal?? on Windows XP and Windows Server 2003. This directory contains symbolic links to
the real, internal Windows device names. Device drivers are responsible for creating links in
this directory so that their devices will be accessible to Windows applications. You can exam-
ine or even change these links programmatically with the Windows QueryDosDevice and
DefineDosDevice functions.

560 Microsoft Windows Internals, Fourth Edition
EXPERIMENT: Viewing Windows Device Name to Windows
Device Name Mappings
You can examine the symbolic links that define the Windows device namespace with
the Winobj utility from www.sysinternals.com. Run Winobj, and click on the \?? Direc-
tory on Windows 2000 or \Global?? on Windows XP or Windows Server 2003, as
shown here:

Notice the symbolic links on the right. Try double-clicking on the device C:. You should
see something like this:

C: is a symbolic link to the internal device named \Device\HarddiskVolume1, or the
first volume on the first hard drive in the system. The COM1 entry in Winobj is a sym-
bolic link to \Device\Serial0, and so forth. Try creating your own links with the subst
command at a command prompt.

Chapter 9: I/O System 561
I/O Processing
Now that we’ve covered the structure and types of drivers and the data structures that support
them, let’s look at how I/O requests flow through the system. I/O requests pass through sev-
eral predictable stages of processing. The stages vary depending on whether the request is
destined for a device operated by a single-layered driver or for a device reached through a mul-
tilayered driver. Processing varies further depending on whether the caller specified synchro-
nous or asynchronous I/O, so we’ll begin our discussion of I/O types with these two then
move on to others.

Types of I/O

Applications have several options for the I/O requests they issue. For example, they can spec-
ify synchronous or asynchronous I/O, I/O that maps a device’s data into the application’s
address space for access via application virtual memory rather than I/O APIs, and I/O that
transfers data between a device and noncontiguous application buffers in a single request.
Furthermore, the I/O manager gives the drivers the choice of implementing a shortcut I/O
interface that can often mitigate IRP allocation for I/O processing. In this section, we’ll explain
each of these I/O variations.

Synchronous I/O and Asynchronous I/O

Most I/O operations that applications issue are synchronous; that is, the application waits
while the device performs the data transfer and returns a status code when the I/O is com-
plete. The program can then continue and access the transferred data immediately. When
used in their simplest form, the Windows ReadFile and WriteFile functions are executed syn-
chronously. They complete an I/O operation before returning control to the caller.

Asynchronous I/O allows an application to issue an I/O request and then continue executing
while the device transfers the data. This type of I/O can improve an application’s throughput
because it allows the application thread to continue with other work while an I/O operation is
in progress. To use asynchronous I/O, you must specify the FILE_FLAG_OVERLAPPED flag
when you call the Windows CreateFile function. Of course, after issuing an asynchronous I/O
operation, the thread must be careful not to access any data from the I/O operation until the
device driver has finished the data transfer. The thread must synchronize its execution with
the completion of the I/O request by monitoring a handle of a synchronization object
(whether that’s an event object, an I/O completion port, or the file object itself) that will be
signaled when the I/O is complete.

Regardless of the type of I/O request, internally, I/O operations issued to a driver on behalf of
the application are performed asynchronously; that is, once an I/O request has been initiated,
the device driver returns to the I/O system. Whether or not the I/O system returns immedi-
ately to the caller depends on whether the file was opened for synchronous or asynchronous

562 Microsoft Windows Internals, Fourth Edition
I/O. Figure 9-8 illustrates the flow of control when a read operation is initiated. Notice that if
a wait is done, which depends on the overlapped flag in the file object, it is done in kernel
mode by the NtReadFile function.

Figure 9-8 Control flow for an I/O operation

You can test the status of a pending asynchronous I/O with the Windows HasOverlappedIo-
Completed function. If you’re using I/O completion ports (described in the “I/O Completion
Ports” section later in this chapter), you can use the GetQueuedCompletionStatus function.

Fast I/O

Fast I/O is a special mechanism that allows the I/O system to bypass generating an IRP and
instead go directly to the file system driver or cache manager to complete an I/O request. (Fast
I/O is described in detail in chapters 11 and 12.) A driver registers its fast I/O entry points by
entering them in a structure pointed to by the PFAST_IO_DISPATCH pointer in its driver object.

User mode

Kernel mode

Call ReadFile()

Call NtReadFile()
Return to caller

Int 2E
Return to caller

Call NtReadFile()
Dismiss interrupt

Invoke driver
Wait or return

to caller

Initiate I/O
operation

Return to caller

NtReadFile

KiSystemService

NtReadFile

ReadFile

Application

Kernel32.dll

Ntdll.dll

Ntoskrnl.exe

Ntoskrnl.exe

Driver.sys

Whether to wait depends
on overlapped flag

Chapter 9: I/O System 563
EXPERIMENT: Looking at a Driver’s Registered Fast I/O Routines
The !drvobj kernel debugger command can list the fast I/O routines that a driver regis-
ters in its driver object. However, typically only file system drivers have any use for fast
I/O routines. The following output shows the fast I/O table for the NTFS file system
driver object:

kd> !drvobj \filesystem\ntfs 2

Driver object (8a4372a0) is for:

\FileSystem\Ntfs

DriverEntry: f7bd7398 Ntfs!DriverEntry

DriverStartIo: 00000000

DriverUnload: 00000000

Dispatch routines:

[00] IRP_MJ_CREATE f7b76390 Ntfs!NtfsFsdCreate

Fast I/O routines:

FastIoCheckIfPossible f7b74a0b Ntfs!NtfsFastIoCheckIfPossible

FastIoRead f7b77bbc Ntfs!NtfsCopyReadA

FastIoWrite f7b8a9cc Ntfs!NtfsCopyWriteA

FastIoQueryBasicInfo f7b7cd5e Ntfs!NtfsFastQueryBasicInfo

FastIoQueryStandardInfo f7b7779e Ntfs!NtfsFastQueryStdInfo

FastIoLock f7b8b738 Ntfs!NtfsFastLock

FastIoUnlockSingle f7b8b66c Ntfs!NtfsFastUnlockSingle

FastIoUnlockAll f7ba5cd6 Ntfs!NtfsFastUnlockAll

FastIoUnlockAllByKey f7bcdab2 Ntfs!NtfsFastUnlockAllByKey

AcquireFileForNtCreateSection f7b77771 Ntfs!NtfsAcquireForCreate

Section

ReleaseFileForNtCreateSection f7b77758 Ntfs!NtfsReleaseForCreate

Section

FastIoQueryNetworkOpenInfo f7bbec06 Ntfs!NtfsFastQueryNetworkOpen

Info

AcquireForModWrite f7b8663d Ntfs!NtfsAcquireFileFor

ModWrite

MdlRead f7bbed20 Ntfs!NtfsMdlReadA

The output shows that NTFS has registered its NtfsFastIoCheckIfPossible routine as the
fast I/O table’s FastIoCheckIfPossible entry. As the name of this fast I/O entry implies, the
I/O manager sometimes calls this function before issuing a fast I/O request, giving a
driver an opportunity to indicate when fast I/O operations on a file are not feasible.

564 Microsoft Windows Internals, Fourth Edition
Mapped File I/O and File Caching

Mapped file I/O is an important feature of the I/O system, one that the I/O system and the mem-
ory manager produce jointly. (See Chapter 7 for details on how mapped files are implemented.)
Mapped file I/O refers to the ability to view a file residing on disk as part of a process’s virtual
memory. A program can access the file as a large array without buffering data or performing disk
I/O. The program accesses memory, and the memory manager uses its paging mechanism to
load the correct page from the disk file. If the application writes to its virtual address space, the
memory manager writes the changes back to the file as part of normal paging.

Mapped file I/O is available in user mode through the Windows CreateFileMapping and Map-
ViewOfFile functions. Within the operating system, mapped file I/O is used for important
operations such as file caching and image activation (loading and running executable pro-
grams). The other major consumer of mapped file I/O is the cache manager. File systems use
the cache manager to map file data in virtual memory to provide better response time for I/O-
bound programs. As the caller uses the file, the memory manager brings accessed pages into
memory. Whereas most caching systems allocate a fixed number of bytes for caching files in
memory, the Windows cache grows or shrinks depending on how much memory is available.
This size variability is possible because the cache manager relies on the memory manager to
automatically expand (or shrink) the size of the cache, using the normal working set mecha-
nisms explained in Chapter 7. By taking advantage of the memory manager’s paging system,
the cache manager avoids duplicating the work that the memory manager already performs.
(The workings of the cache manager are explained in detail in Chapter 11.)

Scatter/Gather I/O

Windows also supports a special kind of high-performance I/O that is called scatter/gather,
available via the Windows ReadFileScatter and WriteFileGather functions. These functions
allow an application to issue a single read or write from more than one buffer in virtual mem-
ory to a contiguous area of a file on disk instead of issuing a separate I/O request for each
buffer. To use scatter/gather I/O, the file must be opened for noncached I/O, the user buffers
being used have to be page-aligned, and the I/Os must be asynchronous (overlapped). Fur-
thermore, if the I/O is directed at a mass storage device, the I/O must be aligned on a device
sector boundary and have a length that is a multiple of the sector size.

I/O Request Packets

The I/O request packet (IRP) is where the I/O system stores information it needs to process
an I/O request. When a thread calls an I/O service, the I/O manager constructs an IRP to rep-
resent the operation as it progresses through the I/O system. If possible, the I/O manager allo-
cates IRPs from one of two per-processor IRP nonpaged look-aside lists: the small-IRP look-
aside list stores IRPs with one stack location (IRP stack locations are described shortly), and
the large-IRP look-aside list contains IRPs with multiple stack locations. By default, the system

Chapter 9: I/O System 565
stores IRPs with eight stack locations on the large-IRP look-aside list, but once per minute the
system adjusts the number of stack locations allocated based on how many stack locations
have been required. If an IRP requires more stack locations than are contained in the IRPs on
the large-IRP look-aside list, the I/O manager allocates IRPs from nonpaged pool. After allocat-
ing and initializing an IRP, the I/O manager stores a pointer to the caller’s file object in the IRP.

Note If defined, the DWORD registry value HKLM\System\CurrentControlSet\Session Man-
ager\I/O System\LargIrpStackLocations specifies how many stack locations are contained in
IRPs stored on the large-IRP look-aside list.

Figure 9-9 shows a sample I/O request that demonstrates the relationship between an IRP and
the file, device, and driver objects described in the preceding sections. Although this example
shows an I/O request to a single-layered device driver, most I/O operations aren’t this direct;
they involve one or more layered drivers. (This case will be shown later in this section.)

Figure 9-9 Data structures involved in a single-layered driver I/O request

Environment
subsystem or

DLL
1

Kernel mode

User mode

An application writes a
file to the printer, passing
a handle to the file object.

2 The I/O manager creates an
IRP and initializes the first
stack location.

3 The I/O manager uses the
driver object to locate the
WRITE dispatch routine and
calls it, passing the IRP.

I/O system services

I/O manager

IRP stack location WRITE
parameters

IRP header

File
object

Device
object

Driver
object

IRP

Dispatch
routine(s)

Start I/O ISR
DPC

routine

Device driver

566 Microsoft Windows Internals, Fourth Edition
IRP Stack Locations

An IRP consists of two parts: a fixed header (often referred to as the IRP’s body) and one or
more stack locations. The fixed portion contains information such as the type and size of the
request, whether the request is synchronous or asynchronous, a pointer to a buffer for buff-
ered I/O, and state information that changes as the request progresses. An IRP stack location
contains a function code (consisting of a major code and a minor code), function-specific
parameters, and a pointer to the caller’s file object. The major function code identifies which of
a driver’s dispatch routines the I/O manager invokes when passing an IRP to a driver. An
optional minor function code sometimes serves as a modifier of the major function code. Power
and Plug and Play commands always have minor function codes.

Most drivers specify dispatch routines to handle only a subset of possible major function
codes, including create (open), read, write, device I/O control, power, Plug and Play, System
(for WMI commands), and close. (See the following experiment for a complete listing of
major function codes.) File system drivers are an example of a driver type that often fills in
most or all of its dispatch entry points with functions. The I/O manager sets any dispatch
entry points that a driver doesn’t fill to point to its own IopInvalidDeviceRequest, which returns
an error code to the caller indicating that the function specified for the device is invalid.

EXPERIMENT: Looking at Driver Dispatch Routines
You can obtain a listing of the functions a driver has defined for its dispatch routines by
entering a 7 after the driver object’s name (or address) in the !drvobj kernel debugger
command. The following output shows that drivers support 28 IRP types.

kd> !drvobj kbdclass 7

Driver object (8a238900) is for:

\Driver\Kbdclass

Driver Extension List: (id , addr)

Device Object list:

8a189030 8a2501f8

DriverEntry: f7822d22 kbdclass!DriverEntry

DriverStartIo: 00000000

DriverUnload: 00000000

Dispatch routines:

[00] IRP_MJ_CREATE f781fd3b kbdclass!KeyboardClassCreate

[01] IRP_MJ_CREATE_NAMED_PIPE 804eef8e nt!IopInvalidDeviceRequest

[02] IRP_MJ_CLOSE f781ff4c kbdclass!KeyboardClassClose

[03] IRP_MJ_READ f7820ba5 kbdclass!KeyboardClassRead

[04] IRP_MJ_WRITE 804eef8e nt!IopInvalidDeviceRequest

[05] IRP_MJ_QUERY_INFORMATION 804eef8e nt!IopInvalidDeviceRequest

[06] IRP_MJ_SET_INFORMATION 804eef8e nt!IopInvalidDeviceRequest

[07] IRP_MJ_QUERY_EA 804eef8e nt!IopInvalidDeviceRequest

[08] IRP_MJ_SET_EA 804eef8e nt!IopInvalidDeviceRequest

[09] IRP_MJ_FLUSH_BUFFERS f781fcbe kbdclass!KeyboardClassFlush

[0a] IRP_MJ_QUERY_VOLUME_INFORMATION 804eef8e nt!IopInvalidDeviceRequest

Chapter 9: I/O System 567
[0b] IRP_MJ_SET_VOLUME_INFORMATION 804eef8e nt!IopInvalidDeviceRequest

[0c] IRP_MJ_DIRECTORY_CONTROL 804eef8e nt!IopInvalidDeviceRequest

[0d] IRP_MJ_FILE_SYSTEM_CONTROL 804eef8e nt!IopInvalidDeviceRequest

[0e] IRP_MJ_DEVICE_CONTROL f7821829 kbdclass!KeyboardClassDevice

Control

[0f] IRP_MJ_INTERNAL_DEVICE_CONTROL f7821200 kbdclass!KeyboardClassPass

Through

[10] IRP_MJ_SHUTDOWN 804eef8e nt!IopInvalidDeviceRequest

[11] IRP_MJ_LOCK_CONTROL 804eef8e nt!IopInvalidDeviceRequest

[12] IRP_MJ_CLEANUP f781fc84 kbdclass!KeyboardClassCleanup

[13] IRP_MJ_CREATE_MAILSLOT 804eef8e nt!IopInvalidDeviceRequest

[14] IRP_MJ_QUERY_SECURITY 804eef8e nt!IopInvalidDeviceRequest

[15] IRP_MJ_SET_SECURITY 804eef8e nt!IopInvalidDeviceRequest

[16] IRP_MJ_POWER f7821f51 kbdclass!KeyboardClassPower

[17] IRP_MJ_SYSTEM_CONTROL f7821649 kbdclass!KeyboardClassSystem

Control

[18] IRP_MJ_DEVICE_CHANGE 804eef8e nt!IopInvalidDeviceRequest

[19] IRP_MJ_QUERY_QUOTA 804eef8e nt!IopInvalidDeviceRequest

[1a] IRP_MJ_SET_QUOTA 804eef8e nt!IopInvalidDeviceRequest

[1b] IRP_MJ_PNP f78206c1 kbdclass!KeyboardPnP

While active, each IRP is usually stored in an IRP list associated with the thread that requested
the I/O. This arrangement allows the I/O system to find and cancel any outstanding IRPs if a
thread terminates or is terminated with outstanding I/O requests.

EXPERIMENT: Looking at a Thread’s Outstanding IRPs
When you use the !thread command, it prints any IRPs associated with the thread. Run
the kernel debugger with live debugging, and locate the Service Control Manager pro-
cess (Services.exe) in the output generated by the !process command:

lkd> !process 0 0

**** NT ACTIVE PROCESS DUMP ****

…

PROCESS 8a238da8 SessionId: 0 Cid: 02a8 Peb: 7ffdf000 ParentCid: 027c

DirBase: 14fac000 ObjectTable: e1c3e008 HandleCount: 365.

Image: SERVICES.EXE

…

Then dump the threads for the process by executing the !process command on the pro-
cess object. You should see many threads, with most of them having IRPs reported in
the IRP List area of the thread information (note that the debugger will show only the
first 17 IRPs for a thread that has more than 17 outstanding I/O requests):

kd> !process 8a238da8

PROCESS 8a238da8 SessionId: 0 Cid: 02a8 Peb: 7ffdf000 ParentCid: 027c

DirBase: 14fac000 ObjectTable: e1c3e008 HandleCount: 365.

Image: SERVICES.EXE

VadRoot 8a1be328 Vads 88 Clone 0 Private 346. Modified 37. Locked 0.

DeviceMap e10087c0

…

568 Microsoft Windows Internals, Fourth Edition
THREAD 8a124870 Cid 02a8.0338 Teb: 7ffd8000 Win32Thread: 00000000 WAIT:

(WrQueue) UserMode Non-Alertable

8a2dc620 Unknown

8a124960 NotificationTimer

IRP List: 8a2c2c00: (0006,0094) Flags: 00000900 Mdl: 00000000

8a20f770: (0006,0094) Flags: 00000900 Mdl: 00000000

8a437780: (0006,0094) Flags: 00000900 Mdl: 00000000

89b1de68: (0006,0094) Flags: 00000900 Mdl: 00000000

8a0e6058: (0006,0094) Flags: 00000900 Mdl: 00000000

8a0f1550: (0006,0094) Flags: 00000900 Mdl: 00000000

8a3b3c18: (0006,0094) Flags: 00000900 Mdl: 00000000

8a429190: (0006,0094) Flags: 00000900 Mdl: 00000000

8a49f008: (0006,0094) Flags: 00000900 Mdl: 00000000

8a227bc0: (0006,0094) Flags: 00000900 Mdl: 00000000

…

Choose an IRP, and examine it with the !irp command:

lkd> !irp 8a2c2c00

Irp is active with 1 stacks 1 is current (= 0x8a2c2c70)

No Mdl Thread 8a124870: Irp stack trace.

cmd flg cl Device File Completion-Context

>[3, 0] 0 1 8a0e5680 8a26e4b8 00000000-00000000 pending

\Driver\Npfs

Args: 00000400 00000000 00000000 00000000

This IRP has a major function of 3, which corresponds to IRP_MJ_READ. It has one
stack location and is targeted at a device owned by the Npfs driver (the Named Pipe File
System driver). (Npfs is described in Chapter 13.)

IRP Buffer Management

When an application or a device driver indirectly creates an IRP by using the NtReadFile,
NtWriteFile, or NtDeviceIoControlFile system services (or the Windows API functions corre-
sponding to these services, which are ReadFile, WriteFile, and DeviceIoControl), the I/O man-
ager determines whether it needs to participate in the management of the caller’s input or
output buffers. The I/O manager performs three types of buffer management:

■ Buffered I/O The I/O manager allocates a buffer in nonpaged pool of equal size to the
caller’s buffer. For write operations, the I/O manager copies the caller’s buffer data into
the allocated buffer when creating the IRP. For read operations, the I/O manager copies
data from the allocated buffer to the user’s buffer when the IRP completes and then frees
the allocated buffer.

■ Direct I/O When the I/O manager creates the IRP, it locks the user’s buffer into mem-
ory (makes it nonpaged). When the I/O manager has finished using the IRP, it unlocks
the buffer. The I/O manager stores a description of the memory in the form of a memory
descriptor list (MDL). An MDL specifies the physical memory occupied by a buffer. (See
the Windows DDK for more information on MDLs.) Devices that perform direct mem-
ory access (DMA) require only physical descriptions of buffers, so an MDL is sufficient

Chapter 9: I/O System 569
for the operation of such devices. (Devices that support DMA transfer data directly
between the device and the computer’s memory, without using the CPU.) If a driver
must access the contents of a buffer, however, it can map the buffer into the system’s
address space.

■ Neither I/O The I/O manager doesn’t perform any buffer management. Instead, buffer
management is left to the discretion of the device driver, which can choose to manually
perform the steps the I/O manager performs with the other buffer management types.

For each type of buffer management, the I/O manager places applicable references in the IRP
to the locations of the input and output buffers. The type of buffer management the I/O man-
ager performs depends on the type of buffer management a driver requests for each type of
operation. A driver registers the type of buffer management it desires for read and write oper-
ations in the device object that represents the device. Device I/O control operations (those
performed by NtDeviceIoControlFile) are specified with driver-defined I/O control codes, and
a control code includes a description of the buffer management the I/O manager should use
when issuing IRPs that contain that code.

Drivers commonly use buffered I/O when callers transfer requests smaller than one page (4
KB on x86 processors) and use direct I/O for larger requests. A page is approximately the
buffer size at which the trade-off between the copy operation of buffered I/O matches the
overhead of the memory lock performed by direct I/O. File system drivers commonly use nei-
ther I/O because no buffer management overhead is incurred when data can be copied from
the file system cache into the caller’s original buffer. The reason that most drivers don’t use
either I/O is that a pointer to a caller’s buffer is valid only while a thread of the caller’s process
is executing. If a driver must transfer data from or to a device in an ISR or a DPC routine, it
must ensure that the caller’s data is accessible from any process context, which means that the
buffer must have a system virtual address.

Drivers that use neither I/O to access buffers that might be located in user-space must take
special care to ensure that buffer addresses are both valid and do not reference kernel-mode
memory. Failure to do so could result in crashes or in security vulnerabilities, where applica-
tions have access to kernel-mode memory or can inject code into the kernel. The ProbeForRead
and ProbeForWrite functions that the kernel makes available to drivers verify that a buffer
resides entirely in the user-mode portion of the address space. To avoid a crash from referenc-
ing an invalid user-mode address, drivers can access user-mode buffers from within exception-
handling code (called try/except blocks) that catch any invalid memory faults and translate
them into error codes to return to the application.

I/O Request to a Single-Layered Driver

This section traces a synchronous I/O request to a single-layered kernel-mode device driver.
Handling a synchronous I/O to a single-layered driver consists of seven steps:

1. The I/O request passes through a subsystem DLL.

570 Microsoft Windows Internals, Fourth Edition
2. The subsystem DLL calls the I/O manager’s NtWriteFile service.

3. The I/O manager allocates an IRP describing the request and sends it to the driver (a
device driver in this case) by calling its own IoCallDriver function.

4. The driver transfers the data in the IRP to the device and starts the I/O operation.

5. The driver signals I/O completion by interrupting the CPU.

6. When the device completes the operation and interrupts the CPU, the device driver ser-
vices the interrupt.

7. The driver calls the I/O manager’s IoCompleteRequest function to inform it that it has fin-
ished processing the IRP’s request, and the I/O manager completes the I/O request.

These seven steps are illustrated in Figure 9-10.

Figure 9-10 Queuing and completing a synchronous request

Now that we’ve seen how an I/O is initiated, let’s take a closer look at interrupt processing
and I/O completion.

I/O request passes
through subsystem DLL Environment

subsystem
or DLL

User mode

Kernel mode

Handle interrupt and
return success or
error status

Create IRP and send
it to device driver

IRP

IRP

Transfer data
specified in IRP

Device
driver

Perform I/O and
interrupt

5

6

4

3

NtWriteFile(file_handle, ...,
char_buffer)

2
Complete IRP and return
success or error status

7

1

Services

I/O manager

Chapter 9: I/O System 571
Servicing an Interrupt

After an I/O device completes a data transfer, it interrupts for service and the Windows kernel,
I/O manager, and device driver are called into action. Figure 9-11 illustrates the first phase of
the process. (Chapter 3 describes the interrupt dispatching mechanism, including DPCs.
We’ve included a brief recap here because DPCs are key to I/O processing.)

Figure 9-11 Servicing a device interrupt (phase 1)

When a device interrupt occurs, the processor transfers control to the kernel trap handler,
which indexes into its interrupt dispatch table to locate the ISR for the device. ISRs in Win-
dows typically handle device interrupts in two steps. When an ISR is first invoked, it usually
remains at device IRQL only long enough to capture the device status and then stop the
device’s interrupt. It then queues a DPC and exits, dismissing the interrupt. Later, when the
DPC routine is called, the device finishes processing the interrupt. When that’s done, the
device calls the I/O manager to complete the I/O and dispose of the IRP. It might also start the
next I/O request that is waiting in the device queue.

DPC

DPCDPC

Dispatch
routine(s)

Start I/O ISR
DPC

routine(s)

The ISR stops the device
interrupt and queues a DPC.

Device driver

The kernel’s interrupt
dispatcher transfers control
to the device’s service routine.

2

3

1 The device
interrupts for
service.

DPC queue

High

Device IRQL

DPC/dispatch

APC

Passive

IRQL

572 Microsoft Windows Internals, Fourth Edition
The advantage of using a DPC to perform most of the device servicing is that any blocked
interrupt whose priority lies between the device IRQL and the DPC/dispatch IRQL is allowed
to occur before the lower-priority DPC processing occurs. Intermediate-level interrupts are
thus serviced more promptly than they otherwise would be. This second phase of an I/O (the
DPC processing) is illustrated in Figure 9-12.

Completing an I/O Request

After a device driver’s DPC routine has executed, some work still remains before the I/O
request can be considered finished. This third stage of I/O processing is called I/O completion
and is initiated when a driver calls IoCompleteRequest to inform the I/O manager that it has
completed processing the request specified in the IRP (and the stack location that it owns).
The steps I/O completion entails vary with different I/O operations. For example, all the I/O
services record the outcome of the operation in an I/O status block, a data structure the caller
supplies. Similarly, some services that perform buffered I/O require the I/O system to return
data to the calling thread.

In both cases, the I/O system must copy some data that is stored in system memory into the
caller’s virtual address space. If the IRP completed synchronously, the caller’s address space is
current and directly accessible, but if the IRP completed asynchronously, the I/O manager
must delay IRP completion until it can access the caller’s address space. To gain access to the
caller’s virtual address space, the I/O manager must transfer the data “in the context of the
caller’s thread”—that is, while the caller’s thread is executing (which means that caller’s pro-
cess is the current process and has its address space active on the processor). It does so by
queuing a kernel-mode asynchronous procedure call (APC) to the thread. This process is illus-
trated in Figure 9-13.

As explained in Chapter 3, APCs execute in the context of a particular thread, whereas a DPC
executes in arbitrary thread context, meaning that the DPC routine can’t touch the user-mode
process address space. Remember too that DPCs have a higher software interrupt priority
than APCs.

Chapter 9: I/O System 573
Figure 9-12 Servicing a device interrupt (phase 2)

IRP 5IRP 6

DPC

DPC DPC

Dispatch
routine(s)

Start I/O ISR
DPC

routine(s)

The DPC routine starts the next I/O
request in the device queue and
then completes interrupt servicing.

High

Device IRQL

DPC/dispatch

APC

Passive

IRQL

Device driver

The interrupt dispatcher
transfers control to the
driver’s DPC routine.

2

3

1 The IRQL drops,
and DPC processing
occurs.

Device queue

DPC queue

574 Microsoft Windows Internals, Fourth Edition
Figure 9-13 Completing an I/O request (phase 1)

The next time that thread begins to execute at low IRQL, the pending APC is delivered. The
kernel transfers control to the I/O manager’s APC routine, which copies the data (if any) and
the return status into the original caller’s address space, frees the IRP representing the I/O
operation, and sets the caller’s file handle (and any caller-supplied event or I/O completion
port) to the signaled state. The I/O is now considered complete. The original caller or any
other threads that are waiting on the file (or other object) handle are released from their wait-
ing state and readied for execution. Figure 9-14 illustrates the second stage of I/O completion.

Thread’s APC queue

IRP

Dispatch
routine(s)

Start I/O ISR
DPC

routine(s)

The I/O manager queues an
APC to complete the I/O request
in the caller’s context.

Device driver

The DPC routine calls
the I/O manager to complete
the original I/O request.

1

2

APC

IRP

APC

IRP

APC

IRP

I/O manager

Chapter 9: I/O System 575
Figure 9-14 Completing an I/O request (phase 2)

A final note about I/O completion: the asynchronous I/O functions ReadFileEx and WriteFileEx
allow a caller to supply a user-mode APC as a parameter. If the caller does so, the I/O manager
queues this APC to the caller’s thread APC queue as the last step of I/O completion. This fea-
ture allows a caller to specify a subroutine to be called when an I/O request is completed or
canceled. User-mode APC completion routines execute in the context of the requesting thread
and are delivered only when the thread enters an alertable wait state (such as calling the
Windows SleepEx, WaitForSingleObjectEx, or WaitForMultipleObjectsEx function).

Synchronization

Drivers must synchronize their access to global driver data and hardware registers for two
reasons:

■ The execution of a driver can be preempted by higher-priority threads and time-slice (or
quantum) expiration or can be interrupted by interrupts.

■ On multiprocessor systems, Windows can run driver code simultaneously on more
than one processor.

High

Device printer

DPC/dispatch

APC

Passive

IRQLThread’s APC queue

APC

IRP

APC

IRP

The kernel-mode APC
routine writes data to
the thread’s address
space, sets the original
file handle to the
signaled state, queues
any user-mode APCs
for execution, and
disposes of the IRP.

The interrupt
dispatcher transfers
control to the I/O
manager’s APC
routine.

Environment
subsystem or

DLL

APC
routine

The next time the
caller’s thread runs,
an APC interrupt
occurs.

I/O manager

2

3

1

Kernel mode

User mode

576 Microsoft Windows Internals, Fourth Edition
Without synchronization, corruption could occur—for example, because device driver code
running at a passive IRQL when a caller initiates an I/O operation can be interrupted by a
device interrupt, causing the device driver’s ISR to execute while its own device driver is
already running. If the device driver was modifying data that its ISR also modifies, such as
device registers, heap storage, or static data, the data can become corrupted when the ISR exe-
cutes. Figure 9-15 illustrates this problem.

Figure 9-15 Queuing an asynchronous request to layered drivers

To avoid this situation, a device driver written for Windows must synchronize its access to any
data that the device driver shares with its ISR. Before attempting to update shared data, the
device driver must lock out all other threads (or CPUs, in the case of a multiprocessor system)
to prevent them from updating the same data structure.

The Windows kernel provides a special synchronization routine called KeSynchronizeExecution
that device drivers call when they access data that their ISRs also access. This kernel-synchroni-
zation routine keeps the ISR from executing while the shared data is being accessed. On a single
CPU system, this routine raises the IRQL to the level associated with the ISR before updating a
structure. On a multiprocessor system, however, because a driver can execute on two or more
processors at once, this technique isn’t enough to block other accessors. Therefore, another
mechanism, a spinlock, is used to lock a structure for exclusive access from a particular CPU.
(Spinlocks are explained in the section “Synchronization” in Chapter 3.) A driver can also use
KeAcquireInterruptSpinLock to access an interrupt object’s spin lock directly, although it’s gener-
ally faster to rely on KeSynchronizeExecution for synchronization with an ISR.

By now, you should realize that although ISRs require special attention, any data that a device
driver uses is subject to being accessed by the same device driver running on another processor.
Therefore, it’s critical for device driver code to synchronize its use of any global or shared data
(or any accesses to the physical device itself). If the ISR uses that data, the device driver must use
KeSynchronizeExecution; otherwise, the device driver can use standard kernel spinlocks.

2

3

1

Interrupt
service
routine

(ISR)

Dispatch
routine(s)

Global or
shared data

ISR executes and
writes shared data,
possibly corrupting it

Device IRQL

Passive IRQL

Interrupt occurs

Device driver is
writing shared data

Chapter 9: I/O System 577
I/O Requests to Layered Drivers

The preceding section showed how an I/O request to a simple device controlled by a single
device driver is handled. I/O processing for file-based devices or for requests to other layered
drivers happens in much the same way. The major difference is, obviously, that one or more
additional layers of processing are added to the model.

Figure 9-16 shows how an asynchronous I/O request travels through layered drivers. It uses as
an example a disk controlled by a file system.

Once again, the I/O manager receives the request and creates an I/O request packet to repre-
sent it. This time, however, it delivers the packet to a file system driver. The file system driver
exercises great control over the I/O operation at that point. Depending on the type of request
the caller made, the file system can send the same IRP to the disk driver or it can generate
additional IRPs and send them separately to the disk driver.

EXPERIMENT: Viewing a Device Stack
The kernel debugger command !devstack shows you the device stack of layered device
objects associated with a specified device object. This example shows the device stack
associated with a device object, \device\keyboardclass0, which is owned by the key-
board class driver:

lkd> !devstack keyboardclass0

!DevObj !DrvObj !DevExt ObjectName

8a266d28 \Driver\Ctrl2cap 8a266de0

> 8a09a030 \Driver\Kbdclass 8a09a0e8 KeyboardClass0

8a2672b0 \Driver\nmfilter 8a267368 0000008c

8a09ba78 \Driver\i8042prt 8a09bb30

8a4adce0 \Driver\ACPI 8a4ab9c8 0000006b

!DevNode 8a4acee8 :

DeviceInst is "ACPI\PNP0303\4&61f3b4b&0"

ServiceName is "i8042prt"

The output highlights the entry associated with KeyboardClass0 with the “>“ prefix. The
entries above that line are drivers layered above the keyboard class driver, and those below
are layered beneath it. In general, IRPs flow from the top of the stack to the bottom.

The file system is most likely to reuse an IRP if the request it receives translates into a single
straightforward request to a device. For example, if an application issues a read request for the
first 512 bytes in a file stored on a floppy disk, the FAT file system would simply call the disk
driver, asking it to read one sector from the floppy disk, beginning at the file’s starting location.

To accommodate its reuse by multiple drivers in a request to layered drivers, an IRP contains
a series of IRP stack locations (not to be confused with the stack used by threads to store func-
tion parameters and return addresses). These data areas, one for every driver that will be

578 Microsoft Windows Internals, Fourth Edition
called, contain the information that each driver needs to execute its part of the request—for
example, function code, parameters, and driver context information. As Figure 9-16 illus-
trates, additional stack locations are filled in as the IRP passes from one driver to the next. You
can think of an IRP as being similar to a stack in the way data is added to it and removed from
it during its lifetime. However, an IRP isn’t associated with any particular process, and its allo-
cated size doesn’t grow and shrink. The I/O manager allocates an IRP from one if its IRP look-
aside lists or nonpaged system memory at the beginning of the I/O operation.

Figure 9-16 Queuing an asynchronous request to layered drivers

I/O manager creates IRP, fills
in first stack location, and
calls a file system driver.

Environment
subsystem

or DLL

User mode

Kernel mode

Send IRP data to device
(or queue IRP) and return

File
system
driver

Disk
driver

Return I/O pending status5

Return I/O pending status6

4

File system driver fills in a
second IRP stack location
and calls the disk driver.

3

2

Return I/O pending status7Call I/O service1

Services

I/O manager

IRP
Current

IRP

Current

Chapter 9: I/O System 579
EXPERIMENT: Examining IRPs
In this experiment, you’ll find an uncompleted IRP on the system, and you’ll determine
the IRP type, the device at which it’s directed, the driver that manages the device, the
thread that issued the IRP, and what process the thread belongs to.

At any point in time, there are at least a few uncompleted IRPs on a system. This is
because there are many devices to which applications can issue IRPs that a driver will
only complete when a particular event occurs, such as data becoming available. One
example is a blocking read from a network endpoint. You can see the outstanding IRPs
on a system with the !irpfind kernel debugger command:

kd> !irpfind

unable to get large pool allocation table - either wrong symbols or pool tagging

is disabled

Searching NonPaged pool (82502000 : 8a502000) for Tag: Irp?

Irp [Thread] irpStack: (Mj,Mn) DevObj [Driver]

89695868 [00000000] Irp is complete (CurrentLocation 4 > StackCount 3) 0x43776f56

89712008 [8a29d7c0] irpStack: (e, 9) 8a19e208 [\Driver\AFD]

89716008 [8a29d7c0] irpStack: (e, 9) 8a19e208 [\Driver\AFD]

… 89cb3928 [8a3acbc0] irpStack: (3, 0) 8a09a030 [\Driver\Kbdclass]

89cb3c88 [89cb1da8] irpStack: (c, 2) 8a436020 [\FileSystem\Ntfs]

89cb4640 [8a165498] irpStack: (e, 9) 8a19e208 [\Driver\AFD]

The highlighted entry in the output describes an IRP that is directed at the Kbdclass
driver, so it is likely the IRP that was issued by the Windows subsystem raw input thread
that reads keyboard input. Examining the IRP with the !irp command reveals:

kd> !irp 8a1716f0

Irp is active with 3 stacks 3 is current (= 0x8a1717a8)

No Mdl System buffer = 8a458180 Thread 8a3acbc0: Irp stack trace.

cmd flg cl Device File Completion-Context

[0, 0] 0 0 00000000 00000000 00000000-00000000

Args: 00000000 00000000 00000000 00000000

[0, 0] 0 0 00000000 00000000 00000000-00000000

Args: 00000000 00000000 00000000 00000000

>[3, 0] 0 1 8a1eccb8 8a1262a8 00000000-00000000 pending

\Driver\Kbdclass

Args: 00000078 00000000 00000000 00000000

The active stack location is at the bottom. (The debugger shows the active location with
a “>“ prefix.) It has a major function of 3, which corresponds to IRP_MJ_READ.

580 Microsoft Windows Internals, Fourth Edition
The next step is to see what device object the IRP is targeting by executing the !devobj
command on the device object address in the active stack location

kd> !devobj 8a1eccb8

Device object (8a1eccb8) is for:

KeyboardClass1 \Driver\Kbdclass DriverObject 8a24bd78

Current Irp 00000000 RefCount 0 Type 0000000b Flags 00002044

Dacl e1ec01e4 DevExt 8a1ecd70 DevObjExt 8a1ece50

ExtensionFlags (0000000000)

AttachedTo (Lower) 8a2e8ac8 \Driver\TermDD

Device queue is not busy.

The device at which the IRP is targeted is KeyboardClass1. The presence of a device
object owned by the Termdd driver attached beneath it reveals that it is the device that
represents keyboard input from a Terminal Server Client, not the physical keyboard.
(This output was taken from a Windows XP system.)

We can see details about the thread and process that issued the IRP by using the !thread
and !process commands:

kd> !thread 8a3acbc0

THREAD 8a3acbc0 Cid 025c.0288 Teb: 7ffd9000 Win32Thread: e101fab0 WAIT:

rRequest) KernelMode Alertable

8a3cdb30 SynchronizationEvent

8a28b4e0 SynchronizationEvent

8a3cc908 NotificationTimer

8a294828 SynchronizationEvent

805453e0 NotificationEvent

8a2e1830 SynchronizationEvent

8a45eeb0 SynchronizationTimer

IRP List:

89cb3928: (0006,01b4) Flags: 00000970 Mdl: 00000000

8a1716f0: (0006,01b4) Flags: 00000970 Mdl: 00000000

Not impersonating

Chapter 9: I/O System 581
DeviceMap e10087c0 Owning Process 8a3a08b8

Wait Start TickCount 6844081

Context Switch Count 2130848 LargeStack

UserTime 00:00:00.0000

KernelTime 00:00:03.0274

Start Address 0x75b6e8ad

Stack Init bafa0000 Current baf9fa68 Base bafa0000 Limit baf9d000 Call 0

Priority 13 BasePriority 13 PriorityDecrement 0 DecrementCount 16

kd> !process 8a3a08b8 0

GetPointerFromAddress: unable to read from 80543ed4

PROCESS 8a3a08b8 SessionId: 0 Cid: 025c Peb: 7ffdf000 ParentCid: 0220

DirBase: 139af000 ObjectTable: e1c0b3d8 HandleCount: 581.

Image: CSRSS.EXE

Locating the thread in Process Explorer (from www.sysinternals.com) by opening the
Properties dialog box for Csrss.exe and going to the Threads tab confirms, through the
names of the functions on its stack, the role of the thread as a raw input thread for the
Windows subsystem:

582 Microsoft Windows Internals, Fourth Edition
After the disk driver finishes a data transfer, the disk interrupts and the I/O completes, as
shown in Figure 9-17.

Figure 9-17 Completing a layered I/O request

As an alternative to reusing a single IRP, a file system can establish a group of associated IRPs
that work in parallel on a single I/O request. For example, if the data to be read from a file is
dispersed across the disk, the file system driver might create several IRPs, each of which reads
some portion of the request from a different sector. This queuing is illustrated in Figure 9-18.

The disk driver services the interrupt
and then queues a DPC to complete
the I/O, which will “pop” the second
stack location off the IRP stack and
call the file system driver.

Environment
subsystem

or DLL

User mode

Kernel mode

During I/O completion, results are returned
to the caller’s address space.

File
system
driver

Disk
driver

4

The file system driver performs
any necessary cleanup work.

3

2

Device-level interrupt occurs1

Services

I/O manager

IRP

IRP

Current

Current

Chapter 9: I/O System 583
Figure 9-18 Queuing associated IRPs

The file system driver delivers the associated IRPs to the device driver, which queues them to
the device. They are processed one at a time, and the file system driver keeps track of the
returned data. When all the associated IRPs complete, the I/O system completes the original
IRP and returns to the caller, as shown in Figure 9-19.

Call I/O service

I/O manager creates an IRP
and calls a file system driver.

Environment
subsystem

or DLL

Return I/O pending status

User mode

Kernel mode

Return I/O pending status

File system driver creates
associated IRPs and calls
the disk driver one or
more times.

IRP 0

IRP 1 IRP n

IRP 1 IRP n

Queue IRPs to the
device and return

File
system
driver

Disk
driver

Return I/O pending status5

6

4

3

2

71

Services

I/O manager

. . .

. . .

584 Microsoft Windows Internals, Fourth Edition
Figure 9-19 Completing associated IRPs

Note All Windows file system drivers that manage disk-based file systems are part of a stack
of drivers that is at least three layers deep: the file system driver sits at the top, a volume man-
ager in the middle, and a disk driver at the bottom. In addition, any number of filter drivers can
be interspersed above and below these drivers. For clarity, the preceding example of layered
I/O requests includes only a file system driver and a disk device driver. See Chapter 10, on
storage management, for more information.

The disk driver services the interrupt and
then queues a DPC, which starts the next
IRP on the device and calls the I/O
manager to complete the first IRP.

Environment
subsystem

or DLL

User mode

Kernel mode

When all associated IRPs complete, the
original IRP completes, returning status
information or data to the caller.

File
system
driver

Disk
driver

4

Step 2 repeats, completing IRPs
2 through n, and the file system
performs cleanup after each one.

3

2

After transferring data for one IRP,
the device interrupts.

1

Services

I/O manager

IRP 0

IRP 1

IRP n

Chapter 9: I/O System 585
I/O Completion Ports

Writing a high-performance server application requires implementing an efficient threading
model. Having either too few or too many server threads to process client requests can lead to
performance problems. For example, if a server creates a single thread to handle all requests,
clients can become starved because the server will be tied up processing one request at a time.
A single thread could simultaneously process multiple requests, switching from one to
another as I/O operations are started, but this architecture introduces significant complexity
and can’t take advantage of multiprocessor systems. At the other extreme, a server could cre-
ate a big pool of threads so that virtually every client request is processed by a dedicated
thread. This scenario usually leads to thread-thrashing, in which lots of threads wake up, per-
form some CPU processing, block while waiting for I/O, and then, after request processing is
completed, block again waiting for a new request. If nothing else, having too many threads
results in excessive context switching, caused by the scheduler having to divide processor
time among multiple active threads.

The goal of a server is to incur as few context switches as possible by having its threads avoid
unnecessary blocking, while at the same time maximizing parallelism by using multiple
threads. The ideal is for there to be a thread actively servicing a client request on every proces-
sor and for those threads not to block when they complete a request if additional requests are
waiting. For this optimal process to work correctly, however, the application must have a way
to activate another thread when a thread processing a client request blocks on I/O (such as
when it reads from a file as part of the processing).

The IoCompletion Object

Applications use the IoCompletion executive object, which is exported to Windows as a com-
pletion port, as the focal point for the completion of I/O associated with multiple file handles.
Once a file is associated with a completion port, any asynchronous I/O operations that com-
plete on the file result in a completion packet being queued to the completion port. A thread
can wait for any outstanding I/Os to complete on multiple files simply by waiting for a com-
pletion packet to be queued to the completion port. The Windows API provides similar func-
tionality with the WaitForMultipleObjects API function, but the advantage that completion
ports have is that concurrency, or the number of threads that an application has actively servic-
ing client requests, is controlled with the aid of the system.

When an application creates a completion port, it specifies a concurrency value. This value
indicates the maximum number of threads associated with the port that should be running at
any given time. As stated earlier, the ideal is to have one thread active at any given time for
every processor in the system. Windows uses the concurrency value associated with a port to
control how many threads an application has active. If the number of active threads associated
with a port equals the concurrency value, a thread that is waiting on the completion port
won’t be allowed to run. Instead, it is expected that one of the active threads will finish pro-
cessing its current request and check to see whether another packet is waiting at the port. If

586 Microsoft Windows Internals, Fourth Edition
one is, the thread simply grabs the packet and goes off to process it. When this happens, there
is no context switch, and the CPUs are utilized nearly to their full capacity.

Using Completion Ports

Figure 9-20 shows a high-level illustration of completion port operation. A completion port is
created with a call to the Windows API function CreateIoCompletionPort. Threads that block on
a completion port become associated with the port and are awakened in last in, first out
(LIFO) order so that the thread that blocked most recently is the one that is given the next
packet. Threads that block for long periods of time can have their stacks swapped out to disk,
so if there are more threads associated with a port than there is work to process, the in-mem-
ory footprints of threads blocked the longest are minimized.

Figure 9-20 I/O completion port operation

A server application will usually receive client requests via network endpoints that are repre-
sented as file handles. Examples include Windows Sockets 2 (Winsock2) sockets or named
pipes. As the server creates its communications endpoints, it associates them with a comple-
tion port and its threads wait for incoming requests by calling GetQueuedCompletionStatus on
the port. When a thread is given a packet from the completion port, it will go off and start pro-
cessing the request, becoming an active thread. A thread will block many times during its pro-
cessing, such as when it needs to read or write data to a file on disk or when it synchronizes
with other threads. Windows detects this activity and recognizes that the completion port has
one less active thread. Therefore, when a thread becomes inactive because it blocks, a thread
waiting on the completion port will be awakened if there is a packet in the queue.

Incoming client request

Threads blocked on the completion port

Completion port

Perform CPU
processing (active)

Perform file I/O - Block
(inactive)

Perform CPU processing
(active)

Chapter 9: I/O System 587
Microsoft’s guidelines are to set the concurrency value roughly equal to the number of proces-
sors in a system. Keep in mind that it’s possible for the number of active threads for a comple-
tion port to exceed the concurrency limit. Consider a case in which the limit is specified as 1.
A client request comes in, and a thread is dispatched to process the request, becoming active.
A second request arrives, but a second thread waiting on the port isn’t allowed to proceed
because the concurrency limit has been reached. Then the first thread blocks waiting for a file
I/O, so it becomes inactive. The second thread is then released, and while it’s still active, the
first thread’s file I/O is completed, making it active again. At that point—and until one of the
threads blocks—the concurrency value is 2, which is higher than the limit of 1. Most of the
time, the active count will remain at or just above the concurrency limit.

The completion port API also makes it possible for a server application to queue privately
defined completion packets to a completion port by using the PostQueuedCompletionStatus
function. A server typically uses this function to inform its threads of external events, such as
the need to shut down gracefully.

I/O Completion Port Operation

Windows applications create completion ports by calling the Windows API CreateIoComple-
tionPort and specifying a NULL completion port handle. This results in the execution of the
NtCreateIoCompletion system service. The executive’s IoCompletion object is based on the ker-
nel synchronization object called a queue. Thus, the system service creates a completion port
object and initializes a queue object in the port’s allocated memory. (A pointer to the port also
points to the queue object because the queue is at the start of the port memory.) A queue
object has a concurrency value that is specified when a thread initializes one, and in this case
the value that is used is the one that was passed to CreateIoCompletionPort. KeInitializeQueue is
the function that NtCreateIoCompletion calls to initialize a port’s queue object.

When an application calls CreateIoCompletionPort to associate a file handle with a port, the
NtSetInformationFile system service is executed with the file handle as the primary parameter.
The information class that is set is FileCompletionInformation, and the completion port’s han-
dle and the CompletionKey parameter from CreateIoCompletionPort are the data values. NtSet-
InformationFile dereferences the file handle to obtain the file object and allocates a completion
context data structure.

Finally, NtSetInformationFile sets the CompletionContext field in the file object to point at the
context structure. When an asynchronous I/O operation completes on a file object, the I/O
manager checks to see whether the CompletionContext field in the file object is non-NULL. If
it is, the I/O manager allocates a completion packet and queues it to the completion port by
calling KeInsertQueue with the port as the queue on which to insert the packet. (Remember
that the completion port object and queue object are synonymous.)

When a server thread invokes GetQueuedCompletionStatus, the system service NtRemoveIo-
Completion is executed. After validating parameters and translating the completion port han-
dle to a pointer to the port, NtRemoveIoCompletion calls KeRemoveQueue.

588 Microsoft Windows Internals, Fourth Edition
As you can see, KeRemoveQueue and KeInsertQueue are the engines behind completion ports.
They are the functions that determine whether a thread waiting for an I/O completion packet
should be activated. Internally, a queue object maintains a count of the current number of
active threads and the maximum number of active threads. If the current number equals or
exceeds the maximum when a thread calls KeRemoveQueue, the thread will be put (in LIFO
order) onto a list of threads waiting for a turn to process a completion packet. The list of
threads hangs off the queue object. A thread’s control block data structure has a pointer in it
that references the queue object of a queue that it’s associated with; if the pointer is NULL, the
thread isn’t associated with a queue.

Windows keeps track of threads that become inactive because they block on something other
than the completion port by relying on the queue pointer in a thread’s control block. The
scheduler routines that possibly result in a thread blocking (such as KeWaitForSingleObject,
KeDelayExecutionThread, and so on) check the thread’s queue pointer. If the pointer isn’t
NULL, the functions call KiActivateWaiterQueue, a queue-related function that decrements the
count of active threads associated with the queue. If the resultant number is less than the
maximum and at least one completion packet is in the queue, the thread at the front of the
queue’s thread list is awakened and given the oldest packet. Conversely, whenever a thread
that is associated with a queue wakes up after blocking, the scheduler executes the function
KiUnwaitThread, which increments the queue’s active count.

Finally, the PostQueuedCompletionStatus Windows API function results in the execution of the
NtSetIoCompletion system service. This function simply inserts the specified packet onto the
completion port’s queue by using KeInsertQueue.

Figure 9-21 shows an example of a completion port object in operation. Even though two
threads are ready to process completion packets, the concurrency value of 1 allows only one
thread associated with the completion port to be active, and so the two threads are blocked on
the completion port.

Figure 9-21 I/O completion port operation

Waiting threads
Thread object Thread object

I/O completion
port

Queue

Active thread

Thread object

Completion
packet

Completion
packet

File object

Concurrency: 1

Chapter 9: I/O System 589
Driver Verifier

The Driver Verifier, which was introduced in Chapter 7, includes several options that check
the correctness of I/O-related operations. Figure 9-22 shows the Windows Server 2003 Driver
Verifier Manager with these options selected.

Even when you don’t select any options, the Verifier monitors drivers selected for verification,
looking for a number of illegal operations—including calling kernel-memory pool functions at
invalid IRQL, double-freeing memory, and requesting a zero-sized memory allocation.

Figure 9-22 Driver Verifier I/O-related options

Additional checks enabled by checking I/O-related options include:

■ I/O Verification When this option is selected, the I/O manager allocates IRPs for veri-
fied drivers from a special pool and their usage is tracked. In addition, the Verifier
crashes the system when an IRP is completed that contains an invalid status and when
an invalid device object is passed to the I/O manager. (In Windows 2000, this is called
I/O Verification Level 1).

■ I/O Verification Level 2 This option exists only in Windows 2000 and results in more
rigorous testing of IRP completion operations and stack usage.

■ Enhanced I/O Verification This option was introduced in Windows XP, and it monitors
all IRPs to ensure that drivers mark them correctly when completing them asynchro-
nously, that they manage device stack locations correctly, and that they delete device
objects only once. In addition, the Verifier randomly stresses drivers by sending them
fake power management and WMI IRPs, changing the order that devices are enumer-
ated, and adjusting the status of PnP and power IRPs when they complete to test for
drivers that return incorrect status from their dispatch routines.

■ DMA Checking DMA – Direct Memory Access This is a hardware-supported mechanism
that allows devices to transfer data to or from physical memory without involving the
CPU. The I/O manager provides a number of functions that drivers use to schedule and
control DMA operations, and this option enables checks for correct use of the functions
and for the buffers that the I/O manager supplies for DMA operations.

590 Microsoft Windows Internals, Fourth Edition
■ Disk Integrity Verification When you enable this option, which is available only in Win-
dows Server 2003, the Verifier monitors disk read and write operations and checksums
the associated data. When disk reads complete, it checks to see whether it has a previ-
ously stored checksum and crashes the system if the new and old checksum don’t
match, because that would indicate corruption of the disk at the hardware level.

■ SCSI Verification This was introduced in Windows XP and is not visible in the Driver
Verifier option dialog box. However, it is enabled when you select a SCSI miniport driver
for verification and enable at least one of the other options. When selected, the Verifier
checks the SCSI miniport driver’s usage of functions supplied by the SCSI miniport
library drivers, storport.sys or scsiport.sys. Checks include ensuring that the driver does
not complete a request more than once, that it doesn’t pass invalid arguments, and that
it doesn’t take more than a certain amount of time to complete operations. (See Chapter
10 for more information on SCSI miniport drivers.)

The Driver Verifier serves primarily as a tool to help device driver developers discover bugs in
their code, but it can also be a powerful tool for systems administrators experiencing crashes.
Chapter 14 describes its role in crash analysis troubleshooting.

The Plug and Play (PnP) Manager
The PnP manager is the primary component involved in supporting the ability of Windows to
recognize and adapt to changing hardware configurations. A user doesn’t need to understand
the intricacies of hardware or manual configuration to install and remove devices. For exam-
ple, it’s the PnP manager that enables a running Windows laptop that is placed on a docking
station to automatically detect additional devices located in the docking station and make
them available to the user.

Plug and Play support requires cooperation at the hardware, device driver, and operating sys-
tem levels. Industry standards for the enumeration and identification of devices attached to
buses are the foundation of Windows Plug and Play support. For example, the USB standard
defines the way that devices on a USB bus identify themselves. With this foundation in place,
Windows Plug and Play support provides the following capabilities:

■ The PnP manager automatically recognizes installed devices, a process that includes
enumerating devices attached to the system during a boot and detecting the addition
and removal of devices as the system executes.

■ Hardware resource allocation is a role the PnP manager fills by gathering the hardware
resource requirements (interrupts, I/O memory, I/O registers, or bus-specific resources)
of the devices attached to a system and, in a process called resource arbitration, optimally
assigning resources so that each device meets the requirements necessary for its opera-
tion. Because hardware devices can be added to the system after boot-time resource
assignment, the PnP manager must also be able to reassign resources to accommodate
the needs of dynamically added devices.

Chapter 9: I/O System 591
■ Loading appropriate drivers is another responsibility of the PnP manager. The PnP man-
ager determines, based on the identification of a device, whether a driver capable of
managing the device is installed on the system, and if one is, instructs the I/O manager
to load it. If a suitable driver isn’t installed, the kernel-mode PnP manager communi-
cates with the user-mode PnP manager to install the device, possibly requesting the
user’s assistance in locating a suitable set of drivers.

■ The PnP manager also implements application and driver mechanisms for the detection
of hardware configuration changes. Applications or drivers sometimes require a specific
hardware device to function, so Windows includes a means for them to request notifica-
tion of the presence, addition, or removal of devices.

Level of Plug and Play Support

Windows aims to provide full support for Plug and Play, but the level of support possible
depends on the attached devices and installed drivers. If a single device or driver doesn’t sup-
port Plug and Play, the extent of Plug and Play support for the system can be compromised. In
addition, a driver that doesn’t support Plug and Play might prevent other devices from being
usable by the system. Table 9-2 shows the outcome of various combinations of devices and
drivers that can and can’t support Plug and Play.

A device that isn’t Plug and Play–compatible is one that doesn’t support automatic detection,
such as a legacy ISA sound card. Because the operating system doesn’t know where the hard-
ware physically lies, certain operations—such as laptop undocking, sleep, and hibernation—
are disallowed. However, if a Plug and Play driver is manually installed for the device, the
driver can at least implement PnP manager–directed resource assignment for the device.

Drivers that aren’t Plug and Play–compatible include legacy drivers, such as those that ran on
Windows NT 4. Although these drivers might continue to function on later versions of
Windows, the PnP manager can’t reconfigure the resources assigned to such devices in the
event that resource reallocation is necessary to accommodate the needs of a dynamically
added device. For example, a device might be able to use I/O memory ranges A and B, and
during the boot the PnP manager assigns it a range A. If a device that can use only A is
attached to the system later, the PnP manager can’t direct the first device’s driver to reconfig-
ure itself to use range B. This prevents the second device from obtaining required resources,
which results in the device being unavailable for use by the system. Legacy drivers also impair
a machine’s ability to sleep or hibernate. (See the section “The Power Manager” more details.)

Table 9-2 Device and Driver Plug and Play Capability

Type of Driver

Type of Device Plug and Play Non–Plug and Play

Plug and Play Full Plug and Play No Plug and Play

Non–Plug and Play Possible partial Plug and Play No Plug and Play

592 Microsoft Windows Internals, Fourth Edition
Driver Support for Plug and Play

To support Plug and Play, a driver must implement a Plug and Play dispatch routine, a power
management dispatch routine (described in the section “The Power Manager” later in this
chapter), and an add-device routine. Bus drivers must support different types of Plug and Play
requests than function or filter drivers do, however. For example, when the PnP manager is
guiding device enumeration during the system boot (described in detail later in this chapter),
it asks bus drivers for a description of the devices that they find on their respective buses. The
description includes data that uniquely identifies each device as well as the resource require-
ments of the devices. The PnP manager takes this information and loads any function or filter
drivers that have been installed for the detected devices. It then calls the add-device routine of
each driver for every installed device the drivers are responsible for.

Function and filter drivers prepare to begin managing their devices in their add-device rou-
tines, but they don’t actually communicate with the device hardware. Instead, they wait for
the PnP manager to send a start-device command for the device to their Plug and Play dispatch
routine. Prior to sending the start-device command the PnP manager performs resource arbi-
tration to decide what resources to assign the device. The start-device command includes the
resource assignment that the PnP manager determines during resource arbitration. When a
driver receives a start-device command, it can configure its device to use the specified
resources. If an application tries to open a device that hasn’t finished starting, it receives an
error indicating that the device does not exist.

After a device has started, the PnP manager can send the driver additional Plug and Play com-
mands, including ones related to a device’s removal from the system or to resource reassign-
ment. For example, when the user invokes the remove/eject device utility, shown in Figure 9-
23 (accessible by right-clicking on the PC card icon in the taskbar and selecting Unplug Or
Eject Hardware), to tell Windows to eject a PCMCIA card, the PnP manager sends a query-
remove notification to any applications that have registered for Plug and Play notifications for
the device. Applications typically register for notification on their handles, which they close
during a query-remove notification. If no applications veto the query-remove request, the PnP
manager sends a query-remove command to the driver that owns the device being ejected. At
that point, the driver has a chance to deny the removal or to ensure that any pending I/O oper-
ations involving the device have completed and to begin rejecting further I/O requests aimed
at the device. If the driver agrees to the remove request and no open handles to the device
remain, the PnP manager next sends a remove command to the driver to request that the driver
discontinue accessing the device and release any resources the driver has allocated on behalf
of the device.

Chapter 9: I/O System 593
Figure 9-23 PC card remove/eject utility

When the PnP manager needs to reassign a device’s resources, it first asks the driver whether
it can temporarily suspend further activity on the device by sending the driver a query-stop
command. The driver either agrees to the request, if doing so wouldn’t cause data loss or cor-
ruption, or denies the request. As with a query-remove command, if the driver agrees to the
request, the driver completes pending I/O operations and won’t initiate further I/O requests
for the device that can’t be aborted and subsequently restarted. The driver typically queues
new I/O requests so that the resource reshuffling is transparent to applications currently
accessing the device. The PnP manager then sends the driver a stop command. At that point,
the PnP manager can direct the driver to assign different resources to the device and once
again send the driver a start-device command for the device.

The various Plug and Play commands essentially guide a device through an assortment of
operational states, forming a well-defined state-transition table, which is shown in simplified
form in Figure 9-24. (Several possible transitions and Plug and Play commands have been
omitted for clarity. Also, the state diagram depicted is that implemented by function drivers.
Bus drivers implement a more complex state diagram.) A state shown in the figure that we
haven’t discussed is the one that results from the PnP manager’s surprise-remove command.
This command results when either a user removes a device without warning, as when the user
ejects a PCMCIA card without using the remove/eject utility, or the device fails. The surprise-
remove command tells the driver to immediately cease all interaction with the device because
the device is no longer attached to the system and to cancel any pending I/O requests.

594 Microsoft Windows Internals, Fourth Edition
Figure 9-24 Device Plug and Play state transitions

Driver Loading, Initialization, and Installation

Driver loading and initialization on Windows consists of two types of loading: explicit loading
and enumeration-based loading. Explicit loading is guided by the HKLM\SYSTEM\Current-
ControlSet\Services branch of the registry, as described in the section “Service Applications”
in Chapter 4. Enumeration-based loading results when the PnP manager dynamically loads
drivers for the devices that a bus driver reports during bus enumeration.

The Start Value

In Chapter 4, we explained that every driver and Windows service has a registry key under the
Services branch of the current control set. The key includes values that specify the type of the
image (for example, Windows service, driver, and file system), the path to the driver or ser-
vice’s image file, and values that control the driver or service’s load ordering. There are two
main differences between explicit device driver loading and Windows service loading:

■ Only device drivers can specify Start values of boot-start (0) or system-start (1).

■ Device drivers can use the Group and Tag values to control the order of loading within
a phase of the boot, but unlike services, they can’t specify DependOnGroup or Depend-
OnService values.

Chapter 5 describes the phases of the boot process and explains that a driver Start value of 0
means that the operating system loader loads the driver. A Start value of 1 means that the I/O
manager loads the driver after the executive subsystems have finished initializing. The I/O man-
ager calls driver initialization routines in the order that the drivers load within a boot phase. Like
Windows services, drivers use the Group value in their registry key to specify which group they

Not started Pending remove

remove
command

remove
command

query-remove
command

surprise-remove
command

start-device
command

query-stop
command

stop
command

Stopped

Pending stop

Started Removed

Surprise remove

start-device
command

Chapter 9: I/O System 595
belong to; the registry value HKLM\SYSTEM\CurrentControlSet\Control\ServiceGroupOr-
der\List determines the order that groups are loaded within a boot phase.

A driver can further refine its load order by including a Tag value to control its order within a
group. The I/O manager sorts the drivers within each group according to the Tag values
defined in the drivers’ registry keys. Drivers without a tag go to the end of the list in their
group. You might assume that the I/O manager initializes drivers with lower-number tags
before it initializes drivers with higher-number tags, but such isn’t necessarily the case. The
registry key HKLM\SYSTEM\CurrentControlSet\Control\GroupOrderList defines tag prece-
dence within a group; with this key, Microsoft and device driver developers can take liberties
with redefining the integer number system.

Here are the guidelines by which drivers set their Start value:

■ Non–Plug and Play drivers set their Start value to reflect the boot phase they want to
load in.

■ Drivers, including both Plug and Play and non–Plug and Play drivers, that must be
loaded by the boot loader during the system boot specify a Start value of boot-start (0).
Examples include system bus drivers and the boot file system driver.

■ A driver that isn’t required for booting the system and that detects a device that a system
bus driver can’t enumerate specifies a Start value of system-start (1). An example is the
serial port driver, which informs the PnP manager of the presence of standard PC serial
ports that were detected by Setup and recorded in the registry.

■ A non–Plug and Play driver or file system driver that doesn’t have to be present when
the system boots specifies a Start value of auto-start (2). An example is the Multiple Uni-
versal Naming Convention (UNC) Provider (MUP) driver, which provides support for
UNC-based path names to remote resources (for example, (\\REMOTECOMPUTER-
NAME\SHARE).

■ Plug and Play drivers that aren’t required to boot the system specify a Start value of
demand-start (3). Examples include network adapter drivers.

The only purpose that the Start values for Plug and Play drivers and drivers for enumerable
devices have is to ensure that the operating system loader loads the driver—if the driver is
required for the system to boot successfully. Beyond that, the PnP manager’s device enumera-
tion process, described next, determines the load order for Plug and Play drivers.

Device Enumeration

The PnP manager begins device enumeration with a virtual bus driver called Root, which rep-
resents the entire computer system and acts as the bus driver for non–Plug and Play drivers
and for the HAL. The HAL acts as a bus driver that enumerates devices directly attached to the
motherboard as well as system components such as batteries. Instead of actually enumerat-
ing, the HAL relies on the hardware description the Setup process recorded in the registry to
detect the primary bus (a PCI bus in most cases) and devices such as batteries and fans.

596 Microsoft Windows Internals, Fourth Edition
The primary bus driver enumerates the devices on its bus, possibly finding other buses, for
which the PnP manager initializes drivers. Those drivers in turn can detect other devices,
including other subsidiary buses. This recursive process of enumeration, driver loading (if the
driver isn’t already loaded), and further enumeration proceeds until all the devices on the sys-
tem have been detected and configured.

As the bus drivers report detected devices to the PnP manager, the PnP manager creates an
internal tree called the device tree that represents the relationships between devices. Nodes in
the tree are called devnodes, and a devnode contains information about the device objects that
represent the device as well as other Plug and Play–related information stored in the devnode
by the PnP manager. Figure 9-25 shows an example of a simplified device tree. This system is
ACPI-compliant, so an ACPI-compliant HAL serves as the primary bus enumerator. A PCI bus
serves as the system’s primary bus, which USB, ISA, and SCSI buses are connected to.

Figure 9-25 Example device tree

The Device Manager utility, which is accessible from the Computer Management snap-in in
the Programs/Administrative Tools folder of the Start menu (and also from the Hardware tab
of the System utility in Control Panel), shows a simple list of devices present on a system in its
default configuration. You can also select the Devices By Connection option from the Device
Manager’s View menu to see the devices as they relate to the device tree. Figure 9-26 shows an
example of the Device Manager’s Devices By Connection view.

Joystick Camera
External

Plug and Play
modem

USB hub
Plug and Play

ISA sound
card

Serial port Keyboard Mouse Disk

USB
controller

PCI to ISA
bridge

SCSI adapter

ACPI fan PCI bus ACPI battery

ACPI

Root device

Chapter 9: I/O System 597
Figure 9-26 Device Manager showing the device tree

Taking device enumeration into account, the load and initialization order of drivers is as follows:

1. The I/O manager invokes the driver entry routine of each boot-start driver. If a boot
driver has child devices, the I/O manager enumerates those devices, reporting their
presence to the PnP manager. The child devices are configured and started if their driv-
ers are boot-start drivers. If a device has a driver that isn’t a boot-start driver, the PnP
manager creates a devnode for the device but doesn’t start it or load its driver.

2. After the boot-start drivers are initialized, the PnP manager walks the device tree, load-
ing the drivers for devnodes that weren’t loaded in step 1 and starting their devices. As
each device starts, the PnP manager enumerates its child devices, if it has any, starting
those devices’ drivers and performing enumeration of their children as required. The
PnP manager loads the drivers for detected devices in this step regardless of the driver’s
Start value. (The one exception is if the Start value is set to disabled.) At the end of this
step, all Plug and Play devices have their drivers loaded and are started, except devices
that aren’t enumerable and the children of those devices.

3. The PnP manager loads any drivers with a Start value of system-start that aren’t yet
loaded. Those drivers detect and report their nonenumerable devices. The PnP manager
loads drivers for those devices until all enumerated devices are configured and started.

4. The Service Control Manager loads drivers marked as auto-start.

The device tree serves to guide both the PnP manager and the power manager as they issue Plug
and Play and power IRPs to devices. In general, IRPs flow from the top of a devnode to the bot-
tom, and in some cases a driver in one devnode creates new IRPs to send to other devnodes,
always moving toward the root. The flow of Plug and Play and power IRPs is further described
later in this chapter.

598 Microsoft Windows Internals, Fourth Edition
EXPERIMENT: Dumping the Device Tree
A more detailed way to view the device tree than using Device Manager is to use the
!devnode kernel debugger command. Specifying 0 1 as command options dumps the
internal device tree devnode structures, indenting entries to show their hierarchical rela-
tionships, as shown here:

lkd> !devnode 0 1

Dumping IopRootDeviceNode (= 0x8a4b7ee8)

DevNode 0x8a4b7ee8 for PDO 0x8a4b7020

InstancePath is “HTREE\ROOT\0"

State = DeviceNodeStarted (0x308)

Previous State = DeviceNodeEnumerateCompletion (0x30d)

DevNode 0x8a4b7a50 for PDO 0x8a4b7b98

InstancePath is “Root\ACPI_HAL\0000"

State = DeviceNodeStarted (0x308)

Previous State = DeviceNodeEnumerateCompletion (0x30d)

DevNode 0x8a4af448 for PDO 0x8a4eb2c8

InstancePath is “ACPI_HAL\PNP0C08\0"

ServiceName is “ACPI"

State = DeviceNodeStarted (0x308)

Previous State = DeviceNodeEnumerateCompletion (0x30d)

DevNode 0x8a4af198 for PDO 0x8a4b1350

InstancePath is “ACPI\GenuineIntel_-_x86_Family_6_Model_9_0"

ServiceName is “gv3"

State = DeviceNodeStarted (0x308)

Previous State = DeviceNodeEnumerateCompletion (0x30d)

DevNode 0x8a4e8008 for PDO 0x8a4a8950

InstancePath is “ACPI\ThermalZone\THM_"

State = DeviceNodeStarted (0x308)

Previous State = DeviceNodeEnumerateCompletion (0x30d)

DevNode 0x8a4e82b8 for PDO 0x8a4eb640

InstancePath is “ACPI\ACPI0003\2&daba3ff&0"

ServiceName is “CmBatt"

§

Information shown for each devnode includes the InstancePath, which is the name of
the device’s enumeration registry key stored under HKLM\SYSTEM\CurrentCon-
trolSet\Enum, and the ServiceName, which corresponds to the device’s driver registry
key under HKLM\SYSTEM\CurrentControlSet\Services. To see the resources, such as
interrupts, ports, and memory assigned to each devnode, specify 0 3 as the command
options for the !devnode command.

A record of all the devices detected since the system was installed is recorded under the
HKLM\SYSTEM\CurrentControlSet\Enum registry key. Subkeys are in the form <Enumera-
tor>\<Device ID>\<Instance ID>, where the enumerator is a bus driver, the device ID is a
unique identifier for a type of device, and the instance ID uniquely identifies different
instances of the same hardware.

Chapter 9: I/O System 599
Devnodes

Figure 9-27 shows that a devnode is made up of at least two, and sometimes more, device
objects:

■ A physical device object (PDO) that the PnP manager instructs a bus driver to create when
the bus driver reports the presence of a device on its bus during enumeration. The PDO
represents the physical interface to the device.

Figure 9-27 Devnode internals

■ One or more optional filter device objects (FiDOs) that layer between the PDO and the
FDO (described next), and that are created by bus filter drivers.

■ One or more optional FiDOs that layer between the PDO and the FDO (and that layer
above any FiDOs created by bus filter drivers) that are created by lower-level filter drivers.

■ A functional device object (FDO) that is created by the driver, which is called a function
driver, that the PnP manager loads to manage a detected device. An FDO represents the
logical interface to a device. A function driver can also act as a bus driver if devices are
attached to the device represented by the FDO. The function driver often creates an
interface (described earlier) to the FDO’s corresponding PDO so that applications and
other drivers can open the device and interact with it. Sometimes function drivers are
divided into a separate class/port driver and miniport driver that work together to man-
age I/O for the FDO.

■ One or more optional FiDOs that layer above the FDO and that are created by upper-
level filter drivers.

Filter device object
(FiDO)

Functional
device object

(FDO)

Filter device object
(FiDO)

Filter device object
(FiDO)

Physical
device object

(PDO)

Upper-level
filter driver

Function
driver

Lower-level
filter driver

Bus
filter driver

Bus
driver

IRP

Devnode

600 Microsoft Windows Internals, Fourth Edition
Devnodes are built from the bottom up and rely on the I/O manager’s layering functionality,
so IRPs flow from the top of a devnode toward the bottom. However, any level in the devnode
can choose to complete an IRP. For example, the function driver can handle a read request
without passing the IRP to the bus driver. Only when the function driver requires the help of
a bus driver to perform bus-specific processing does the IRP flow all the way to the bottom
and then into the devnode containing the bus driver.

Devnode Driver Loading

So far, we’ve avoided answering two important questions: “How does the PnP manager deter-
mine what function driver to load for a particular device?” and “How do filter drivers register
their presence so that they are loaded at appropriate times in the creation of a devnode?”

The answer to both these questions lies in the registry. When a bus driver performs device enu-
meration, it reports device identifiers for the devices it detects back to the PnP manager. The
identifiers are bus-specific; for a USB bus, an identifier consists of a vendor ID (VID) for the
hardware vendor that made the device and a product ID (PID) that the vendor assigned to the
device. (See the DDK for more information on device ID formats.) Together these IDs form
what Plug and Play calls a device ID. The PnP manager also queries the bus driver for an instance
ID to help it distinguish different instances of the same hardware. The instance ID can describe
either a bus-relative location (for example, the USB port) or a globally unique descriptor (for
example, a serial number). The device ID and instance ID are combined to form a device
instance ID (DIID), which the PnP manager uses to locate the device’s key in the enumeration
branch of the registry (HKLM\SYSTEM\CurrentControlSet\Enum). Figure 9-28 presents an
example of a keyboard’s enumeration subkey. The device’s key contains descriptive data and
includes values named Service and ClassGUID (which are obtained from a driver’s INF file)
that help the PnP manager locate the device’s drivers.

Figure 9-28 Keyboard enumeration key

Chapter 9: I/O System 601
EXPERIMENT: Viewing Detailed Devnode Information in Device
Manager
By default, the Device Manager applet that you can access from the Hardware tab of the
System control panel application doesn’t show detailed information about a device
node. However, in Windows XP and Windows Server 2003 you can enable a tab called
Details by creating and setting the devmgr_show_details environment variable to a value
of 1. The tab allows you to view an assortment of fields including the devnode’s device
instance ID, hardware ID, service name, filters, and power capabilities.

The simplest way to launch the Device Manager with the Details tab is to open a com-
mand prompt and execute the following:

C:\>set devmgr_show_details=1

C:\>devmgmt.msc

This screen shot shows the selection combo box of the Details tab expanded to reveal
the types of information you can access:

602 Microsoft Windows Internals, Fourth Edition
Using the ClassGUID value, the PnP manager locates the device’s class key under HKLM\
SYSTEM\CurrentControlSet\Control\Class. The keyboard class key is shown in Figure 9-29.
The enumeration key and class key supply the PnP manager the information it needs to load
the drivers necessary for the device’s devnode. Drivers are loaded in the following order:

1. Any lower-level filter drivers specified in the LowerFilters value of the device’s enumer-
ation key.

2. Any lower-level filter drivers specified in the LowerFilters value of the device’s class key.

3. The function driver specified by the Service value in the device’s enumeration key. This
value is interpreted as the driver’s key under HKLM\SYSTEM\CurrentControlSet\Ser-
vices.

4. Any upper-level filter drivers specified in the UpperFilters value of the device’s enumer-
ation key.

5. Any upper-level filter drivers specified in the UpperFilters value of the device’s class key.

In all cases, drivers are referenced by the name of their key under HKLM\SYSTEM\Current-
ControlSet\Services.

Figure 9-29 Keyboard class key

Note The Windows DDK refers to a device’s enumeration key as its hardware key and to the
class key as the software key.

The keyboard device shown in Figure 9-28 and Figure 9-29 has no lower filter drivers. The
function driver is the i8042prt driver, and there are two upper filter drivers specified in the
keyboard’s class key: kbdclass and ctrl2cap.

Chapter 9: I/O System 603
Driver Installation

If the PnP manager encounters a device for which no driver is installed, it relies on the user-
mode PnP manager to guide the installation process. If the device is detected during the sys-
tem boot, a devnode is defined for the device but the loading process is postponed until the
user-mode PnP manager starts. (The user-mode PnP manager is implemented in \Windows\
System32\Umpnpmgr.dll and runs as a service in the Services.exe process.)

The components involved in a driver’s installation are shown in Figure 9-30. Shaded objects in
the figure correspond to components generally supplied by the system, whereas objects that
aren’t shaded are included in a driver’s installation files. First, a bus driver informs the PnP man-
ager of a device it enumerates using a DIID (1). The PnP manager checks the registry for the
presence of a corresponding function driver, and when it doesn’t find one, it informs the user-
mode PnP manager (2) of the new device by its DIID. The user-mode PnP manager first tries to
perform an automatic install without user intervention. If the installation process involves the
posting of dialog boxes that require user interaction and the currently logged-on user has
administrator privileges, (3) the user-mode PnP manager launches the Rundll32.exe application
(the same application that hosts Control Panel utilities) to execute the Hardware Installation
Wizard (\Windows\System32\Newdev.dll). If the currently logged-on user doesn’t have
administrator privileges (or if no user is logged on) and the installation of the device requires
user interaction, the user-mode PnP manager defers the installation until a privileged user
logs on. The Hardware Installation Wizard uses Setup and CfgMgr (Configuration Manager)
API functions to locate INF files that correspond to drivers that are compatible with the
detected device. This process might involve having the user insert installation media contain-
ing a vendor’s INF files, or the wizard might locate a suitable INF file in the .cab (Cabinet)
file \Windows\Driver Cache\i386\Driver.cab that contains drivers that ship with Windows.

Figure 9-30 Driver installation components

User mode

Kernel mode

Hardware
Installation

Wizard

Setup and
CfgMgr APIs

User-mode
PnP manager

Class installers
and coinstallers

Filter driver

Function driver

Filter driver

Bus driver

PnP
manager

.inf files,

.cat files,
registry

2

3

1

4

5

604 Microsoft Windows Internals, Fourth Edition
To find drivers for the new device, the installation process gets a list of hardware IDs and com-
patible IDs from the bus driver. These IDs describe all the various ways the hardware might be
identified in a driver installation file (.inf). The lists are ordered so that the most specific
description of the hardware is listed first. If matches are found in multiple INFs, more precise
matches are preferred over less precise matches, digitally signed INFs are preferred over
unsigned ones, and newer signed INFs are preferred over older signed ones. If a match is
found based on a compatible ID, the Hardware Installation Wizard can choose to prompt for
media in case a more up-to-date driver came with the hardware.

The INF file locates the function driver’s files and contains commands that fill in the driver’s
enumeration and class keys, and the INF file might direct the Hardware Installation Wizard to
(4) launch class or device co-installer DLLs that perform class or device-specific installation
steps, such as displaying configuration dialog boxes that let the user specify settings for a
device.

EXPERIMENT: Looking at a Driver’s INF File
When a driver or other software that has an INF file is installed, the system copies its
INF file to the \Windows\Inf directory. One file that will always be there is Keyboard.inf
because it’s the INF file for the keyboard class driver. View its contents by opening it in
Notepad and you should see something like this:

; Copyright (c) 1993-1996, Microsoft Corporation

[version]

signature="$Windows NT$"

Class=Keyboard

ClassGUID={4D36E96B-E325-11CE-BFC1-08002BE10318}

Provider=%MS%

LayoutFile=layout.inf

DriverVer=07/01/2001,5.1.2600.1106

[ClassInstall32.NT]

AddReg=keyboard_class_addreg

…

If you search the file for “.sys”, you’ll come across the entry that directs the user-mode
PnP manager to install the i8042prt.sys and kbdclass.sys drivers:

…

[STANDARD_CopyFiles]

i8042prt.sys

kbdclass.sys

…

Chapter 9: I/O System 605
Before actually installing a driver, the user-mode PnP manager checks the system’s driver-sign-
ing policy. The policy is stored in the registry key HKLM\SOFTWARE\Microsoft\Driver Sign-
ing\Policy if the administrator has designated a systemwide policy and in the key HKCU\
Software\Microsoft\Driver Signing\Policy if there are only per-user policies. The policy is con-
figurable using the Driver Signing Options dialog box, accessed from the Hardware tab in the
System Control Panel utility, which is shown in Figure 9-31. If the settings specify that the sys-
tem should block or warn of the installation of unsigned drivers, the user-mode PnP manager
checks the driver’s INF file for an entry that locates a catalog (a file that ends with the .cat
extension) containing the driver’s digital signature.

Figure 9-31 Driver-signing policy options

Microsoft’s WHQL tests the drivers included with Windows and those submitted by hard-
ware vendors. When a driver passes the WHQL tests, it is “signed” by Microsoft. This means
that WHQL obtains a hash, or unique value representing the driver’s files, including its image
file, and then cryptographically signs it with Microsoft’s private driver-signing key. The signed
hash is stored in a catalog file and included on the Windows installation media or returned to
the vendor that submitted the driver for inclusion with its driver.

EXPERIMENT: Viewing Catalog Files
When you install a component such as a driver that includes a catalog file, Windows
copies the catalog file to a directory under \Windows\System32\Catroot. Navigate to
that directory in Explorer and you find the subdirectory that contains .cat files. Nt5.cat
and Nt5inf.cat store the signatures for Windows system files, for example.

If you open one of the catalog files, a dialog box appears with two pages. The page
labeled General shows information about the signature on the catalog file, and the Secu-
rity Catalog has the hashes of the components that are signed with the catalog file. This
screen shot of a catalog file for ATI video drivers shows the hash for the video adapter’s

606 Microsoft Windows Internals, Fourth Edition
miniport drivers. Other hashes in the catalog are associated with the various support
DLLs that ship with the driver:

As it’s installing a driver, the user-mode PnP manager extracts the driver’s signature from its
catalog file, decrypts the signature using the public half of Microsoft’s driver-signing private/
public key pair, and compares the resulting hash with a hash of the driver file it’s about to
install. If the hashes match, the driver is verified as having passed WHQL testing. If a driver
fails the signature verification, the user-mode PnP manager acts according to the settings of
the system driver-signing policy, either failing the installation attempt, warning the user that
the driver is unsigned, or silently installing the driver.

Note Drivers installed using setup programs that manually configure the registry and copy
driver files to a system and driver files that are dynamically loaded by applications aren’t
checked for signatures. Only drivers installed using INF files are validated against the system’s
driver-signing policy.

After a driver is installed, the kernel-mode PnP manager (step 5 in Figure 9-30) starts the
driver and calls its add-device routine to inform the driver of the presence of the device it was
loaded for. The construction of the devnode then continues as described earlier.

Note In Windows XP and Windows Server 2003, the user-mode PnP manager also checks to
see whether the driver it’s about to install is on the protected driver list maintained by Windows
Update and, if so, blocks the installation with a warning to the user. Drivers that are known to
have incompatibilities or bugs are added to the list and blocked from installation. You can find
out more at www.microsoft.com/whdc/winlogo/drvsign/drv_protect.mspx.

Chapter 9: I/O System 607
The Power Manager
Just as Windows Plug and Play features require support from a system’s hardware, its power-
management capabilities require hardware that complies with the Advanced Configuration
and Power Interface (ACPI) specification (available at www.teleport.com/~acpi/spec.htm). As a
result of this requirement, the computer’s BIOS (Basic Input Output System), the code that
runs when the computer turns on, must also conform to the ACPI standard. Most x86 com-
puters manufactured since the end of 1998 are ACPI compliant.

Note Some computers, especially ones more than few years old, don’t comply with the ACPI
standard. Instead, they often conform to the older Advanced Power Management (APM) stan-
dard, which mandates fewer power-management capabilities than ACPI. Windows provides
limited power management for APM systems, but we won’t go into the details of that topic
here. In this book, we focus on the behavior of Windows on ACPI computers.

The ACPI standard defines various power levels for a system and for devices. The six system
power states are described in Table 9-3. They are referred to as S0 (fully on or working) through
S5 (fully off). Each state has the following characteristics:

■ Power consumption The amount of power the computer consumes

■ Software resumption The software state from which the computer resumes when mov-
ing to a “more on” state

■ Hardware latency The length of time it takes to return the computer to the fully on state

Table 9-3 System Power-State Definitions

State Power Consumption Software Resumption Hardware Latency

S0 (fully on) Maximum Not applicable None

S1 (sleeping) Less than S0, more than
S2

System resumes where it
left off (returns to S0)

Less than 2 seconds

S2 (sleeping) Less than S1, more than
S3

System resumes where it
left off (returns to S0)

2 or more seconds

S3 (sleeping) Less than S2; processor
is off

System resumes where it
left off (returns to S0)

Same as S2

S4 (hibernating) Trickle current to power
button and wake
circuitry

System restarts from
saved hibernate file and
resumes where it left off
prior to hibernation
(returns to S0)

Long and undefined

S5 (fully off) Trickle current to power
button

System boot Long and undefined

608 Microsoft Windows Internals, Fourth Edition
States S1 through S4 are sleeping states, in which the computer appears to be off because of
reduced power consumption. However, the computer retains enough information, either in
memory or on disk, to move to S0. For states S1 through S3, enough power is required to pre-
serve the contents of the computer’s memory so that when the transition is made to S0 (when
the user or a device wakes up the computer), the power manager continues executing where
it left off before the suspend. When the system moves to S4, the power manager saves the
compressed contents of memory to a hibernation file named Hiberfil.sys, which is large
enough to hold the uncompressed contents of memory, in the root directory of the system
volume. (Compression is used to minimize disk I/O and to improve hibernation and resume-
from-hibernation performance.) After it finishes saving memory, the power manager shuts off
the computer. When a user subsequently turns on the computer, a normal boot process
occurs, except that Ntldr checks for and detects a valid memory image stored in the hiberna-
tion file. If the hibernation file contains saved system state, Ntldr reads the contents of the file
into memory, and then resumes execution at the point in memory that is recorded in the
hibernation file.

The computer never directly transitions between states S1 and S4; instead, it must move to
state S0 first. As illustrated in Figure 9-32, when the system is moving from any of states S1
through S5 to state S0, it’s said to be waking, and when it’s transitioning from state S0 to any
of states S1 through S5, it’s said to be sleeping.

Figure 9-32 System power-state transitions

Although the system can be in one of six power states, ACPI defines devices as being in one of
four power states, D0 through D3. State D0 is fully on, and state D3 is fully off. The ACPI stan-
dard leaves it to individual drivers and devices to define the meanings of states D1 and D2,
except that state D1 must consume an amount of power less than or equal to that consumed
in state D0, and when the device is in state D2, it must consume power less than or equal to
that consumed in D1. Microsoft, in conjunction with the major hardware OEMs, has defined
a series of power management reference specifications (available on the Microsoft Web site at
www.microsoft.com/whdc/resources/respec/specs/pmref) that specify the device power states
that are required for all devices in a particular class (for the major device classes: display, net-
work, SCSI, and so on). For some devices, there’s no intermediate power state between fully
on and fully off, which results in these states being undefined.

S1–S4 (sleeping)
S5 (fully off)

S0 (fully on)

Waking

Sleeping

Chapter 9: I/O System 609
Power Manager Operation

Power management policy in Windows is split between the power manager and the individual
device drivers. The power manager is the owner of the system power policy. This ownership
means that the power manager decides which system power state is appropriate at any given
point, and when a sleep, hibernation, or shutdown is required, the power manager instructs
the power-capable devices in the system to perform appropriate system power-state transi-
tions. The power manager decides when a system power-state transition is necessary by con-
sidering a number of factors:

■ System activity level

■ System battery level

■ Shutdown, hibernate, or sleep requests from applications

■ User actions, such as pressing the power button

■ Control Panel power settings

When the PnP manager performs device enumeration, part of the information it receives
about a device is its power-management capabilities. A driver reports whether or not its
devices support device states D1 and D2 and, optionally, the latencies, or times required, to
move from states D1 through D3 to D0. To help the power manager determine when to make
system power-state transitions, bus drivers also return a table that implements a mapping
between each of the system power states (S0 through S5) and the device power states that a
device supports. The table lists the lowest possible device power state for each system state
and directly reflects the state of various power planes when the machine sleeps or hibernates.
For example, a bus that supports all four device power states might return the mapping table
shown in Table 9-4. Most device drivers turn their devices completely off (D3) when leaving
S0 to minimize power consumption when the machine isn’t in use. Some devices, however,
such as network adapter cards, support the ability to wake up the system from a sleeping
state. This ability, along with the lowest device power state in which the capability is present,
is also reported during device enumeration.

Table 9-4 Example System-to-Device Power Mappings

System Power State Device Power State

S0 (fully on) D0 (fully on)

S1 (sleeping) D2

S2 (sleeping) D2

S3 (sleeping) D2

S4 (hibernating) D3 (fully off)

S5 (fully off) D3 (fully off)

610 Microsoft Windows Internals, Fourth Edition
Driver Power Operation

When the power manager decides to make a transition between system power states, it sends
power commands to a driver’s power dispatch routine. More than one driver can be responsi-
ble for managing a device, but only one of the drivers is designated as the device power-policy
owner. This driver determines, based on the system state, a device’s power state. For example,
if the system transitions between state S0 and S1, a driver might decide to move a device’s
power state from D0 to D1. Instead of directly informing the other drivers that share the man-
agement of the device of its decision, the device power-policy owner asks the power manager,
via the PoRequestPowerIrp function, to tell the other drivers by issuing a device power com-
mand to their power dispatch routines. This behavior allows the power manager to control the
number of power commands that are active on a system at any given time. For example, some
devices in the system might require a significant amount of current to power up. The power
manager ensures that such devices aren’t powered up simultaneously.

EXPERIMENT: Viewing a Driver’s Power Mappings
In Windows XP and Windows Server 2003, you can see a driver’s system power state to
driver power state mappings with Device Manager. Open the Properties dialog box for a
device, and choose the Power State Mappings entry in the drop-down list of the Details
tab to see the mappings. (By default, Device Manager doesn’t show the Details tab. See
the experiment “Viewing Detailed Devnode Information in Device Manager” earlier in
the chapter for instructions on enabling it.)

The mappings for this disk driver show that besides fully on (D0) and fully off (D3), it
supports an intermediate state, D1, for S1. This likely represents the disk spin-down
power state.

Chapter 9: I/O System 611
Many power commands have corresponding query commands. For example, when the sys-
tem is moving to a sleep state, the power manager will first ask the devices on the system
whether the transition is acceptable. A device that is busy performing time-critical operations
or interacting with device hardware might reject the command, which results in the system
maintaining its current system power-state setting.

EXPERIMENT: Viewing the System Power Capabilities and Policy
You can view a computer’s system power capabilities by using the !pocaps kernel debug-
ger command. Here’s the output of the command when run on an ACPI-compliant lap-
top running Windows Professional:

kd> !pocaps

PopCapabilities @ 0x8046adc0

Misc Supported Features: PwrButton SlpButton Lid S1 S3 S4 S5

HiberFile FullWake

Processor Features: Thermal Throttle (MinThrottle = 03, Scale = 08)

Disk Features: SpinDown

Battery Features: BatteriesPresent

Battery 0 - Capacity: 00000000 Granularity: 00000000

Battery 1 - Capacity: 00000000 Granularity: 00000000

Battery 2 - Capacity: 00000000 Granularity: 00000000

Wake Caps

Ac OnLine Wake: Sx

Soft Lid Wake: Sx

RTC Wake: S3

Min Device Wake: Sx

Default Wake: Sx

The Misc Supported Features line reports that, in addition to S0 (fully on), the system
supports system power states S1, S3, S4, and S5 (it doesn’t implement S2) and has a
valid hibernation file to which it can save system memory when it hibernates (state S4).

The Power Options Properties dialog box, shown on the following page (available by
selecting Power Options in Control Panel), lets you configure various aspects of the sys-
tem’s power policy. The exact properties you can configure depends on the system’s
power capabilities, which we just examined.

Windows Professional and Home systems on an ACPI-compliant laptop (such as the
system on which we captured the following screen shot) generally provides the most
power-management features. On such systems, you can set the idle detection timeouts
that control when the system turns off the monitor, spins down hard disks, goes to
standby mode (moves to system power state S1), and hibernates (moves the system to
power state S4). In addition, the Advanced tab in Power Options lets you specify the
power-related behavior of the system when you press the power or sleep buttons or
close a laptop’s lid.

612 Microsoft Windows Internals, Fourth Edition
The settings you configure in Power Options directly affect values in the system’s power
policy, which you can display with the !popolicy debugger command. Here’s the output
of the command on the same system:

kd> !popolicy

SYSTEM_POWER_POLICY (R.1) @ 0x80469180

PowerButton: Off Flags: 00000003 Event: 00000000 Query UI

SleepButton: Sleep Flags: 00000003 Event: 00000000 Query UI

LidClose: Hibernate Flags: 00000001 Event: 00000000 Query

Idle: None Flags: 00000001 Event: 00000000 Query

OverThrottled: Sleep Flags: c0000004 Event: 00000000 Override

NoWakes Critical

IdleTimeout: 00000000 IdleSensitivity: 32

MinSleep: S1 MaxSleep: S3

LidOpenWake: S0 FastSleep: S1

WinLogonFlags: 00000000 S4Timeout: 00000000

VideoTimeout: 00000000 VideoDim: 6e

SpinTimeout: 00000708 OptForPower: 01

FanTolerance: 64 ForcedThrottle: 64

MinThrottle: 19

The first lines of the display correspond to the button behaviors specified on the
Advanced tab of Power Options, and on this system the power button is interpreted as an
off switch, the sleep button moves the system to a sleep state, and the closing of the laptop
lid causes the system to hibernate.

The timeout values shown at the end of the output are expressed in seconds and dis-
played in hexadecimal notation. The values reported here directly correspond to the set-
tings you can see configured in the Power Options screen shot. (The laptop is plugged in.)
For example, the video timeout is 0, meaning the monitor never turns off, and the hard
disk spin-down timeout is 0x708, which corresponds to 1800 seconds, or 30 minutes.

Chapter 9: I/O System 613
Driver Control of Device Power

Besides responding to power manager commands related to system power-state transitions, a
driver can unilaterally control the device power state of its devices. In some cases, a driver
might want to reduce the power consumption of a device it controls when the device is left
inactive for a period of time. Examples include monitors that support a dimmed mode and
disks that support spin-down. A driver can either detect an idle device itself or use facilities pro-
vided by the power manager. If the device uses the power manager, it registers the device with
the power manager by calling the PoRegisterDeviceForIdleDetection function. This function
informs the power manager of the timeout values to use to detect a device as idle and of the
device power state that the power manager should apply when it detects the device as being
idle. The driver specifies two timeouts: one to use when the user has configured the computer
to conserve energy and the other to use when the user has configured the computer for opti-
mum performance. After calling PoRegisterDeviceForIdleDetection, the driver must inform the
power manager, by calling the PoSetDeviceBusy function, whenever the device is active.

Conclusion
The I/O system defines the model of I/O processing on Windows and performs functions
that are common to or required by more than one driver. Its chief responsibility is to create
IRPs representing I/O requests and to shepherd the packets through various drivers, return-
ing results to the caller when an I/O is complete. The I/O manager locates various drivers and
devices by using I/O system objects, including driver and device objects. Internally, the Win-
dows I/O system operates asynchronously to achieve high performance and provides both
synchronous and asynchronous I/O capabilities to user-mode applications.

Device drivers include not only traditional hardware device drivers but also file system, net-
work, and layered filter drivers. All drivers have a common structure and communicate with
one another and the I/O manager by using common mechanisms. The I/O system interfaces
allow drivers to be written in a high-level language to lessen development time and to enhance
their portability. Because drivers present a common structure to the operating system, they
can be layered one on top of another to achieve modularity and reduce duplication between
drivers. Also, all Windows device drivers should be designed to work correctly on multipro-
cessor systems.

Finally, the role of the PnP manager is to work with device drivers to dynamically detect hard-
ware devices and to build an internal device tree that guides hardware device enumeration
and driver installation. The power manager works with device drivers to move devices into
low-power states when applicable to conserve energy and prolong battery life.

The next four chapters cover additional topics related to the I/O system: storage management,
file systems (including details on the NTFS file system), the cache manager, and networking.

615

Chapter 10

Storage Management

Storage management defines the way that an operating system interfaces with nonvolatile
storage devices and media. The term storage encompasses many different devices, including
tape drives, optical media, CD jukeboxes, floppy diskettes, local hard disks, and storage area
networks (SANs). Microsoft Windows provides specialized support for each of these classes
of storage media. Because our focus in this book is on the kernel components of Windows, in
this chapter we’ll concentrate on just the fundamentals of the hard-disk storage subsystem in
Windows. Significant portions of the Windows support for removable media and remote stor-
age (offline archiving) are implemented in user mode.

In this chapter, we’ll examine how kernel-mode device drivers interface file system drivers to
disk media, discuss how disks are partitioned, describe the way volume managers abstract
and manage volumes, and present the implementation of multipartition disk-management
features in Windows, including replicating and dividing file system data across physical disks
for reliability and for performance enhancement. We conclude by describing how file system
drivers mount volumes they are responsible for managing.

Storage Terminology
To fully understand the rest of this chapter, you need to be familiar with some basic terminology:

■ Disks are a physical storage device such as a hard disk, a 3.5-inch floppy disk, or a
CD-ROM.

■ A disk is divided into sectors, addressable blocks of fixed size. Sector sizes are deter-
mined by hardware. Most hard disk sectors are 512 bytes, and CD-ROM sectors are
typically 2048 bytes.

■ Partitions are collections of contiguous sectors on a disk. A partition table or other disk-
management database stores a partition’s starting sector, size, and other characteristics
and is located on the same disk as the partition.

■ Simple volumes are objects that represent sectors from a single partition that file system
drivers manage as a single unit.

■ Multipartition volumes are objects that represent sectors from multiple partitions and
that file system drivers manage as a single unit. Multipartition volumes offer perfor-
mance, reliability, and sizing features that simple volumes do not.

616 Microsoft Windows Internals, Fourth Edition
Disk Drivers
The device drivers involved in managing a particular storage device are collectively known as
a storage stack. Figure 10-1 shows each type of driver that might be present in a stack and
includes a brief description of their purpose. This chapter describes the behavior of device
drivers below the file system layer in the stack. (The file system driver operation is described
in Chapter 12.)

Figure 10-1 Windows storage stack

Ntldr

As you saw in Chapter 4, Ntldr is the Windows operating system file that conducts the first
portion of the Windows boot process. Although Ntldr isn’t technically part of the storage
stack, it is involved with storage management because it includes support for accessing disk
devices before the Windows I/O system is operational. Ntldr resides on the system volume;
the boot-sector code on the system volume executes Ntldr. Ntldr reads the Boot.ini file from
the system volume and presents the computer’s boot choices to the user. The partition names
that Boot.ini designates are in the form multi(0)disk(0)rdisk(0)partition(1). These names are
Advanced RISC Computing (ARC) names because they’re part of a standard partition-naming
scheme that Alpha firmware and other RISC processors use. Ntldr translates the name of the
Boot.ini boot entry that a user selects to the appropriate boot partition and then loads the

Application

Sends I/O request to FSI/O Subsystem

Imposes file structure on raw volumesFile system

Manages software snapshotsVolume snapshot

Presents volumes (C:, D:) to users;
supports basic and dynamic disks (RAID)

Volume manager

Manages disk partitionsPartition manager

Manages a specific device type, such
as disks, tapesClass

Miniport: Vendor supplied, functionally
linked to specific port driver; manages
hardware specific details

Disk subsystem

Port Miniport

Port: Manages a specific
transport (SCSIport for
SCSI, Storport for RAID

and FC, etc.)

Chapter 10: Storage Management 617
Windows system files (starting with the registry, Ntoskrnl.exe, and the boot drivers) into
memory to continue the boot process. In all cases, Ntldr uses the computer firmware to read
the disk containing the system volume, but as described in Chapter 4, sometimes Ntldr relies
on functions in a disk miniport driver to read from the boot volume’s disk.

Disk Class, Port, and Miniport Drivers

During initialization, the Windows I/O manager starts the hard-disk storage drivers. Storage
drivers in Windows follow a class/port/miniport architecture, in which Microsoft supplies a
storage class driver that implements functionality common to all storage devices and a storage
port driver that implements functionality common to a particular bus—such as a Small Com-
puter System Interface (SCSI) bus or an Integrated Device Electronics (IDE) system—and
OEMs supply miniport drivers that plug into the port driver to interface Windows to a partic-
ular implementation.

In the disk storage driver architecture, only class drivers conform to the standard Windows
device driver interfaces. Miniport drivers use a port driver interface instead of the device
driver interface, and the port driver simply implements a collection of device driver support
routines that interface miniport drivers to Windows. This approach simplifies the role of
miniport driver developers and, because Microsoft supplies operating system–specific port
drivers, gives miniport drivers binary portability between Microsoft Windows 98, Microsoft
Windows Millennium Edition, and Windows.

Windows includes Disk (\Windows\System32\Drivers\Disk.sys), a class driver that imple-
ments functionality common to disks. Windows also provides a handful of disk port drivers.
For example, Scsiport.sys is the port driver for disks on SCSI buses, and Atapi.sys is a port
driver for IDE-based systems. Windows Server 2003 introduces the Storport.sys port driver as
a replacement for Scsiport.sys. Storport.sys was designed to realize the high performance
capabilities of hardware RAID and Fibre Channel adapters. The Storport model is similar to
Scsiport, making it easy for vendors to migrate existing SCSI miniport drivers to Storport.
Miniport drivers that developers write to use Storport take advantage of several of Storport’s
performance enhancing features, including support for the parallel execution of I/O initiation
and completion on multiprocessor systems, more controllable I/O request-queue architec-
ture, and execution of more code at lower IRQL to minimize the duration of hardware inter-
rupt masking.

The Scsiport.sys and Atapi.sys drivers both implement a version of the disk scheduling algo-
rithm known as C-LOOK. The drivers place disk I/O requests in lists sorted by the first sector
(also known as the logical block number or LBN) at which an I/O request is directed. They
use the KeInsertByKeyDeviceQueue and KeRemoveByKeyDeviceQueue functions (docu-
mented in the Windows DDK) representing I/O requests as items and using a request’s start-
ing sector as the key required by the functions. When servicing requests, the drivers proceeed
through the list from lowest sector to highest. When they reach the end of the list the driver
starts back at the beginning, since new requests might have been inserted in the meantime. If

618 Microsoft Windows Internals, Fourth Edition
disk requests are spread throughout a disk this approach results in the disk head continu-
ously moving from near the start of a disk torward the end. Storport.sys does not implement
disk scheduling since it is commonly used for managing I/O’s directed at storage arrays where
there is no clearly-defined notion of a disk start and end.

Windows ships with several miniport drivers, including one—Aha154x.sys—for Adaptec’s
1540 family of SCSI controllers. On systems that have at least one ATAPI-based IDE device,
Pciidex.sys and Pciide.sys together provide miniport functionality. Most Windows installa-
tions include one or more of the drivers mentioned.

iSCSI Drivers

The development of iSCSI as a disk transport protocol integrates the SCSI protocol with TCP/
IP networking so that computers can communicate with block-storage devices, including
disks, over IP networks. Storage area networking (SAN) is usually architected on Fibre Chan-
nel networking, but administrators can leverage iSCSI to create relatively inexpensive SANs
from networking technology such as gigabit Ethernet to provide scalability, disaster protec-
tion, efficient backup, and data protection. Windows support for iSCSI comes in the form of
the Microsoft iSCSI Software Initiator, which can be downloaded from the Microsoft Web site
and which works on Windows 2000, Windows XP, and Windows Server 2003.

The Microsoft iSCSI Software Initiator includes several components:

■ Initiator This optional component, which consists of an iSCSI port driver (\Win-
dows\System32\Drivers\Iscsiprt.sys) and miniport driver (\Win-
dows\System32\Drivers\Msiscis.sys), uses the TCP/IP driver to implement software
iSCSI over standard Ethernet adapters and TCP/IP offloaded network adapters.

■ Initiator service This service, implemented in \Windows\System32\Iscsiexe.exe, man-
ages the discovery and security of all iSCSI initiators as well as session initiation and ter-
mination. iSCSI device discovery functionality is implemented in
\Windows\System32\Iscsium.dll and conforms to the Internet Storage Name Service
(iSNS) protocol.

■ Management applications These include Iscsicli.exe, a command-line tool for managing
iSCSI device connections and security, and the corresponding Control Panel application.

Some vendors produce iSCSI adapters that offload the iSCSI protocol to hardware. The Initia-
tor service works with these adapters, which must support iSNS, so that all iSCSI devices,
including those discovered by the Initiator service and those discovered by iSCSI hardware,
are recognized and managed through standard Windows interfaces.

Chapter 10: Storage Management 619
Multipath I/O (MPIO) Drivers

Most disk devices have one path—or series of adapters, cables, and switches—between them
and a computer. Servers requiring high levels of availability use multipathing solutions, where
more than one set of connection hardware exists between the computer and a disk so that if
a path fails the system can still access the disk via an alternate path. Without support of the
operating system or disk drivers, however, a disk with two paths, for example, appears as two
different disks. Windows includes multipath I/O support to manage multipath disks as a sin-
gle disk that relies on third-party drivers called device-specific modules (DSMs) to manage
details of the path management, such as load balancing policies that choose which path to
route requests and error detection mechanisms to inform Windows when a path fails. MPIO
support is available for Windows 2000 Server, Advanced Server, and Datacenter Server as well
as Windows Server 2003 in the form of the Microsoft MPIO Driver Development Kit that
hardware and software vendors can license.

In a Windows MPIO storage stack, shown in Figure 10-2, the Multipath Disk Driver Replace-
ment (\Windows\System32\Drivers\Mpdev.sys) replaces the functionality of the standard
Disk.sys class driver. Mpdev.sys is responsible for claiming ownership of device objects repre-
senting multipath disks—so that it can ensure that only one device object is created to repre-
sent those disks—and for locating the appropriate DSM to manage the paths to the device. The
Multipath Bus Driver (\Windows\System32\Drivers\Mpio.sys) manages connections
between the computer and the device, including power management for the device.
Mpdev.sys informs Mpio.sys of the presence of the devices for it to manage. Finally, the Mul-
tipath Port Filter (\Windows\System32\Drivers\Mpsfltr.sys) layers on top of the port driver
for a multipath disk to manage information passed up the device stack.

Figure 10-2 Windows MPIO storage stack

Mpdev.sys Vendor DSM

Mpsfltr.sys

Port Driver
Miniport

Mpio.sys

Adapter 1 Adapter 2

Disk

Path 1 Path 2

620 Microsoft Windows Internals, Fourth Edition
EXPERIMENT: Watching Physical Disk I/O
Diskmon from Sysinternals uses the disk class driver’s Event Tracing for Windows (or
ETW, which is described in Chapter 3) instrumentation to monitor I/O activity to phys-
ical disks and display it in a window. Diskmon updates once a second with new data.
For each operation, Diskmon shows the time, duration, target disk number, type and
offset, and length.

Disk Device Objects

The Windows disk class driver creates device objects that represent disks and partitions.
Device objects that represent disks have names of the form \Device\ HarddiskX\DRX; the
number that identifies the disk replaces both Xs. The disk class driver uses the I/O manager’s
IoReadPartitionTable function in Windows 2000 and IoReadParititionTableEx function in
Windows XP and Windows Server 2003 to identify partitions and create device objects that
represent them. As miniport drivers present the disks that they identify early in the boot pro-
cess to the disk class driver, the disk class driver invokes the IoReadPartitionTable or IoRead-
PartitionTableEx function for each disk. These functions invoke sector-level disk I/O that the
class, port, and miniport drivers provide to read a disk’s MBR-style or GPT-style partition table
(described later in this chapter) and construct an internal representation of the disk’s hard
partitioning. The disk class driver creates device objects to represent each primary partition
(including logical drives within extended partitions) that the driver obtains from IoReadParti-
tionTable or IoReadPartitionTableEx. The following is a sample partition object name:

\Device\Harddisk0\DP(1)0x7e000-0x7ff50c00+2

Chapter 10: Storage Management 621
This name identifies the first partition on a system’s first disk. The first two hexadecimal num-
bers (0x7e000 and 0x7ff50c00) designate the start and length of the partition, and the last
number is an internal identifier that the class driver assigns.

To maintain compatibility with applications that use the Windows NT 4 naming conventions,
the disk class driver creates symbolic links with Windows NT 4–formatted names that refer to
the device objects the driver created. For example, the Disk class driver creates the link
\Device\Harddisk0\Partition0 to refer to \Device\Harddisk0\DR0, and \Device\Harddisk0\
Partition1 to refer to the first partition device object of the first disk. The class driver also creates
the same symbolic links in Windows that represent physical drives that it created in Windows
NT 4 systems. Thus, for example, the link \??\PhysicalDrive0 references \Device\Harddisk0\
DR0. Figure 10-3 shows the Winobj utility from Sysinternals displaying the contents of a Hard-
disk directory for a basic disk. You can see the physical disk and partition device objects in the
right-hand pane.

Figure 10-3 Winobj showing a Harddisk directory of a basic disk

As you saw in Chapter 3, the Windows API is unaware of the Windows object manager
namespace. Windows reserves two different namespace subdirectories to use, one of which is
the \Global?? (\?? on Windows 2000) subdirectory. (The other is the \BaseNamedObjects sub-
directory, which is covered in Chapter 3.) In this subdirectory, Windows makes available device
objects that Windows applications interact with—including COM and parallel ports—as well as
disks. Because disk objects actually reside in other subdirectories, Windows uses symbolic links
to connect names under \Global?? with objects located elsewhere in the namespace. For each
physical disk on a system, the I/O manager creates a \Global??\PhysicalDriveX link that points
to \Device\HarddiskX\Partition0. (Numbers, starting from 0, replace X.) Windows applica-
tions that directly interact with the sectors on a disk open the disk by calling the Windows
CreateFile function and specifying the name \\.\PhysicalDriveX (in which X is the disk number)
as a parameter. The Windows application layer converts the name to \Global??\PhysicalDriveX
before handing the name to the Windows object manager.

622 Microsoft Windows Internals, Fourth Edition
Partition Manager

The Partition Manager, \Windows\System32\Drivers\Partmgr.sys, is responsible for notify-
ing the Plug and Play (PnP) manager of the existence of partitions so that volume manager
drivers, described later in this chapter, can receive notification of the creation and deletion of
partitions.

To become aware of partitions, Partition Manager acts as the function driver for disk device
objects created by disk class drivers. When the system boots, it reads the partition tables of
attached disks (by relying on the kernel’s IoReadPartitionTable function on Windows 2000
and IoReadPartitionTableEx on Windows XP and Windows Server 2003) and reports their
existence to the PnP manager. Volume manager device drivers receive the notification of par-
titions for disks that they manage and define volume objects when they account for all the par-
titions that make up the volumes. Because Partition Manager’s device object’s filter disk device
objects, Partition Manager monitors I/O request packets (IRPs) related to partition table mod-
ification and can therefore update its internal partition map and notify the PnP manager of
partition creations and deletions.

Volume Management
Windows introduces the concept of basic and dynamic disks. Windows calls disks that rely
exclusively on the MBR-style or GPT partitioning scheme basic disks. Dynamic disks are new
to Windows 2000 and implement a more flexible partitioning scheme than that of basic disks.
The fundamental difference between basic and dynamic disks is that dynamic disks support
the creation of new multipartition volumes. Recall from the list of terms in the preceding sec-
tion that multipartition volumes provide performance, sizing, and reliability features not sup-
ported by simple volumes. Windows manages all disks as basic disks unless you manually
create dynamic disks or convert existing basic disks (with enough free space) to dynamic
disks. Microsoft recommends you use basic disks unless you require the multipartition-func-
tionality of dynamic disks.

Note Basic disks support only multipartition volumes carried forward from an upgraded
Windows NT 4 installation with the exception of Windows Server 2003, which does not support
multipartition volumes on basic disks. For a number of reasons, including the fact that laptops
usually have only one disk and laptop disks typically don’t move easily between computers,
Windows uses only basic disks on laptops. In addition, only fixed disks can be dynamic, and
disks located on IEEE 1394 or USB buses as well as on shared cluster server disks are always
basic disks.

Chapter 10: Storage Management 623
Windows Volume Management Evolution
The evolution of storage management in Windows begins with MS-DOS, Microsoft’s
first operating system. As hard disks became larger, MS-DOS needed to accommodate
them. To do so, one of the first steps Microsoft took was to let MS-DOS create multiple
partitions, or logical disks, on a physical disk. MS-DOS could format each partition with
a different file system type (FAT12 or FAT16) and assign each partition a different drive
letter. MS-DOS versions 3 and 4 were severely limited in the size and number of parti-
tions they could create, but in MS-DOS 5 the partitioning scheme fully matured.
MS-DOS 5 was able to divide a disk into any number of partitions of any size.

Windows NT borrowed the partitioning scheme that evolved in MS-DOS both to pro-
vide disk compatibility with MS-DOS and Windows 3.x and to let the Windows NT
development team rely on proven tools for disk management. Microsoft extended the
basic concepts of MS-DOS disk partitioning in Windows NT to support storage-manage-
ment features that an enterprise-class operating system requires: disk spanning and
fault tolerance. Starting with the first version of Windows NT, version 3.1, systems
administrators have been able to create volumes that comprise multiple partitions,
which allows large volumes to consist of partitions from multiple physical disks and to
implement fault tolerance through software-based data redundancy.

Although this MS-DOS-style partitioning support in versions of Windows NT prior to
Windows 2000 is flexible enough to support most storage-management tasks, it suffers
from several drawbacks. One drawback is that most disk-configuration changes require
a reboot before taking effect. In today’s world of servers that must remain on line for
months or even years at a time, any reboot—even a planned reboot—is a major incon-
venience. Another drawback is that the Windows NT 4 registry stores multipartition
disk-configuration information for MS-DOS-style partitions. This arrangement means
that moving configuration information is onerous when you move disks between sys-
tems, and you can easily lose configuration information when you need to reinstall the
operating system. Finally, a requirement that each volume have a unique drive letter in
the A through Z range plagues users of all Microsoft operating systems prior to Win-
dows 2000 with an upper limit on the number of possible local and remote volumes
they can create.

Windows includes three types of partitioning that enable it to overcome the limitations
mentioned when necessary: Master Boot Record (MBR)–style, GUID Partition Table
(GPT), and Logical Disk Manager (LDM).

624 Microsoft Windows Internals, Fourth Edition
Basic Disks

This section describes the two types of partitioning, MBR-style and GPT, that Windows uses
to define volumes on basic disks, and FtDisk, the volume manager driver that presents the vol-
umes to file system drivers. The Windows 2000 Disk Manager recommends that you make
any unpartitioned disk a dynamic disk, but Windows Server 2003, like Windows XP and Win-
dows 2000 Professional, silently defaults to defining all disks as basic disks.

MBR-Style Partitioning

The standard BIOS implementations that x86 hardware uses dictate one requirement of the
partitioning format in Windows—that the first sector of the primary disk contains the Master
Boot Record (MBR). When an x86 processor boots, the computer’s BIOS reads the MBR and
treats part of the MBR’s contents as executable code. The BIOS invokes the MBR code to ini-
tiate an operating system boot process after the BIOS performs preliminary configuration of
the computer’s hardware. In Microsoft operating systems, including Windows, the MBR also
contains a partition table. A partition table consists of four entries that define the locations of
as many as four primary partitions on a disk. The partition table also records a partition’s type.
Numerous predefined partition types exist, and a partition’s type specifies which file system
the partition includes. For example, partition types exist for FAT32 and NTFS. A special par-
tition type, an extended partition, contains another MBR with its own partition table. The
equivalent of a primary partition in an extended partition is called a logical drive. By using
extended partitions, Microsoft’s operating systems overcome the apparent limit of four parti-
tions per disk. In general, the recursion that extended partitions permit can continue indefi-
nitely, which means that no upper limit exists to the number of possible partitions on a disk.
The Windows boot process makes evident the distinction between primary and logical drives.
The system must mark one primary partition of the primary disk as active. The Windows code
in the MBR loads the code stored in the first sector of the active partition (the system volume)
into memory and then transfers control to that code. Because of the role in the boot process
played by this first sector in the primary partition, Windows designates the first sector of any
partition as the boot sector. Recall from Chapter 4 that every partition formatted with a file
system has a boot sector that stores information about the structure of the file system on that
partition.

GUID Partition Table Partitioning

As part of an initiative to provide a standardized and extensible firmware platform for operat-
ing systems to use during their boot process, Intel has designed the Extensible Firmware
Interface (EFI) specification. EFI includes a mini–operating system environment imple-
mented in firmware (typically ROM) that operating systems use early in the system boot pro-
cess to load system diagnostics and their boot code. One of the first targets of EFI is IA-64, so
the IA-64 versions of Windows use EFI. (You can still choose to create disks with the old-style
MBR portioning.) You can find a complete description of EFI at http://developer.intel.com/
technology/efi.

Chapter 10: Storage Management 625
EFI defines a partitioning scheme, called the GUID (Globally Unique Identifier) Partition
Table (GPT) that addresses some of the shortcomings of MBR-style partitioning. For example,
the sector addresses that the GPT partition structures use are 64 bits wide instead of 32 bits.
A 32-bit sector address is sufficient to access only 2 terabytes (TB) of storage, while GPT
allows the addressing of disk sizes into the foreseeable future. Other advantages of the GPT
scheme include the fact that it uses cyclic redundancy checksums (CRC) to ensure the integ-
rity of the partition table, and it maintains a backup copy of the partition table. GPT takes its
name from the fact that in addition to storing a 36-byte Unicode partition name for each par-
tition, it assigns each partition a GUID.

Figure 10-4 shows a sample GPT partition layout. Like for MBR partitioning, the first sector of
a GPT disk is an MBR that serves to protect the GPT partitioning in case the disk is accessed
from a non-GPT aware operating system. However, the second and last sectors of the disk
store the GPT partition table headers with the actual partition table following the second sec-
tor and preceding the last sector. With its extensible list of partitions, GPT partitioning
doesn’t require nested partitions, as MBR partitions do.

Figure 10-4 Example GPT partition layout

Note Because Windows doesn’t support the creation of multipartition volumes on basic
disks, a new basic disk partition is the equivalent of a volume. For this reason, the Disk Man-
agement MMC snap-in uses the term partition when you create a volume on a basic disk.

Basic Disk Volume Manager

The FtDisk driver (\Windows\System32\Drivers\Ftdisk.sys) creates disk device objects that
represent volumes on basic disks and plays an integral role in managing all basic disk volumes,
including simple volumes. For each volume, FtDisk creates a device object of the form \Device\
HarddiskVolumeX, in which X is a number (starting from 1) that identifies the volume.

M
BR

Partition
table header

0 1 ... n Partition
table header0 1 ... n

Partition 1

Start
partition

End
partition Last usable block

LBAnLBA1
Start

partition
End

partition

First usable block

LBA0

Primary partition table Backup partition table

Note: LBA = Logical Block Address

626 Microsoft Windows Internals, Fourth Edition
FtDisk is actually a bus driver because it’s responsible for enumerating basic disks to detect
the presence of basic volumes and report them to the Windows PnP manager. To implement
this enumeration, FtDisk leverages the PnP manager, with the aid of the partition manager
(Partmgr.sys) driver to determine what basic disk partitions exist. The partition manager reg-
isters with the PnP manager so that Windows can inform the partition manager whenever the
disk class driver creates a partition device object. The partition manager informs FtDisk about
new partition objects through a private interface and creates filter device objects that the par-
tition manager then attaches to the partition objects. The existence of the filter objects
prompts Windows to inform the partition manager whenever a partition device object is
deleted so that the partition manager can update FtDisk. The disk class driver deletes a parti-
tion device object when a partition in the Disk Management Microsoft Management Console
(MMC) snap-in is deleted. As FtDisk becomes aware of partitions, it uses the basic disk con-
figuration information to determine the correspondence of partitions to volumes and creates
a volume device object when it has been informed of the presence of all the partitions in a vol-
ume’s description.

Windows volume drive-letter assignment, a process described shortly, creates drive-letter sym-
bolic links under the \Global?? (\?? on Windows 2000) object manager directory that point
to the volume device objects that FtDisk creates. When the system or an application accesses
a volume for the first time, Windows performs a mount operation that gives file system drivers
the opportunity to recognize and claim ownership for volumes formatted with a file system
type they manage. (Mount operations are described in the section “Volume Mounting” later in
this chapter.)

Dynamic Disks

As we’ve stated, dynamic disks are the disk format in Windows necessary for creating multi-
partition volumes such as mirrors, stripes and RAID-5 (described later in the chapter).
Dynamic disks are partitioned using Logical Disk Manager (LDM) partitioning. The LDM
subsystem in Windows, which consists of user-mode and device driver components, oversees
dynamic disks. Microsoft licenses LDM from VERITAS Software, which originally developed
LDM technology for UNIX systems. Working closely with Microsoft, VERITAS ported its LDM
to Windows to provide the operating system with more robust partitioning and multipartition
volume capabilities. A major difference between LDM’s partitioning and MBR and GPT parti-
tioning is that LDM maintains one unified database that stores partitioning information for all
the dynamic disks on a system—including multipartition-volume configuration.

Note LDM’s UNIX version incorporates disk groups, in which all the dynamic disks that the
system assigns to a disk group share a common database. VERITAS’s commercial volume-man-
agement software for Windows also includes disk groups, but the Windows LDM implementa-
tion includes only one disk group.

Chapter 10: Storage Management 627
The LDM Database

The LDM database resides in a 1-MB reserved space at the end of each dynamic disk. The
need for this space is the reason Windows requires free space at the end of a basic disk
before you can convert it to a dynamic disk. The LDM database consists of four regions,
which Figure 10-5 shows: a header sector that LDM calls the Private Header, a table of con-
tents area, a database records area, and a transactional log area. (The fifth region shown in
Figure 10-5 is simply a copy of the Private Header.) The Private Header sector resides 1 MB
before the end of a dynamic disk and anchors the database. As you spend time with Win-
dows, you’ll quickly notice that it uses GUIDs to identify just about everything, and disks
are no exception. A GUID (globally unique identifier) is a 128-bit value that various com-
ponents in Windows use to uniquely identify objects. LDM assigns each dynamic disk a
GUID, and the Private Header sector notes the GUID of the dynamic disk on which it resides—
hence the Private Header’s designation as information that is private to the disk. The Private
Header also stores the name of the disk group, which is the name of the computer concate-
nated with Dg0 (for example, DarylDg0 if the computer’s name is Daryl), and a pointer to the
beginning of the database table of contents. (As mentioned earlier, the Windows implementa-
tion of LDM includes only one disk group, so the disk group name will always end with Dg0.)
For reliability, LDM keeps a copy of the Private Header in the disk’s last sector.

The database table of contents is 16 sectors in size and contains information regarding the
database’s layout. LDM begins the database record area immediately following the table of
contents with a sector that serves as the database record header. This sector stores informa-
tion about the database record area, including the number of records it contains, the name
and GUID of the disk group the database relates to, and a sequence number identifier that
LDM uses for the next entry it creates in the database. Sectors following the database record
header contain 128-byte fixed-size records that store entries that describe the disk group’s
partitions and volumes.

Figure 10-5 LDM database layout

A database entry can be one of four types: partition, disk, component, and volume. LDM uses
the database entry types to identify three levels that describe volumes. LDM connects entries
with internal object identifiers. At the lowest level, partition entries describe soft partitions,
which are contiguous regions on a disk; identifiers stored in a partition entry link the entry to

Transactional
log

Table of
contents

Database
records

Private Header Database
record header

Private Header
mirror

1 MB

628 Microsoft Windows Internals, Fourth Edition
a component and disk entry. A disk entry represents a dynamic disk that is part of the disk
group and includes the disk’s GUID. A component entry serves as a connector between one or
more partition entries and the volume entry each partition is associated with. A volume entry
stores the GUID of the volume, the volume’s total size and state, and a drive-letter hint. Disk
entries that are larger than a database record span multiple records; partition, component,
and volume entries rarely span multiple records.

LDM requires three entries to describe a simple volume: a partition, component, and volume
entry. The following listing shows the contents of a simple LDM database that defines one
200-MB volume that consists of one partition:

Disk Entry Volume Entry Component Entry Partition Entry

Name: Disk1 Name: Volume1 Name: Volume1-01 Name: Disk1-01

GUID: XXX-XX... ID: 0x408 ID: 0x409 ID: 0x407

Disk ID: 0x404 State: ACTIVE Parent ID: 0x408 Parent ID: 0x409

Size: 200MB Disk ID: 0x404

GUID: XXX-XX... Start: 300MB

Drive Hint: H: Size: 200MB

The partition entry describes the area on a disk that the system assigned to the volume, the
component entry connects the partition entry with the volume entry, and the volume entry
contains the GUID that Windows uses internally to identify the volume. Multipartition vol-
umes require more than three entries. For example, a striped volume (which is described later
in the chapter) consists of at least two partition entries, a component entry, and a volume
entry. The only volume type that has more than one component entry is a mirror; mirrors
have two component entries, each of which represents one-half of the mirror. LDM uses two
component entries for mirrors so that when you break a mirror, LDM can split it at the com-
ponent level, creating two volumes with one component entry each.

The final area of the LDM database is the transactional log area, which consists of a few sec-
tors for storing backup database information as the information is modified. This setup safe-
guards the database in case of a crash or power failure because LDM can use the log to return
the database to a consistent state.

EXPERIMENT: Using LDMDump to View the LDM Database
You can use LDMDump from Sysinternals to view detailed information about the con-
tents of the LDM database. LDMDump takes a disk number as a command-line argument,
and its output is usually more than a few screens in size, so you should pipe its output to
a file for viewing in a text editor—for example, ldmdump /d0 > disk.txt. The following exam-
ple shows excerpts of LDMDump output. The LDM database header displays first, fol-
lowed by the LDM database records that describe a 4-GB disk with a 4-GB simple volume.
The volume’s database entry is listed as Volume1. At the end of the output, LDMDump
lists the soft partitions and definitions of volumes it locates in the database.

Chapter 10: Storage Management 629
C:\>ldump /d0

Logical Disk Manager Configuration Dump v1.03

Copyright (C) 2000-2002 Mark Russinovich

PRIVATE HEAD:

Signature : PRIVHEAD

Version : 2.11

Disk Id : b78e4169-2e39-4a57-a98b-afd7131392f9

Host Id : 1b77da20-c717-11d0-a5be-00a0c91db73c

Disk Group Id : 2ea3c400-c92a-4172-9286-de46dda1098a

Disk Group Name : Vmware03Dg0

Logical disk start : 3F

Logical disk size : 7FF54B (4094 MB)

Configuration start: 7FF7E0

Configuration size : 800 (1 MB)

Number of TOCs : 1

TOC size : 7FE (1023 KB)

Number of Configs : 1

Config size : 5AC (726 KB)

Number of Logs : 1

Log size : DC (110 KB)

TOC 0:

Signature : TOCBLOCK

Sequence : 0x9

Config bitmap start: 0x11

Config bitmap size : 0x5AC

...

VBLK DATABASE:

0x000004: [000004] <Disk>

Name : Disk1

Object Id : 0x0403

Disk Id : b78e4169-2e39-4a57-a98b-afd7131392f9

0x000005: [000002] <DiskGroup>

Name : Vmware03Dg0

Object Id : 0x0401

GUID : 2ea3c400-c92a-4172-9286-de46dda1098a

0x000006: [000006] <Volume>

Name : Volume1

Object Id : 0x0406

Volume state: ACTIVE

Size : 0x007FB68A (4086 MB)

GUID : e6ee6edc-d1ba-11d8-813e-806e6f6e6963

Drive Hint : C:

...

PARTITION LAYOUT:

Disk Disk1:

Disk1-01 Offset: 0x00000000 Length: 0x007FB68A (4086 MB)

VOLUME DEFINITIONS: Volume1 Size: 0x007FB68A (4086 MB)

Volume1-01 -

Disk1-01 VolumeOffset: 0x00000000 Offset: 0x00000000 Length: 0x007FB68A

630 Microsoft Windows Internals, Fourth Edition
LDM and GPT or MBR-Style Partitioning

When you install Windows on a computer, one of the first things it requires you to do is to cre-
ate a partition on the system’s primary physical disk. Windows defines the system volume on
this partition to store the files that it invokes early in the boot process. In addition, Windows
Setup requires you to create a partition that serves as the home for the boot volume, onto
which the setup program installs the Windows system files and creates the system directory
(\Windows). The system and boot volumes can be the same volume, in which case you don’t
have to create a new partition for the boot volume. The nomenclature that Microsoft defines
for system and boot volumes is somewhat confusing. The system volume is where Windows
places boot files, including the boot loader (Ntldr) and Ntdetect, and the boot volume is
where Windows stores operating system files such as Ntoskrnl.exe, the core kernel file.

Although the partitioning data of a dynamic disk resides in the LDM database, LDM imple-
ments MBR-style partitioning or GPT partitioning so that the Windows boot code can find the
system and boot volumes, when the volumes are on dynamic disks. (Ntldr and the IA64 firm-
ware, for example, know nothing about LDM partitioning.) If a disk contains the system or
boot volumes, partitions in the MBR or GPT partition table describe the location of those vol-
umes. Otherwise, one partition encompasses the entire usable area of the disk. LDM marks
this partition as type “LDM,” a partition type new to Windows 2000. The region encompassed
by this place-holding MBR-style or GPT partition is where LDM creates partitions that the
LDM database organizes. On MBR-partitioned disks the LDM database resides in hidden sec-
tors at the end of the disk and on GPT-partitioned disks there exists an LDM metadata parti-
tion that encompasses the LDM database near the beginning of the disk.

Another reason LDM creates an MBR-style or GPT partition table is so that legacy disk-man-
agement utilities, including those that run under Windows and under other operating sys-
tems in dual-boot environments, don’t mistakenly believe a dynamic disk is unpartitioned.

Because LDM partitions aren’t described in the MBR-style or GPT partition table of a disk,
they are called soft partitions; MBR-style and GPT partitions are called hard partitions. Figure
10-6 illustrates this dynamic disk layout on an MBR-style partitioned disk.

Figure 10-6 Internal dynamic disk organization

Master boot record
LDM partition area

1 MB

LDM database

Chapter 10: Storage Management 631
Dynamic Disk Volume Manager

The Disk Management MMC snap-in DLL (DMDiskManager, located in \Windows\
System32\Dmdskmgr.dll) and shown in Figure 10-7, uses DMAdmin, the LDM Disk Adminis-
trator service (\Windows\System32\Dmadmin.exe), to create and change the contents of the
LDM database. When you launch the Disk Management MMC snap-in, DMDiskManager loads
into memory and starts DMAdmin, if it’s not already running. DMAdmin reads the LDM data-
base from each disk and returns the information it obtains to DMDiskManager. If DMAdmin
detects a database from another computer’s disk group, it notes that the volumes on the disk
are foreign and lets you import them into the current computer’s database if you want to use
them. As you change the configuration of dynamic disks, DMDiskManager informs DMAdmin
of the changes and DMAdmin updates its in-memory copy of the database. When DMAdmin
commits changes, it passes the updated database to DMIO, the Dmio.sys device driver. DMIO
is the dynamic disk equivalent of FtDisk, so it controls access to the on-disk database and cre-
ates device objects that represent the volumes on dynamic disks. When you exit Disk Manage-
ment, DMDiskManager stops and unloads the DMAdmin service.

Figure 10-7 Disk Management MMC snap-in

DMIO doesn’t know how to interpret the database it oversees. DMConfig (\Windows\
System32\Dmconfig.dll), a DLL that DMAdmin loads, and another device driver, DMBoot
(Dmboot.sys), are responsible for interpreting the database. DMConfig knows how to both
read and update the database; DMBoot knows only how to read the database. DMBoot loads
during the boot process if another LDM driver, DMLoad (Dmload.sys), determines that at
least one dynamic disk is present on the system. DMLoad makes this determination by asking
DMIO, and if at least one dynamic disk is present, DMLoad starts DMBoot, which scans the
LDM database. DMBoot informs DMIO of the composition of each volume it encounters so
that DMIO can create device objects to represent the volumes. DMBoot unloads from memory
immediately after it finishes its scan. Because DMIO has no database interpretation logic, it is
relatively small. Its small size is beneficial because DMIO is always loaded.

632 Microsoft Windows Internals, Fourth Edition
Like FtDisk, DMIO is a bus driver and creates a device object for each dynamic disk volume
with a name in the form \Device\HarddiskDmVolumes\PhysicalDmVolumes\BlockVol-
umeX, in which X is an identifier that DMIO assigns to the volume. In addition, DMIO creates
another device object that represents raw (unstructured) I/O in a volume named
\Device\HarddiskDmVolumes\PhysicalDmVolumes\RawVolumeX. Figure 10-8 shows the
device objects that DMIO created on a system that consists of three dynamic disk volumes.
DMIO also creates numerous symbolic links in the object manager namespace for each vol-
ume, starting with one link in the form \Device\HarddiskDmVolumes\ComputerNameDg0\
VolumeY for each volume. DMIO replaces ComputerName with the name of the computer and
replaces Y with a volume identifier (different from the internal identifier that DMIO assigns to
the device objects). These links refer to the block-device objects under the PhysicalDmVolumes
directory.

Figure 10-8 DMIO driver device objects

Note Another driver present in Windows 2000 is DiskPerf (Disk Performance driver, located
at \Windows\System32\Drivers\Diskperf.sys). DiskPerf attaches device objects to the device
objects that represent physical disks (for example, \Device\Harddisk0\Partition0) so that it can
monitor I/O requests targeted at disks and generate performance-related statistics for the Per-
formance tool to present. Statistics include bytes read and written per second, transfers per
second, and the amount of time spent performing disk I/O. On Windows XP and Windows
Server 2003, DiskPerf’s functionality is implemented in the Partition Manager driver because it
already filters physical disk device objects to implement its other functions (described earlier in
this chapter).

Multipartition Volume Management

FtDisk and DMIO are responsible for presenting volumes that file system drivers manage and
for mapping I/O directed at volumes to the underlying partitions that they’re made of. For sim-
ple volumes, this process is straightforward: the volume manager ensures that volume-relative

Chapter 10: Storage Management 633
offsets are translated to disk-relative offsets by adding the volume-relative offset to the volume’s
starting disk offset.

Multipartition volumes are more complex because the partitions that make up a volume can
be located on discontiguous partitions or even on different disks. Some types of multiparti-
tion volumes use data redundancy, so they require more involved volume-to-disk–offset trans-
lation. Thus, DMIO must process all I/O requests aimed at the multipartition volumes they
manage by determining which partitions the I/O ultimately affects.

The following types of multipartition volumes are available in Windows:

■ Spanned volumes

■ Mirrored volumes

■ Striped volumes

■ RAID-5 volume

After describing multipartition-volume partition configuration and logical operation for each of
the multipartition-volume types, we’ll cover the way that the FtDisk and DMIO drivers handle
IRPs that a file system driver sends to multipartition volumes. The term volume manager is used to
represent DMIO throughout the explanation of multipartition volumes because, as mentioned
earlier in the chapter, FtDisk only supports multipartition-volume type migrated from NT 4.

Spanned Volumes

A spanned volume is a single logical volume composed of a maximum of 32 free partitions on
one or more disks. The Windows Disk Management MMC snap-in combines the partitions
into a spanned volume, which can then be formatted for any of the Windows-supported file
systems. Figure 10-9 shows a 100-MB spanned volume identified by drive letter D: that has
been created from the last third of the first disk and the first third of the second. Spanned vol-
umes were called volume sets in Windows NT 4.

Figure 10-9 Spanned volume

A spanned volume is useful for consolidating small areas of free disk space into one larger vol-
ume or for creating a single, large volume out of two or more small disks. If the spanned volume
has been formatted for NTFS, it can be extended to include additional free areas or additional
disks without affecting the data already stored on the volume. This extensibility is one of the big-

NTFS
Volume 2

NTFS
Volume 1

NTFS
Volume 3

NTFS
Volume 2

C:
(100 MB)

D:
(50 MB)

D:
(50 MB)

E:
(100 MB)

634 Microsoft Windows Internals, Fourth Edition
gest benefits of describing all data on an NTFS volume as a file. NTFS can dynamically increase
the size of a logical volume because the bitmap that records the allocation status of the volume
is just another file—the bitmap file. The bitmap file can be extended to include any space added
to the volume. Dynamically extending a FAT volume, on the other hand, would require the FAT
itself to be extended, which would dislocate everything else on the disk.

A volume manager hides the physical configuration of disks from the file systems installed on
Windows. NTFS, for example, views volume D: in Figure 10-9 as an ordinary 100-MB volume.
NTFS consults its bitmap to determine what space in the volume is free for allocation. It then
calls the volume manager to read or write data beginning at a particular byte offset on the vol-
ume. The volume manager views the physical sectors in the spanned volume as numbered
sequentially from the first free area on the first disk to the last free area on the last disk. It
determines which physical sector on which disk corresponds to the supplied byte offset.

Striped Volumes

A striped volume is a series of up to 32 partitions, one partition per disk, that gets combined
into a single logical volume. Striped volumes are also known as RAID level 0 (RAID-0) vol-
umes. Figure 10-10 shows a striped volume consisting of three partitions, one on each of three
disks. (A partition in a striped volume need not span an entire disk; the only restriction is that
the partitions on each disk be the same size.)

Figure 10-10 Striped volume

To a file system, this striped volume appears to be a single 450-MB volume, but a volume manager
optimizes data storage and retrieval times on the striped volume by distributing the volume’s data
among the physical disks. The volume manager accesses the physical sectors of the disks as if
they were numbered sequentially in stripes across the disks, as illustrated in Figure 10-11.

Figure 10-11 Logical numbering of physical sectors on a striped volume

Stripe 1
2
3
4
5
6
7

(150 MB) (150 MB) (150 MB) 1
2
3
4
5
6
7

(150 MB) (150 MB) (150 MB)

0 1 2 3 4 5 6 7
8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 ...

Chapter 10: Storage Management 635
Because each stripe is a relatively narrow 64 KB (a value chosen to prevent individual reads
and writes from accessing two disks), the data tends to be distributed evenly among the disks.
Stripes thus increase the probability that multiple pending read and write operations will be
bound for different disks. And because data on all three disks can be accessed simultaneously,
latency time for disk I/O is often reduced, particularly on heavily loaded systems.

Spanned volumes make managing disk volumes more convenient, and striped volumes
spread the I/O load over multiple disks. These two volume-management features don’t pro-
vide the ability to recover data if a disk fails, however. For data recovery, a volume manager
implements three redundant storage schemes: mirrored volumes, RAID-5 volumes, and sector
sparing. (Sector sparing and NTFS support for sector sparing are described in Chapter 12.)
These features are created with the Windows Disk Management administrative tool.

Mirrored Volumes

In a mirrored volume, the contents of a partition on one disk are duplicated in an equal-sized
partition on another disk. Mirrored volumes are sometimes referred to as RAID level 1 (RAID-
1). A mirrored volume is shown in Figure 10-12.

Figure 10-12 Mirrored volume

When a program writes to drive C:, the volume manager writes the same data to the same loca-
tion on the mirror partition. If the first disk or any of the data on its C: partition becomes
unreadable because of a hardware or software failure, the volume manager automatically
accesses the data from the mirror partition. A mirror volume can be formatted for any of the
Windows-supported file systems. The file system drivers remain independent and are not
affected by the volume manager’s mirroring activity.

Mirrored volumes can aid in read I/O throughput on heavily loaded systems. When I/O activ-
ity is high, the volume manager balances its read operations between the primary partition
and the mirror partition (accounting for the number of unfinished I/O requests pending from
each disk). Two read operations can proceed simultaneously and thus theoretically finish in
half the time. When a file is modified, both partitions of the mirror set must be written, but
disk writes are done asynchronously, so the performance of user-mode programs is generally
not affected by the extra disk update.

C:

C:
(mirror)

636 Microsoft Windows Internals, Fourth Edition
Mirrored volumes are the only multipartition volume type supported for system and boot vol-
umes. The reason for this is that the Windows boot code, including the MBR code and Ntldr,
don’t have the sophistication required to understand multipartition volumes—mirrored vol-
umes are the exception because the boot code treats them as simple volumes, reading from
the half of the mirror marked as the boot or system drive in the MBR-style partition table.
Because the boot code doesn’t modify the disk, it can safely ignore the other half of the mirror.

EXPERIMENT: Watching Mirrored Volume I/O Operations
Using the Windows Performance tool, you can verify that write operations directed at
mirrored volumes copy to both disks that make up the mirror and that read operations,
if relatively infrequent, occur primarily from one half of the volume. This experiment
requires three hard disks and a Windows 2000 server or Windows Server 2003 system.
If you don’t have three disks or a server system, you can skip the experiment setup
instructions and view the Performance tool screen shot in this experiment that demon-
strates the experiment’s results.

Use the Disk Management MMC snap-in to create a mirrored volume. To do this, per-
form the following steps:

1. Run Disk Management by starting Computer Management, expanding the Storage
tree, and selecting Disk Management (or by inserting Disk Management as a snap-
in in an MMC console).

2. Right-click on an unallocated space of a drive, and select Create Volume.

3. Follow the instructions in the Create Volume Wizard to create a simple volume.
(Make sure there’s enough room on another disk for a volume of the same size as
the one you’re creating.)

4. Right-click on the new volume, and select Add Mirror from the context menu.

Once you have a mirrored volume, run the Performance tool and add counters for the
PhysicalDisk performance object for both disk instances that contain a partition
belonging to the mirror. Select the Disk Reads/Sec and Disk Writes/Sec counters for
each instance. Select a large directory from the third disk (the one that isn’t part of the
mirrored volume), and copy it to the mirrored volume. The Performance tool output
window should look something like the following as the copy operation progresses.

Chapter 10: Storage Management 637
The top two lines, which overlap throughout the timeline, are the Disk Writes/Sec
counters for each disk. The bottom two lines are the Disk Reads/Sec lines. The screen
shot reveals that the volume manager (in this case DMIO) is writing the copied file data
to both halves of the volume but primarily reading from only one. This read behavior
occurs because the number of outstanding I/O operations during the copy didn’t war-
rant that the volume manager perform more aggressive read-operation load balancing.

RAID-5 Volumes

A RAID-5 volume is a fault tolerant variant of a regular striped volume. RAID-5 volumes imple-
ment RAID level 5. They are also known as striped volumes with parity because they are based
on the striping approach taken by striped volumes. Fault tolerance is achieved by reserving
the equivalent of one disk for storing parity for each stripe. Figure 10-13 is a visual represen-
tation of a RAID-5 volume.

Figure 10-13 RAID-5 volume

Stripe 1
2
3
4
5
6
7

Disk 1 Disk 2 Disk 3

1
2
3
4
5
6
7

Parity

638 Microsoft Windows Internals, Fourth Edition
In Figure 10-13, the parity for stripe 1 is stored on disk 1. It contains a byte-for-byte logical
sum (XOR) of the first stripe on disks 2 and 3. The parity for stripe 2 is stored on disk 2, and
the parity for stripe 3 is stored on disk 3. Rotating the parity across the disks in this way is an
I/O optimization technique. Each time data is written to a disk, the parity bytes correspond-
ing to the modified bytes must be recalculated and rewritten. If the parity were always written
to the same disk, that disk would be busy continually and could become an I/O bottleneck.

Recovering a failed disk in a RAID-5 volume relies on a simple arithmetic principle: in an equa-
tion with n variables, if you know the value of n – 1 of the variables, you can determine the
value of the missing variable by subtraction. For example, in the equation x + y = z, where z
represents the parity stripe, the volume manager computes z – y to determine the contents of
x; to find y, it computes z – x. The volume manager uses similar logic to recover lost data. If a
disk in a RAID-5 volume fails or if data on one disk becomes unreadable, the volume manager
reconstructs the missing data by using the XOR operation (bitwise logical addition).

If disk 1 in Figure 10-13 fails, the contents of its stripes 2 and 5 are calculated by XORing the
corresponding stripes of disk 3 with the parity stripes on disk 2. The contents of stripes 3 and
6 on disk 1 are similarly determined by XORing the corresponding stripes of disk 2 with the
parity stripes on disk 3. At least three disks (or rather, three same-sized partitions on three
disks) are required to create a RAID-5 volume.

The Volume Namespace

Drive-letter assignment is an aspect of storage management that changed significantly from
Windows NT 4 to Windows 2000. Even so, Windows includes support for migrating drive-let-
ter assignments made in a Windows NT 4 installation that upgrades to Windows. Windows
NT 4 drive-letter assignments are stored in HKLM\SYSTEM\Disk. After the upgrade proce-
dure reads and stores the information in Windows-specific locations, the system no longer ref-
erences the Disk key.

The Mount Manager

The Mount Manager device driver (Mountmgr.sys), assigns drive letters for dynamic disk vol-
umes and basic disk volumes created after Windows is installed, CD-ROMs, floppies, and
removable devices. Windows stores all drive-letter assignments under HKLM\SYSTEM\
MountedDevices. If you look in the registry under that key, you’ll see values with names such
as \??\Volume{X} (where X is a GUID) and values such as \DosDevices\C:. Every volume has
a volume name entry, but a volume doesn’t necessarily have an assigned drive letter. Figure
10-14 shows the contents of an example Mount Manager registry key. Note that the Mounted-
Devices key, like the Disk key in Windows NT 4, isn’t included in a control set and so isn’t pro-
tected by the last known good boot option. (See the section “Accepting the Boot and Last
Known Good” in Chapter 4 for more information on control sets and the last known good
boot option.)

Chapter 10: Storage Management 639
The data that the registry stores in values for basic disk volume drive letters and volume
names is the Windows NT 4–style disk signature and the starting offset of the first partition
associated with the volume. The data that the registry stores in values for dynamic disk vol-
umes includes the volume’s DMIO-internal GUID. When the Mount Manager initializes dur-
ing the boot process, it registers with the Windows Plug and Play subsystem so that it receives
notification whenever either FtDisk or DMIO creates a volume. When the Mount Manager
receives such a notification, it determines the new volume’s GUID or disk signature and uses
the GUID or signature as a guide to look in its internal database, which reflects the contents
of the MountedDevices registry key. The Mount Manager then determines whether its inter-
nal database contains the drive-letter assignment. If the volume has no entry in the database
the Mount Manager asks either FtDisk or DMIO (whichever created the volume) for a sug-
gested drive-letter assignment and stores that in the database. FtDisk doesn’t return sugges-
tions and DMIO looks at the drive-letter hint in the volume’s database entry.

Figure 10-14 Mounted devices listed in the Mount Manager’s registry key

If no suggested drive-letter assignment exists for the volume, the Mount Manager uses the first
unassigned drive letter (if one exists), defines a new assignment, creates a symbolic link for
the assignment (for example, \Global??\D: on Windows XP and Windows Server 2003 or
\??\D: on Windows 2000), and updates the MountedDevices registry key. If there are no
available drive letters, no drive-letter assignment is made. At the same time, the Mount Man-
ager creates a volume symbolic link (that is, \Global??\Volume{X}) that defines a new volume
GUID if the volume doesn’t already have one. This GUID is different from the volume GUIDs
that DMIO uses internally.

Mount Points

Mount points let you link volumes through directories on NTFS volumes, which makes volumes
with no drive-letter assignment accessible. For example, an NTFS directory that you’ve named
C:\Projects could mount another volume (NTFS or FAT) that contains your project directories

640 Microsoft Windows Internals, Fourth Edition
and files. If your project volume had a file you named \CurrentProject\Description.txt, you
could access the file through the path C:\Projects\CurrentProject\Description.txt. What makes
mount points possible is reparse point technology. (Reparse points are discussed in more detail
in Chapter 12.)

A reparse point is a block of arbitrary data with some fixed header data that Windows associ-
ates with an NTFS file or directory. An application or the system defines the format and behav-
ior of a reparse point, including the value of the unique reparse point tag that identifies
reparse points belonging to the application or system and specifies the size and meaning of
the data portion of a reparse point. (The data portion can be as large as 16 KB.) Reparse points
store their unique tag in a fixed segment. Any application that implements a reparse point
must supply a file system filter driver to watch for reparse-related return codes for file opera-
tions that execute on NTFS volumes, and the driver must take appropriate action when it
detects the codes. NTFS returns a reparse status code whenever it processes a file operation
and encounters a file or directory with an associated reparse point.

The Windows NTFS file system driver, the I/O manager, and the object manager all partly
implement reparse point functionality. The object manager initiates pathname-parsing opera-
tions by using the I/O manager to interface with file system drivers. Therefore, the object man-
ager must retry operations for which the I/O manager returns a reparse status code. The I/O
manager implements pathname modification that mount points and other reparse points
might require, and the NTFS file system driver must associate and identify reparse point data
with files and directories. You can therefore think of the I/O manager as the reparse point file
system filter driver for many Microsoft-defined reparse points.

An example of a reparse point application is a Hierarchical Storage Management (HSM) system,
such as Windows Remote Storage Service (RSS) that Windows 2000 Server and Windows
Server 2003 include, that uses reparse points to designate files that an administrator moves to
offline tape storage. When a user tries to access an offline file, the HSM filter driver detects the
reparse status code that NTFS returns, communicates with a user-mode service to retrieve the
file from offline storage, deletes the reparse point from the file, and lets the file operation retry
after the service retrieves the file. This is exactly how the RSS filter driver, Rsfilter.sys, uses
reparse points.

If the I/O manager receives a reparse status code from NTFS and the file or directory for which
NTFS returned the code isn’t associated with one of a handful of built-in Windows reparse
points, no filter driver claimed the reparse point. The I/O manager then returns an error to the
object manager that propagates as a “file cannot be accessed by the system” error to the appli-
cation making the file or directory access.

Mount points are reparse points that store a volume name (\Global??\Volume{X}) as the reparse
data. When you use the Disk Management MMC snap-in to assign or remove path assignments
for volumes, you’re creating mount points. You can also create and display mount points by using
the built-in command-line tool Mountvol.exe (\Windows\System32\Mountvol.exe).

Chapter 10: Storage Management 641
The Mount Manager maintains the Mount Manager remote database on every NTFS volume
in which the Mount Manager records any mount points defined for that volume. The database
file, $MountMgrRemoteDatabase, resides in the NTFS root directory. Mount points move
when a disk moves from one system to another and in dual-boot environments—that is, when
booting between multiple Windows installations—because of the Mount Manager remote
database’s existence. NTFS also keeps track of mount points in the NTFS metadata file
\$Extend\$Reparse. (NTFS doesn’t make any of its metadata files available for viewing by
applications.) NTFS stores mount-point information in the metadata file so that Windows can
easily enumerate the mount points defined for a volume when a Windows application, such
as Disk Management, requests mount-point definitions.

EXPERIMENT: Recursive Mount Points
This experiment uses Filemon from www.sysinternals.com to show the interesting behav-
ior caused by a recursive mount point. A recursive mount point is a mount point that links
to the same volume it’s on. Performing a recursive directory listing on a recursive mount
point produces file access traces that clearly demonstrate how NTFS treats mount points.

To create and view a mount point, perform the following steps:

1. Open a command prompt or Windows Explorer window, and create a directory
on an NTFS drive named \Recurse.

2. In the Disk Management MMC snap-in, right-click on the volume and select
Change Drive Letter And Path.

3. When the Add/Remove dialog box appears, enter the path to the directory you
created (for example, I:\Recurse).

4. Start Filemon, and in the Drives menu, uncheck all the volumes except the one on
which you created the mount point.

Now you’re ready to generate a recursive mount-point trace. Open a command prompt,
and execute the command dir /s I:\Recurse. If you look at all the file accesses that refer-
ence Recurse in the Filemon’s trace of the subsequent file operations, you’ll notice that
the command prompt first accesses I:\Recurse, then I:\Recurse\Recurse, and so on,
recursing deeper and deeper.

The application attempts to perform a directory listing at each level of the recursion, but
whenever it encounters the mount point, it digs into it to try another directory listing.
NTFS returns a reparse status code, which tells the object manager to back up one level
and try again. Finally, when it gets back to the root directory, the application examines
the file or directory that it had found deep in the mount-point recursion. The application
never receives a reparse code because of the object manager–directed retry activity. The
object manager processes the reparse codes as it receives them from NTFS when it per-
forms directory lookups.

642 Microsoft Windows Internals, Fourth Edition
Filemon presents request types as their native IRP type, so a directory or file open
appears as an IRP_MJ_CREATE request. A file or directory close is IRP_MJ_CLOSE, and
a directory query is an IRP_ MJ_DIRECTORY_CONTROL request with FileBothDirectory-
Info in Filemon’s Other column.

To prevent buffer overflows and infinite loops, both command prompt and Windows
Explorer halt their recursion when the directory depth reaches 32 or the pathname
exceeds 256 characters, whichever comes first.

Volume Mounting

Because Windows assigns a drive letter to a volume doesn’t mean that the volume contains
data that has been organized in a file system format that Windows recognizes. The volume-
recognition process consists of a file system claiming ownership for a partition; the process
takes place the first time the kernel, a device driver, or an application accesses a file or direc-
tory on a volume. After a file system driver signals its responsibility for a partition, the I/O
manager directs all IRPs aimed at the volume to the owning driver. Mount operations in Win-
dows consist of three components: file system driver registration, volume parameter blocks
(VPBs), and mount requests.

Note In Windows Server 2003 Enterprise and Datacenter Edition, the automatic mounting
of volumes as the Volume Manager reports their presence is disabled to prevent the system
from aggressively mounting volumes attached to a System Area Network (SAN). You can use
the Diskpart command-line utility, which Windows Server 2003 includes, to enable and dis-
able automounting behavior, and the Mountvol utility, also included in the system, to mount
volumes.

Chapter 10: Storage Management 643
The I/O manager oversees the mount process and is aware of available file system drivers
because all file system drivers register with the I/O manager when they initialize. The I/O
manager provides the IoRegisterFileSystem function to local disk (rather than network) file sys-
tem drivers for this registration. When a file system driver registers, the I/O manager stores a
reference to the driver in a list that the I/O manager uses during mount operations.

Every device object contains a VPB data structure, but the I/O manager treats VPBs as mean-
ingful only for volume device objects. A VPB serves as the link between a volume device object
and the device object that a file system driver creates to represent a mounted file system
instance for that volume. If a VPB’s file system reference is empty, no file system has mounted
the volume. The I/O manager checks a volume device object’s VPB whenever an open API that
specifies a filename or a directory name on a volume device object executes.

For example, if the mount manager assigns drive letter D to the second volume on a system,
it creates a \Global??\D: symbolic link that resolves to the device object \Device\
HarddiskVolume2. A Windows application that attempts to open the \Temp\Test.txt file on
the D: drive specifies the name D:\Temp\Test.txt, which the Windows subsystem converts to
\Global??\D:\Temp\Test.txt before invoking NtCreateFile, the kernel’s file-open routine.
NtCreateFile uses the object manager to parse the name, and the object manager encounters
the \Device\ HarddiskVolume2 device object with the path \Temp\Test.txt still unresolved.
At that point, the I/O manager checks to see whether \Device\HarddiskVolume2’s VPB refer-
ences a file system. If it doesn’t, the I/O manager asks each registered file system driver via a
mount request whether the driver recognizes the format of the volume in question as the
driver’s own.

EXPERIMENT: Looking at VPBs
You can look at the contents of a VPB by using the !vpb kernel debugger command.
Because the VPB is pointed to by the device object for a volume, you must first locate a
volume device object. To do this, you must dump a volume manager’s driver object,
locate a device object that represents a volume, and display the device object, which
reveals its VPB field.

If your system has a dynamic disk, you can use the !drvobj driver object viewing com-
mand on the DMIO driver; otherwise, you need to specify the FtDisk driver. Here’s an
example:

kd> !drvobj ftdisk

Driver object (818aec50) is for:

\Driver\Ftdisk

Driver Extension List: (id , addr)

Device Object list:

818a5290 817e96f0 817e98b0 817e9030

818a73b0 818a7810 8182d030

644 Microsoft Windows Internals, Fourth Edition
The !drvobj command lists the addresses of the device objects a driver owns. In this
example, there are seven device objects. One of them represents the programmatic inter-
face to the device driver, and the rest are volume device objects. Because the objects are
listed in reverse order of the way that they were created and the driver creates the device
driver interface object first, you know the first device object listed is that of a volume.
Now execute the !devobj kernel debugger command on the volume device object
address:

kd> !devobj 818a5290

Device object (818a5290) is for:

HarddiskVolume6 \Driver\Ftdisk DriverObject 818aec50

Current Irp 00000000 RefCount 3 Type 00000007 Flags 00001050

Vpb 818a5da8 Dacl e1000384 DevExt 818a5348 DevObjExt 818a53f8 Dope 818a50a8

DevNode 818a5ae8

ExtensionFlags (0xa8000000) DOE_RAW_FDO, DOE_DESIGNATED_FDO

Unknown flags 0x08000000

AttachedDevice (Upper) 86b52b58 \Driver\VolSnap

Device queue is not busy.

The !devobj command shows the VPB field for the volume device object. (The device
object shown is named HarddiskVolume6.) Now you’re ready to execute the !vpb com-
mand:

kd> !vpb 818a5da8

Vpb at 0x818a5da8

Flags: 0x1 mounted

DeviceObject: 0x850dcac0

RealDevice: 0x818a5290

RefCount: 3

Volume Label: BACKUP

The command reveals that the volume device object is mounted by a file system driver
that has assigned the volume the name BACKUP. The RealDevice field in the VPB points
back to the volume device object, and the DeviceObject field points to the mounted file
system device object.

The convention followed by file system drivers for recognizing volumes mounted with their for-
mat is to examine the volume’s boot record, which is stored in the first sector of the volume.
Boot records for Microsoft file systems contain a field that stores a file system format type. File
system drivers usually examine this field, and if it indicates a format they manage, they look at
other information stored in the boot record. This information usually includes a file system
name field and enough data for the file system driver to locate critical metadata files on the vol-
ume. NTFS, for example, will recognize a volume only if the type field is NTFS, the name field is
“NTFS,” and the critical metadata files described by the boot record are consistent.

If a file system driver signals affirmatively, the I/O manager fills in the VPB and passes the
open request with the remaining path (that is, \Temp\Test.txt) to the file system driver. The
file system driver completes the request by using its file system format to interpret the data

Chapter 10: Storage Management 645
that the volume stores. After a mount fills in a volume device object’s VPB, the I/O manager
hands subsequent open requests aimed at the volume to the mounted file system driver. If no
file system driver claims a volume, Raw—a file system driver built into Ntoskrnl.exe—claims
the volume and fails all requests to open files on that partition. Figure 10-15 shows a simplified
example (that is, the figure omits the file system driver’s interactions with the Windows cache
and memory managers) of the path that I/O directed at a mounted volume follows.

Figure 10-15 Mounted volume I/O flow

Instead of having every file system driver loaded, regardless of whether or not they have any
volumes to manage, Windows tries to minimize memory usage by using a surrogate driver
named File System Recognizer (\Windows\System32\Drivers\Fs_rec.sys) to perform pre-
liminary file system recognition. File System Recognizer knows enough about each file system
format that Windows supports to be able to examine a boot record and determine whether it’s
associated with a Windows file system driver. When the system boots, File System Recognizer
registers as a file system driver, and when the I/O manager calls it during a file system mount
operation for a new volume, File System Recognizer loads the appropriate file system driver if
the boot record corresponds to one that isn’t loaded. After loading a file system driver, File
System Recognizer forwards the mount IRP to the driver and lets the file system driver claim
ownership of the volume.

Aside from the boot volume, which a driver mounts while the kernel is initializing, file system
drivers mount most volumes when the Chkdsk file system consistency-checking application
runs during a boot sequence. The boot-time version of Chkdsk is a native application (as
opposed to a Windows application) named Autochk.exe (\Windows\System32\Autochk.exe),
and the Session Manager (\Windows\System32\Smss.exe) runs it because it is specified as a

NTFS file system driverNTFS file system
device object

\Device\HarddiskVolume2
Disk class driver

Disk port driver
Disk miniport driver

2

3

1

4

5

Application directs file-level (e.g., D:\temp\test.txt)
I/O request at drive letter corresponding to partition
\Device\HarddiskVolume2.

Application I/O request

I/O manager
follows VPB to
mounted file
system device
object.

VPB file
system

reference

I/O manager
routes I/O request
to file system driver
that owns the file
system device
object. File system performs sector-level

volume I/O to service I/O request.

I/O manager
routes sector-level
I/O to Disk class
driver.

646 Microsoft Windows Internals, Fourth Edition
boot-run program in the HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\
BootExecute value. Chkdsk accesses each drive letter to see whether the volume associated with
the letter requires a consistency check.

One place in which mounting can occur more than once for the same disk is with removable
media. Windows file system drivers respond to media changes by querying the disk’s volume
identifier. If they see the volume identifier change, the driver dismounts the disk and attempts
to remount it.

Volume I/O Operations

File system drivers manage data stored on volumes but rely on volume managers to interact
with storage drivers to transfer data to and from the disk or disks on which a volume resides.
File system drivers obtain references to a volume manager’s volume objects through the
mount process and then send the volume manager requests via the volume objects. Applica-
tions can also send the volume manager requests, bypassing file system drivers, when they
want to directly manipulate a volume’s data. File-undelete programs are an example of appli-
cations that do this, and so is the DiskProbe utility that’s part of the Windows resource kits.

Whenever a file system driver or application sends an I/O request to a device object that rep-
resents a volume, the Windows I/O manager routes the request (which comes in an IRP—a
self-contained package) to the volume manager that created the target device object. Thus, if
an application wants to read the boot sector of the second volume on the system (which is a
simple volume in this example), it opens the device object \Device\HarddiskVolume2 and
then sends the object a request to read 512 bytes starting at offset zero on the device. The I/O
manager sends the application’s request in the form of an IRP to the volume manager that
owns the device object, notifying it that the IRP is directed at the HarddiskVolume2 device.

Because volumes are logical conveniences that Windows uses to represent contiguous areas
on one or more physical disks, the volume manager must translate offsets that are relative to
a volume to offsets that are relative to the beginning of a disk. If volume 2 consists of one par-
tition that begins 4096 sectors into the disk, the volume manager would adjust the IRP’s
parameters to designate an offset with that value before passing the request to the disk class
driver. The disk class driver uses a miniport driver to carry out physical disk I/O and read
requested data into an application buffer designated in the IRP.

Some examples of a volume manager’s operations will help clarify its role when it handles
requests aimed at multipartition volumes. If a striped volume consists of two partitions, parti-
tion 1 and partition 2, that are represented by the device object \Device\HarddiskDmVolumes\

Chapter 10: Storage Management 647
PhysicalDmVolumes\BlockVolume3, as Figure 10-16 shows, and an administrator has assigned
drive letter D: to the stripe, the I/O manager defines the link \Global??\D: to reference
\Device\HarddiskDmVolumes\ComputerNameDg0\Volume3, where ComputerName is the
name of the computer. Recall from earlier that this link is also a symbolic link, and it points to
the corresponding volume device object in the PhysicalDmVolumes directory (in this case,
BlockVolume3). The DMIO device object intercepts file system disk I/O aimed at \Device\
HarddiskDmVolumes\PhysicalDmVolumes\BlockVolume3, and the DMIO driver adjusts the
request before passing it to the Disk class driver. The adjustment that DMIO makes configures
the request to refer to the correct offset of the request’s target stripe on either partition 1 or
partition 2. If the I/O spans both partitions of the volume, DMIO must issue two subsidiary I/O
requests, one aimed at each disk.

Figure 10-16 DMIO I/O operations

In the case of writes to a mirrored volume, DMIO splits each request so that each half of the
mirror receives the write operation. For mirrored reads, DMIO performs a read from half of a
mirror, relying on the other half when a read operation fails.

DMIO driver

\Device\Harddisk0\DR0

\Device\HarddiskDmVolumes\
PhysicalDmVolumes\

BlockVolume3

Disk class driver

Disk port driver

Disk miniport driver

2

3

1

4

5

File system driver issues
sector-level I/O.

I/O manager routes IRP
to DMIO driver.

DMIO driver determines which
partition of the spanned volume
the IRP is directed at and creates
a subsidiary IRP directed at the
disk the partition is located on.

I/O manager routes the IRP
to the disk class driver.

Disk class driver performs
hardware I/O to access the disk.

\Device\Harddisk1\DR1

Stripe partition 1

Stripe partition 2

Harddisk0

Harddisk1

648 Microsoft Windows Internals, Fourth Edition
Virtual Disk Service

A company that makes storage products such as RAID adapters, hard disks, or storage arrays
has to implement custom applications for installing and managing their devices. The use of
different management applications for different storage devices has obvious drawbacks from
the perspective of system administration. These drawbacks include learning multiple inter-
faces and the inability to use standard Windows storage management tools to manage third-
party storage devices.

Windows Server 2003 introduces the Virtual Disk Service (or VDS, located at \Windows\
System32\Vds.exe), which provides a unified high-level storage interface so that administra-
tors can manage storage devices from different vendors using the same user interfaces. VDS is
shown in Figure 10-17. VDS exports a COM-based API that allows applications and scripts to
create and format disks, and to view and manage hardware RAID adapters. For example, a
utility can use the VDS API to query the list of physical disks that map to a RAID logical unit
number (LUN). Windows disk management utilities, including the Disk Management MMC
snap-in and the Diskpart and Diskraid (available in the Windows Server 2003 Deployment
Kit) command-line tools, use VDS APIs.

Figure 10-17 VDS service architecture

Management
applications

Disk
management

snap-in

Command-line
tools

Virtual disk service

Software providers
Hardware
providers

LUNs

RAID array

Hardware

Microsoft functionality

Non-Microsoft functionality

- Basic disk
- Dynamic disk

- DiskPart
- DiskRAID

Chapter 10: Storage Management 649
VDS supplies two interfaces, one for software providers and one for hardware providers:

■ Software providers implement interfaces to high-level storage abstractions such as
disks, disk partitions, and volumes. Examples of operations supported by these inter-
faces include creating, extending and deleting volumes, adding or breaking mirrors,
formatting and assigning drive letters. VDS looks for registered software providers in
HKLM\System\CurrentControlSet\Services\Vds\SoftwareProviders. Windows
Server 2003 includes the VDS Dynamic Disk Provider (\Windows\System32\
Vdsdyndr.dll) for interfacing to dynamic disks and the VDS Basic Provider (\Win-
dows\System32\Vdsbas.dll) for interfacing to basic disks.

■ Hardware vendors implement VDS hardware providers as DLLs that register under
HKLM\System\CurrentControlSet\Services\Vds\HardwareProviders and that trans-
late device-independent VDS commands into commands for their hardware. The hard-
ware provider allows for management of a storage subsystem such as a hardware RAID
array or adapter card and supported operations include creating, extending, deleting,
masking and unmasking LUNs.

When an application initiates a connection to the VDS API and the VDS service isn’t started,
the Svchost process hosting the RPC service starts the VDS loader process (\Windows\
System32\Vdsldr.exe), which starts the VDS service process and then exits. When the last
connection to the VDS API closes, the VDS service process exits.

Volume Shadow Copy Service

A limitation of many backup utilities relates to open files. If an application has a file open for
exclusive access, a backup utility can’t gain access to the file’s contents. Even if the backup
utility can access an open file, the utility runs the risk of creating an inconsistent backup. Con-
sider an application that updates a file at its beginning and then at its end. A backup utility
saving the file during this operation might record an image of the file that reflects the start of
the file before the application’s modification and the end after the modification. If the file is
later restored the application might deem the entire file corrupt because it might be prepared
to handle the case where the beginning has been modified and not the end, but not vice versa.
These two problems illustrate why most backup utilities skip open files altogether.

Windows XP introduces the Volume Shadow Copy service (\Windows\System32\
Vssvc.exe), which allows the built-in backup utility to record consistent views of all files,
including open ones. The Volume Shadow Copy service acts as the command center of an
extensible backup core that enables independent software vendors (ISVs) to plug-in “writers”
and providers. A writer is a software component that enables shadow-copy-aware application
to receive freeze and thaw notifications to ensure that backup copies of their data files are
internally consistent, whereas providers allow ISVs with unique storage schemes to integrate
with the shadow copy service. For instance, an ISV with mirrored storage devices might define
a shadow copy as the frozen half of a split mirrored volume. Figure 10-18 shows the relation-
ship between the shadow copy service, writers, and providers.

650 Microsoft Windows Internals, Fourth Edition
Figure 10-18 Shadow copy service, writers, and providers

The Microsoft Shadow Copy Provider (\Windows\System32\Drivers\Volsnap.sys) is a pro-
vider that ships with Windows to implement software-based snapshots of volumes. It is a type
of driver called a storage filter driver that layers between file system drivers and volume driv-
ers (the drivers that present views of the disk sectors that represent a logical drive) so that it
can see the I/O directed at a volume. When the backup utility starts a backup operation, it
directs the Microsoft Shadow Copy Provider driver to create a volume shadow copy for the
volumes that include files and directories being recorded. The driver freezes I/O to the vol-
umes in question and creates a shadow volume for each. For example, if a volume’s name in
the Object Manager namespace is \Device\HarddiskVolume0, the shadow volume would
have a name like \Device\HarddiskVolumeShadowCopyN, where N is a unique ID.

EXPERIMENT: Looking at Microsoft Shadow Copy Provider Filter
Device Objects
You can see the Microsoft Shadow Copy Provider driver’s device objects attached to
each volume device on a Windows XP or Windows Server 2003 system in a kernel
debugger. Every system has at least one volume, and the following command displays
the device object of the first volume on a system:

0: kd> !devobj \device\harddiskvolume1

Device object (86b9daf8) is for:

HarddiskVolume1 \Driver\Ftdisk DriverObject 86b6af38

Current Irp 00000000 RefCount 2 Type 00000007 Flags 00001050

Vpb 86b90008 Dacl e1000384 DevExt 86b9dbb0 DevObjExt 86b9dc98 Dope 86ba33e8 DevN

ode 86b71320

ExtensionFlags (0xa8000000) DOE_RAW_FDO, DOE_DESIGNATED_FDO

Unknown flags 0x08000000

AttachedDevice (Upper) 86b687f8 \Driver\VolSnap Device queue is not busy.

Volume shadow
copy service

2

3

1

4

Backup application
requests shadow copy

Writers told to
freeze activity

Providers asked to create
volume shadow copies

Writers told to
resume ("thaw")
activity

Oracle

SQL

Backup
application

Volume shadow
copy driver
(volsnap.sys)

Mirror
provider

Providers

Writers

Chapter 10: Storage Management 651
The AttachedDevice field in the output for the !devobj command displays the address of
any device object, and the name of the owning driver, attached (filtering) to the device
object being examined. For volume device objects, you should see a device object
belonging to the Volsnap driver, as in the example output.

Instead of opening files to backup on the original volume, the backup utility opens them on
the shadow volume. A shadow volume represents a point-in-time view of a volume, so when-
ever the volume shadow copy driver sees a write operation directed at an original volume, it
reads a copy of the sectors that will be overwritten into a paging file-backed memory section
that’s associated with the corresponding shadow volume. It services read operations directed
at the shadow volume of modified sectors from this memory section, and it services reads to
nonmodified areas by reading from the original volume. Because the backup utility won’t save
the paging file or the contents of the system-managed \System Volume Information directory
located on every volume, the snapshot driver uses the defragmentation API to determine the
location of these files and directories and does not record changes to them. By relying on the
shadow copy facility, the backup utility in Windows XP and Windows Server 2003 overcomes
both of the backup problems related to open files.

Figure 10-19 demonstrates the behavior of applications accessing a volume and a backup application
accessing the volume’s shadow volume. When an application writes to a sector after the snapshot
time the Volsnap driver makes a backup copy, like it has for sectors a, b, and c of volume C: in the fig-
ure. Subsequently, when an application reads from sector c Volsnap directs the read to volume C:, but
when an the backup application reads from sector c Volsnap reads the sector from the snapshot.
When a read occurs for any unmodified sector, such as d, Volsnap routes the read to the volume.

Figure 10-19 Volsnap operation

Shadow
volume

C:
C:

Backup application Application

File system driver

Volsnap.sys

a b c

a d b c...

Backup read of sector c

Application read of sector c

Snapshot

C:

652 Microsoft Windows Internals, Fourth Edition
EXPERIMENT: Viewing Shadow Volume Device Objects
You can see the existence of shadow volume device objects in the object manager
namespace by running the Windows backup application (in the System Tools in the
Accessories folder of the start menu) and selecting enough backup data to cause the
backup process to take long enough for you to run Winobj and see the objects in the
\Device subdirectory.

File system drivers must handle two shadow copy–related I/O control requests (IOCTL) to
help ensure consistent snapshots: IOCTL_VOLSNAP_FLUSH_AND_HOLD_WRITES and
IOCTL_VOLSNAP_RELEASE_WRITES. Their names are self-explanatory. The shadow copy
API sends the IOCTLs to the logical drives for which snapshots are being taken so that all
modifications initiated before the snapshot have completed when the shadow copy is taken,
making the file data recorded from a shadow copy consistent in time.

Shadow Copies for Shared Folders
Windows Server 2003 takes advantage of Volume Shadow Copy to provide a feature
that lets end users access backup versions of volumes so that they can recover old ver-
sions of files and folders that they might have deleted or changed. The feature alleviates
the burden on systems administrators, who would otherwise have to load backup media
and access previous versions on behalf of end users.

The properties dialog box for a volume on Windows Server 2003 system includes a tab
named Shadow Copies, where an administrator can enable scheduled snapshots of vol-
umes as seen in the following screen shot. Administrators can also limit the amount of
space consumed by snapshots so that the system deletes old snapshots to honor space
constraints.

Chapter 10: Storage Management 653
Client systems that want to take advantage of Shadow Copies for Shared Folders must
install an Explorer extension called the Previous Versions Client that ships with Win-
dows Server 2003 under the \Windows\System32\Clients\Twclient directory and that
Microsoft makes available as a download from its Web site (the extension comes
installed with Windows XP Service Pack 2 and higher). When a client Windows system
that has the Shadow Copy Explorer extension installed maps a share from a folder on a
volume for which snapshots exist, a tab named Previous Versions appears on the Prop-
erties dialog box for folders and files on the share. The Previous Versions tab shows a list
of snapshots that exist on the server, allowing the user to view or copy a file or folder’s
data as it existed in a previous snapshot.

654 Microsoft Windows Internals, Fourth Edition
Conclusion
In this chapter, we’ve reviewed the on-disk organization, components, and operation of Win-
dows disk storage management. In the next chapter, we delve into the cache manager, an exec-
utive component integral to the operation of file system drivers that mount the volume types
presented in this chapter.

Chapter 11

Cache Manager

The cache manager is a set of kernel-mode functions and system threads that cooperate with
the memory manager to provide data caching for all Windows file system drivers (both local
and network). In this chapter, we’ll explain how the cache manager, including its key internal
data structures and functions, works; how it is sized at system initialization time; how it inter-
acts with other elements of the operating system; and how you can observe its activity through
performance counters. We’ll also describe the five flags on the Windows CreateFile function
that affect file caching.

Note None of the cache manager’s internal functions are outlined in this chapter beyond
the depth required to explain how the cache manager works. The programming interfaces to
the cache manager are documented in the Windows Installable File System (IFS) kit. For more
information about the IFS kit, see http://www.microsoft.com/whdc/devtools/ifskit.

Key Features of the Cache Manager
The cache manager has several key features:

■ Supports all file system types (both local and network), thus removing the need for each
file system to implement its own cache management code

■ Uses the memory manager to control what parts of what files are in physical memory
(trading off demands for physical memory between user processes and the operating
system)

■ Caches data on a virtual block basis (offsets within a file)—in contrast to many caching
systems, which cache on a logical block basis (offsets within a disk volume)—allowing
for intelligent read-ahead and high-speed access to the cache without involving file sys-
tem drivers. (This method of caching, called fast I/O, is described later in this chapter.)

■ Supports “hints” passed by applications at file open time (such as random vs. sequential
access, temporary file creation, and so on)

■ Supports recoverable file systems (for example, those that use transaction logging) to
recover data after a system failure
655

656 Microsoft Windows Internals, Fourth Edition
Although we’ll talk more throughout this chapter about how these features are used in the
cache manager, in this section we’ll introduce you to the concepts behind these features.

Single, Centralized System Cache

Some operating systems rely on each individual file system to cache data, a practice that
results either in duplicated caching and memory management code in the operating system
or in limitations on the kinds of data that can be cached. In contrast, Windows offers a cen-
tralized caching facility that caches all externally stored data, whether on local hard disks,
floppy disks, network file servers, or CD-ROMs. Any data can be cached, whether it’s user data
streams (the contents of a file and the ongoing read and write activity to that file) or file sys-
tem metadata (such as directory and file headers). As you’ll discover in this chapter, the
method Windows uses to access the cache depends on the type of data being cached.

The Memory Manager

One unusual aspect of the cache manager is that it never knows how much cached data is
actually in physical memory. This statement might sound strange because the purpose of a
cache is to keep a subset of frequently accessed data in physical memory as a way to improve
I/O performance. The reason the cache manager doesn’t know how much data is in physical
memory is that it accesses data by mapping views of files into system virtual address spaces,
using standard section objects (file mapping objects in Windows API terminology). (Section
objects are the basic primitive of the memory manager and are explained in detail in Chapter
7.) As addresses in these mapped views are accessed, the memory manager pages in blocks
that aren’t in physical memory. And when memory demands dictate, the memory manager
pages data out of the cache and back to the files that are open in (mapped into) the cache.

By caching on the basis of a virtual address space using mapped files, the cache manager
avoids generating read or write I/O request packets (IRPs) to access the data for files it’s cach-
ing. Instead, it simply copies data to or from the virtual addresses where the portion of the
cached file is mapped and relies on the memory manager to fault in (or out) the data into (or
out of) memory as needed. This process allows the memory manager to make global trade-offs
on how much memory to give to the system cache vs. how much to give to the user processes.
(The cache manager also initiates I/O, such as lazy writing, which is described later in this
chapter; however, it calls the memory manager to write the pages.) Also, as you’ll learn in the
next section, this design makes it possible for processes that open cached files to see the same
data as do processes that are mapping the same files into their user address spaces.

Cache Coherency

One important function of a cache manager is to ensure that any process accessing cached
data will get the most recent version of that data. A problem can arise when one process opens
a file (and hence the file is cached) while another process maps the file into its address space

Chapter 11: Cache Manager 657
directly (using the Windows MapViewOfFile function). This potential problem doesn’t occur
under Windows because both the cache manager and the user applications that map files into
their address spaces use the same memory management file mapping services. Because the
memory manager guarantees that it has only one representation of each unique mapped file
(regardless of the number of section objects or mapped views), it maps all views of a file (even
if they overlap) to a single set of pages in physical memory, as shown in Figure 11-1. (For more
information on how the memory manager works with mapped files, see Chapter 7.)

Figure 11-1 Coherent caching scheme

So, for example, if Process 1 has a view (View 1) of the file mapped into its user address space
and Process 2 is accessing the same view via the system cache, Process 2 will see any changes
that Process 1 makes as they’re made, not as they’re flushed. The memory manager won’t
flush all user-mapped pages—only those that it knows have been written to (because they have
the modified bit set). Therefore, any process accessing a file under Windows always sees the
most up-to-date version of that file, even if some processes have the file open through the I/O
system and others have the file mapped into their address space using the Windows file map-
ping functions.

System address
space

View 2

File

View 1

User address
space

System address
space

View 2

User address
space

Control area

Process 1
virtual memory

Physical
memory

Process 2
virtual memory

4 GB

System
cache

2 GB

Mapped file

0

4 GB

System
cache

2 GB

0

Size

0

658 Microsoft Windows Internals, Fourth Edition
Note Cache coherency is somewhat more difficult for network redirectors than for local file
systems because network redirectors must implement additional flushing and purge opera-
tions to ensure cache coherency when accessing network data. See Chapter 12 for a descrip-
tion of opportunistic locking, the Windows distributed cache coherency mechanism.

Virtual Block Caching

Many operating system cache managers (including Novell NetWare, OpenVMS, and older
UNIX systems) cache data on the basis of logical blocks. With this method, the cache manager
keeps track of which blocks of a disk partition are in the cache. The Windows cache manager,
in contrast, uses a method known as virtual block caching, in which the cache manager keeps
track of which parts of which files are in the cache. The cache manager is able to monitor these
file portions by mapping 256-KB views of files into system virtual address spaces, using spe-
cial system cache routines located in the memory manager. This approach has the following
key benefits:

■ It opens up the possibility of doing intelligent read-ahead; because the cache tracks
which parts of which files are in the cache, it can predict where the caller might be going
next.

■ It allows the I/O system to bypass going to the file system for requests for data that is
already in the cache (fast I/O). Because the cache manager knows which parts of which
files are in the cache, it can return the address of cached data to satisfy an I/O request
without having to call the file system.

Details of how intelligent read-ahead and fast I/O work are provided later in this chapter.

Stream-Based Caching

The cache manager is also designed to do stream caching, as opposed to file caching. A stream
is a sequence of bytes within a file. Some file systems, such as NTFS, allow a file to contain
more than one stream; the cache manager accommodates such file systems by caching each
stream independently. NTFS can exploit this feature by organizing its master file table
(described in Chapter 12) into streams and by caching these streams as well. In fact, although
the cache manager might be said to cache files, it actually caches streams (all files have at least
one stream of data) identified by both a filename and, if more than one stream exists in the
file, a stream name.

Recoverable File System Support

Recoverable file systems such as NTFS are designed to reconstruct the disk volume structure
after a system failure. This capability means that I/O operations in progress at the time of a
system failure must be either entirely completed or entirely backed out from the disk when

Chapter 11: Cache Manager 659
the system is restarted. Half-completed I/O operations can corrupt a disk volume and even
render an entire volume inaccessible. To avoid this problem, a recoverable file system main-
tains a log file in which it records every update it intends to make to the file system structure
(the file system’s metadata) before it writes the change to the volume. If the system fails, inter-
rupting volume modifications in progress, the recoverable file system uses information stored
in the log to reissue the volume updates.

Note The term metadata applies only to changes in the file system structure: file and direc-
tory creation, renaming, and deletion.

To guarantee a successful volume recovery, every log file record documenting a volume
update must be completely written to disk before the update itself is applied to the volume.
Because disk writes are cached, the cache manager and the file system must work together to
ensure that the following actions occur, in sequence:

1. The file system writes a log file record documenting the volume update it intends to
make.

2. The file system calls the cache manager to flush the log file record to disk.

3. The file system writes the volume update to the cache—that is, it modifies its cached
metadata.

4. The cache manager flushes the altered metadata to disk, updating the volume structure.
(Actually, log file records are batched before being flushed to disk, as are volume modi-
fications.)

When a file system writes data to the cache, it can supply a logical sequence number (LSN) that
identifies the record in its log file, which corresponds to the cache update. The cache manager
keeps track of these numbers, recording the lowest and highest LSNs (representing the oldest
and newest log file records) associated with each page in the cache. In addition, data streams
that are protected by transaction log records are marked as “no write” by NTFS so that the
mapped page writer won’t inadvertently write out these pages before the corresponding log
records are written. (When the mapped page writer sees a page marked this way, it moves the
page to a special list that the cache manager then flushes at the appropriate time, such as when
lazy writer activity takes place.)

When it prepares to flush a group of dirty pages to disk, the cache manager determines the high-
est LSN associated with the pages to be flushed and reports that number to the file system. The
file system can then call the cache manager back, directing it to flush log file data up to the point
represented by the reported LSN. After the cache manager flushes the log file up to that LSN, it
flushes the corresponding volume structure updates to disk, thus ensuring that it records what
it’s going to do before actually doing it. These interactions between the file system and the cache
manager guarantee the recoverability of the disk volume after a system failure.

660 Microsoft Windows Internals, Fourth Edition
Cache Virtual Memory Management
Because the Windows system cache manager caches data on a virtual basis, it is given a region
of system virtual address spaces to manage (instead of a region of physical memory). The
cache manager then divides each address space region into 256-KB slots called views, as
shown in Figure 11-2. (For a detailed description of the layout of system space, see Chapter 7.)

Figure 11-2 System cache address space

At a file’s first I/O (read or write) operation, the cache manager maps a 256-KB view of the
256-KB-aligned region of the file that contains the requested data into a free slot in the system
cache address space. For example, if 10 bytes starting at an offset of 300,000 bytes were read
into a file, the view that would be mapped would begin at offset 262144 (the second 256-KB-
aligned region of the file) and extend for 256 KB.

The cache manager maps views of files into slots in the cache’s address space on a round-
robin basis, mapping the first requested view into the first 256-KB slot, the second view into
the second 256-KB slot, and so forth, as shown in Figure 11-3. In this example, File B was

0

10000

7FFF0000

80000000

A0000000

A40000000

C0000000

C0400000

C0800000

C0C00000

C1000000

E1000000

64-KB no access area

User address space
All pages within this range are

potentially accessible while the
CPU is in USER mode

64-KB no access area

System code
(Ntoskrnl, HAL)

System mapped views (Win32k.sys)
or session space

Cache extra memory

Process page tables and page directory

Process working set list

Unused no access

System working set list

System cache

Paged pool

Nonpaged pool

View n

View 0

View 1
View 2

View 3
View 4
View 5
View 6
View 7

} 256 KB

Chapter 11: Cache Manager 661
mapped first, File A second, and File C third, so File B’s mapped chunk occupies the first slot
in the cache. Notice that only the first 256-KB portion of File B has been mapped, which is due
to the fact that only part of the file has been accessed and because although File C is only 100
KB (and thus smaller than one of the views in the system cache), it requires its own 256-KB
slot in the cache.

Figure 11-3 Files of varying sizes mapped into the system cache

The cache manager guarantees that a view is mapped as long as it’s active (although views can
remain mapped after they become inactive). A view is marked active, however, only during a
read or write operation to or from the file. Unless a process opens a file by specifying the
FILE_ FLAG_RANDOM_ACCESS flag in the call to CreateFile, the cache manager unmaps
inactive views of a file as it maps new views for the file. Pages for unmapped views are sent to
the standby or modified lists (depending on whether they have been changed), and because
the memory manager exports a special interface for the cache manager, the cache manager
can direct the pages to be placed at the end or front of these lists. Pages that correspond to
views of files opened with the FILE_FLAG_SEQUENTIAL_SCAN flag are moved to the front
of the lists, whereas all others are moved to the end. This scheme encourages the reuse of
pages belonging to sequentially read files and specifically prevents a large file copy operation
from affecting more than a small part of physical memory.

If the cache manager needs to map a view of a file and there are no more free slots in the cache,
it will unmap the least recently mapped inactive view and use that slot. If no views are avail-
able, an I/O error is returned, indicating that insufficient system resources are available to per-
form the operation. Given that views are marked active only during a read or write operation,
however, this scenario is extremely unlikely because thousands of files would have to be
accessed simultaneously for this situation to occur.

System cache

View n

View 0
View 1
View 2
View 3
View 4
View 5
View 6
View 7
View 8

Section 0
Section 1

Section 0
Section 1
Section 2

Section 0

File A (500 KB)

File B (750 KB)

File C (100 KB)

662 Microsoft Windows Internals, Fourth Edition
Cache Size
In the following sections, we’ll explain how Windows computes the size of the system cache,
both virtually and physically. As with most calculations related to memory management, the
size of the system cache depends on a number of factors, including memory size and which
version of Windows is running.

LargeSystemCache

As you’ll see, the registry value HKLM\SYSTEM\CurrentControlSet\Control\SessionMan-
ager\Memory Management\LargeSystemCache influences both the virtual and physical sizes
of the cache. The value is 0 by default on Windows 2000 Professional and Windows XP and
1 on Windows Server systems. You can adjust this value through the GUI on Windows 2000
Server systems by modifying the properties of the file server service. (Bring up the properties
for a network connection, and double-click File And Printer Sharing For Microsoft Networks.)
Even though this service exists on Windows 2000 Professional, its parameters can’t be
adjusted. Figure 11-4 shows the dialog box you use on Windows 2000 Server systems when
modifying the amount of memory allocated for local and network applications in the Server
network service.

Figure 11-4 File And Printer Sharing For Microsoft Networks Properties dialog box, which is used to
modify the properties of the Windows 2000 Server network service

The setting shown in Figure 11-4, Maximize Data Throughput For File Sharing, is the default
for Server systems running with Terminal Services installed—the LargeSystemCache value is 1.

Chapter 11: Cache Manager 663
Choosing any of the other settings will set the LargeSystemCache value to 0. Although each of
the four settings in the Optimization section of the File And Printer Sharing For Microsoft Net-
works Properties dialog box affect the behavior of the system cache, they also modify the
behavior of the file server service.

On Windows XP and Windows Server 2003, you can modify LargeSystemCache in the Perfor-
mance Options dialog box that you access by clicking the Settings button on the Advanced
page of the System control panel applet, as shown in Figure 11-5. Selecting System Cache in
the Memory Usage area of the Advanced tab sets the LargeSystemCache value to 1, while
choosing Programs sets it to 0.

Figure 11-5 LargeSystemCache setting on Windows XP and Windows Server 2003

Cache Virtual Size

The virtual size of the system cache is a function of the amount of physical memory installed.
The default size is 64 MB. If the system has more than 4032 pages (16 MB) of physical mem-
ory, the cache size is set to 128 MB plus 64 MB for each additional 4 MB of physical memory.
Using this algorithm, the virtual size of the system cache for a computer with 64 MB of phys-
ical memory will be:

128 MB + (64 MB - 16 MB) / 4 MB * 64 MB = 896 MB

Table 11-1 shows the minimum and maximum virtual size of the system cache on different
systems, along with the start and end addresses. If it’s running on an x86 system and the sys-
tem calculates a cache virtual size that is greater than 512 MB, the virtual size is limited to 512
MB unless the LargeSystemCache registry value is 1, in which case the cache is assigned up to
960 MB of virtual memory that includes an additional address range known as cache extra
memory. The benefit of assigning more virtual memory to the cache is that, in general, it results
in fewer view unmaps and remap operations as different files and different views of files are
accessed.

664 Microsoft Windows Internals, Fourth Edition
Table 11-2 lists the system variables that contain the virtual size and address of the system
cache.

EXPERIMENT: Viewing the Cache Virtual Size
The cache’s virtual size isn’t revealed through any performance counters, so the only
way to know its value is to examine the kernel variable that stores it, MmSizeOfSystem-
CacheInPages:

kd> dd MmSizeOfSystemCacheInPages l 1

80539a8c 00020000

In this example, taken from an x86 system running Windows XP with LargeSystem-
Cache having a value of 0, the cache is 0x20000 virtual pages in size. Because a page on
x86 is 4 KB, the virtual cache is assigned 512 MB of the 2 GB of the system’s virtual
address space.

Table 11-1 Size and Location of System Data Cache

Platform Address Range Minimum/Maximum Virtual Size

x86 2-GB system space 0xC1000000–E0FFFFFF,
0xA4000000–BFFFFFFF

64–960 MB

x86 1-GB system space 0xC1000000–DBFFFFFF 64–432 MB

x86 1-GB system space with
Terminal Services

0xC1000000–DCFFFFFF 64–448 MB

x64 0xFFFFF98000000000–
FFFFFA8000000000

64 MB–1024 GB

IA64 0xE000000600000000–
E000010600000000

64 MB–1024 GB

Table 11-2 System Variables for the Virtual Size and Address of the System Cache

System Variable Description

MmSystemCacheStart Starting virtual address of cache

MmSystemCacheEnd Ending virtual address of cache

MiSystemCacheStartExtra Starting virtual address of cache extra memory if cache size is
greater than 512 MB (x86 systems only)

MiSystemCacheEndExtra Ending virtual address of cache extra memory if cache size is
greater than 512 MB (x86 systems only)

MmSizeOfSystemCacheInPages Virtual size of cache in pages

Chapter 11: Cache Manager 665
Cache Working Set Size

As mentioned earlier, one of the key differences in the design of the cache manager from that
of other operating systems is the delegation of physical memory management to the global
memory manager. Because of this, the existing code that handles working set expansion and
trimming as well as managing the modified and standby list is also used to control the size of
the system cache, dynamically balancing demands for physical memory between processes
and the operating system.

The system cache doesn’t have its own working set but rather shares a single system set that
includes cache data, paged pool, pageable Ntoskrnl code, and pageable driver code. As
explained in the section “System Working Set” in Chapter 7, this single working set is called
internally the system cache working set even though the system cache is just one of the compo-
nents that contribute to it. For the purposes of this book, we’ll refer to this working set simply
as the system working set. Also explained in Chapter 7 is the fact that if the LargeSystemCache
registry value is 1, the memory manager favors the system working set over that of processes
running on the system.

You can examine the physical size of the system cache compared to that of the total system
working set as well as page fault information on the system working set by examining the per-
formance counters or system variables listed in Table 11-3.

Table 11-3 System Variables for the Physical Size of the System Cache and Page Fault
Information

Performance Counter
(in bytes) System Variable (in pages) Description

Memory: System Cache
Resident Bytes

MmSystemCachePage Physical memory consumed
by the system cache.

Memory: Cache Bytes MmSystemCacheWs.WorkingSetSize Total size of the system work-
ing set (including the cache,
paged pool, pageable code,
and system mapped views).
This is not the size of the cache
(as the name implies)!

Memory: Cache Bytes
Peak

MmSystemCacheWs.Peak Peak system working set size.

Memory: Cache Faults/
Sec

MmSystemCacheWs.PageFaultCount Page faults in the system
working set (not just the
cache).

666 Microsoft Windows Internals, Fourth Edition
EXPERIMENT: Looking at the Cache’s Working Set
The !filecache debugger command dumps information about the physical memory the
cache is using, the current and peak working set sizes, the number of valid pages asso-
ciated with views, and the names of files mapped into views, where applicable, as you
can see in the following output. (File system drivers cache metadata, such as directory
structures and volume bitmaps, by using unnamed file streams.)

lkd> !filecache

***** Dump file cache******

Reading and sorting VACBs ...

Removed 657 nonactive VACBs, processing 1389 active VACBs ...

File Cache Information

Current size 132308 kb

Peak size 145764 kb

1389 Control Areas

Skipping view @ c1040000 - no VACB, but PTE is valid!

Loading file cache database (100% of 131072 PTEs)

SkippedPageTableReads = 0

File cache has 21510 valid pages

Usage Summary (in Kb):

Control Valid Standby/Dirty Shared Locked Name

89be09c8 272 0 0 0 default_message_database.db

8a267ad8 4 0 0 0 $Directory

8a37d140 3504 1196 0 0 $Mft

8a35c928 4320 1676 0 0 outlook.pst

8a2acbb8 4 0 0 0 $Directory

8a42c908 564 0 0 0 $BitMap

8a42bd28 12 0 0 0 $Mft

8a29ed88 4 0 0 0 $Directory

8a467008 48 0 0 0 $Directory

8a42b828 124 0 0 0 No Name for File

8a467c58 8 0 0 0 $Directory

8a357f18 136 20 0 0 archive.pst

8a4a7248 52 0 0 0 $Directory

8a42a928 388 0 0 0 $Directory

8a457a10 4 0 0 0 $Directory

8a3f17a8 4 0 0 0 WIASERVC.LOG

89ede0e8 4 0 0 0 $Directory

8a491708 11900 136 0 0 $Mft

8a429fa0 4 0 0 0 $Directory

8a4318d8 2304 26624 0 0 $LogFile

8a438bc0 4 0 0 0 $Directory

8a4286a8 4 0 0 0 $Directory

8a491c50 8 0 0 0 $Directory

8a455de0 4 0 0 0 $Directory

8a3d0f00 4 0 0 0 $Directory

8a44d7a0 3420 0 0 0 $Mft

8a35ba10 1312 0 16 0 SHDOCVW.DLL

8a324130 4 0 0 0 $Directory

8a42c110 4 0 0 0 $Directory

8a41dd80 4 0 0 0 $Directory

88dfff38 4 0 0 0 $Directory

8a4a7640 4 0 0 0 $Directory

8a464d00 4 0 0 0 $Directory

Chapter 11: Cache Manager 667
Cache Physical Size

While the system working set includes the amount of physical memory that is mapped into
views in the cache’s virtual address space, it does not necessarily reflect the total amount of file
data that is cached in physical memory. There can be a discrepancy between the two values
because additional file data might be in the memory manager’s standby or modified page lists.

Recall from Chapter 7 that during the course of working set trimming or page replacement the
memory manager can move dirty pages from a working set to either the standby list or modi-
fied page list, depending on whether the page contains data that needs to be written to the
paging file or other file before the page can be reused. If the memory manager didn’t imple-
ment these lists, any time a process accessed data previously removed from its working set the
memory manager would have to hard-fault it in from disk. Instead, if the accessed data is
present on either of these lists, the memory manager simply soft-faults the page back into the
process’s working set. Thus, the lists serve as in-memory caches of data that’s stored in the
paging file, executable images, or data files. Thus, the total amount of file data cached on a sys-
tem includes not only the system working set, but the combined sizes of the standby and
modified page lists as well.

An example illustrates how the cache manager can cause much more file data than that con-
tainable in the system working set to be cached in physical memory. Consider a system that
acts as a dedicated file server. The system has 8 GB of physical memory and the cache virtual
size is 960 MB (the maximum on x86 systems). The maximum amount of file data that can be
directly mapped in the cache’s virtual memory is therefore 960 MB. A client application
accesses file data from across the network and server, the file server driver (\Windows\
System32\Drivers\Srv.sys, described in Chapter 12), uses cache manager interfaces to read
and write file data on behalf of the client. If the client reads through several thousand files of
1 MB each, the cache manager will have to start reusing views when mapping the 961st file.
For each file read thereafter, the cache manager unmaps views and remaps them for new files.
When the cache manager unmaps a view, the memory manager doesn’t discard the file data in
the cache’s working set that correspond to the view, it moves the data to the standby list. In
the absence of any other demand for physical memory, the standby list can consume almost
all the physical memory that remains outside the system working set. In other words, virtually
the entire 8 GB of the server’s physical memory will be used to cache file data, as shown in Fig-
ure 11-6.

Figure 11-6 Example of where most of physical memory is file cache

Standby List
System

Working Sat
Assigned to Virtual Cache

Other

~7 GB960 MB

8 GB Physical Memory

668 Microsoft Windows Internals, Fourth Edition
Because the total amount of file data cached includes the system working set, modified page
list, and standby list—the sizes of which are all controlled by the memory manager—it is in a
sense the real cache manager. The cache manager subsystem simply provides convenient
interfaces for accessing file data through the memory manager, and it plays an important role
with its read-ahead and write-behind policies in influencing what data the memory manager
keeps present in physical memory.

To try and accurately reflect the total amount of file data that’s cache on a system, both Task
Manager and Process Explorer show a value named System Cache in their performance view
that reflects the combined sizes of the system working set, standby list, and modified page list.
Figure 11-7 shows the system information view in Process Explorer and the System Cache
value in the Physical Memory area in the middle of the figure.

Figure 11-7 Process Explorer’s System Information dialog box

Cache Data Structures
The cache manager uses the following data structures to keep track of cached files:

■ Each 256-KB slot in the system cache is described by a VACB.

■ Each separately opened cached file has a private cache map, which contains information
used to control read-ahead (discussed later in the chapter).

■ Each cached file has a single shared cache map structure, which points to slots in the
system cache that contain mapped views of the file.

These structures and their relationships are described in the next sections.

Chapter 11: Cache Manager 669
Systemwide Cache Data Structures

The cache manager keeps track of the state of the views in the system cache by using an array of
data structures called virtual address control blocks (VACBs). During system initialization, the
cache manager allocates a single chunk of nonpaged pool to contain all the VACBs required to
describe the system cache. It stores the address of the VACB array in the variable CcVacbs. Each
VACB represents one 256-KB view in the system cache, as shown in Figure 11-8. The structure of
a VACB is shown in Figure 11-9.

Figure 11-8 System VACB array

Figure 11-9 VACB structure

As you can see in Figure 11-9, the first field in a VACB is the virtual address of the data in the
system cache. The second field is a pointer to the shared cache map structure, which identifies
which file is cached. The third field identifies the offset within the file at which the view begins
(always based on a 256-KB granularity). Finally, the VACB contains the number of references
to the view—that is, how many active reads or writes are accessing the view. During an I/O
operation on a file, the file’s VACB reference count is incremented and then it’s decremented
when the I/O operation is over. When the reference count is non-zero the VACB is active. For
access to file system metadata, the active count represents how many file system drivers have
the pages in that view locked into memory.

System cache

View n

View 0
View 1
View 2
View 3
View 4
View 5
View 6
View 7
View 8

System VACB array

VACB n

VACB 0
VACB 1
VACB 2
VACB 3
VACB 4
VACB 5
VACB 6
VACB 7

Virtual address of data in system cache

Pointer to shared cache map

Active count

File offset

670 Microsoft Windows Internals, Fourth Edition
Per-File Cache Data Structures

Each open handle to a file has a corresponding file object. (File objects are explained in detail
in Chapter 9.) If the file is cached, the file object points to a private cache map structure that
contains the location of the last two reads so that the cache manager can perform intelligent
read-ahead (described in the section “Intelligent Read-Ahead”). In addition, all the private
cache maps for open instances of a file are linked together.

Each cached file (as opposed to file object) has a shared cache map structure that describes the
state of the cached file, including its size and (for security reasons) its valid data length. (The
function of the valid data length field is explained in the section “Write-Back Caching and
Lazy Writing”.) The shared cache map also points to the section object (maintained by the
memory manager, and which describes the file’s mapping into virtual memory), the list of pri-
vate cache maps associated with that file, and any VACBs that describe currently mapped
views of the file in the system cache. (See Chapter 7 for more about section object pointers.)
The relationships among these per-file cache data structures are illustrated in Figure 11-10.

When asked to read from a particular file, the cache manager must determine the answers to
two questions:

1. Is the file in the cache?

2. If so, which VACB, if any, refers to the requested location?

In other words, the cache manager must find out whether a view of the file at the desired
address is mapped into the system cache. If no VACB contains the desired file offset, the
requested data isn’t currently mapped into the system cache.

To keep track of which views for a given file are mapped into the system cache, the cache man-
ager maintains an array of pointers to VACBs, which is known as the VACB index array. The
first entry in the VACB index array refers to the first 256 KB of the file, the second entry to the
second 256 KB, and so on. The diagram in Figure 11-11 shows four different sections from
three different files that are currently mapped into the system cache.

When a process accesses a particular file in a given location, the cache manager looks in the
appropriate entry in the file’s VACB index array to see whether the requested data has been
mapped into the cache. If the array entry is nonzero (and hence contains a pointer to a VACB),
the area of the file being referenced is in the cache. The VACB, in turn, points to the location in
the system cache where the view of the file is mapped. If the entry is zero, the cache manager
must find a free slot in the system cache (and therefore a free VACB) to map the required view.

Chapter 11: Cache Manager 671
Figure 11-10 Per-file cache data structures

Figure 11-11 VACB index arrays

As a size optimization, the shared cache map contains a VACB index array that is 4 entries in
size. Because each VACB describes 256 KB, the entries in this small fixed-size index array can
point to VACB array entries that together describe a file of up to 1 MB. If a file is larger than 1
MB, a separate VACB index array is allocated from nonpaged pool, based on the size of the file

Shared cache map

Entry 3

List of private
cache maps
Open count

File size
Valid data length

Entry 0
Entry 1
Entry 2

Section object pointers

File object

File object

Private cache map

Read-ahead information

Additional VACB

Next private
cache map
for this file

Next shared
cache map

VACB

VACB index
array

VACB index array

System cache

View n

View 0
View 1
View 2
View 3
View 4
View 5
View 6
View 7
View 8

System VACB array

VACB n

VACB 0
VACB 1
VACB 2
VACB 3
VACB 4
VACB 5
VACB 6
VACB 7

Section 0
Section 1

Section 0
Section 1
Section 2

Section 0

File A (500 KB)

File B (750 KB)

File C (100 KB)

Entry 0
Entry 1

File A VACB
Index array

Entry 2
Entry 3

Entry 0
Entry 1

File B VACB
Index array

Entry 2
Entry 3

Entry 0
Entry 1

File C VACB
Index array

Entry 2
Entry 3

672 Microsoft Windows Internals, Fourth Edition
divided by 256 KB and rounded up in the case of a remainder. The shared cache map then
points to this separate structure.

As a further optimization, the VACB index array allocated from nonpaged pool becomes a sparse
multilevel index array if the file is larger than 32 MB, where each index array consists of 128
entries. You can calculate the number of levels required for a file with the following formula:

(Number of bits required to represent file size - 18) / 7

Round the result of the equation up to the next whole number. The value 18 in the equation
comes from the fact that a VACB represents 256 KB, and 256 KB is 218. The value 7 comes
from the fact that each level in the array has 128 entries and 27 is 128. Thus, a file that has a
size that is the maximum that can be described with 63 bits (the largest size the cache man-
ager supports) would require only seven levels. The array is sparse because the only branches
that the cache manager allocates are ones for which there are active views at the lowest-level
index array. Figure 11-12 shows an example of a multilevel VACB array for a sparse file that is
large enough to require three levels.

Figure 11-12 Multilevel VACB arrays

VACB

Shared
cache map

VACB array

0

127

0

127

0

127

0

127

0

127

0

127

VACB

VACB

Chapter 11: Cache Manager 673
This scheme is required to efficiently handle sparse files that might have extremely large file
sizes with only a small fraction of valid data because only enough of the array is allocated to
handle the currently mapped views of a file. For example, a 32-GB sparse file for which only
256 KB is mapped into the cache’s virtual address space would require a VACB array with
three allocated index arrays because only one branch of the array has a mapping and a 32-GB
(235 bytes) file requires a three-level array. If the cache manager didn’t use the multilevel VACB
array optimization for this file, it would have to allocate a VACB array with 128,000 entries, or
the equivalent of 1000 index arrays.

EXPERIMENT: Looking at Shared and Private Cache Maps
You can use the kernel debugger’s dt command to look at the shared and private cache
map data structure definitions and examine the structures on a live system. First, exe-
cute the !filecache command and locate an entry in the VACB output with a file name you
recognize. In this example, the file is a Microsoft Outlook data file:

8653c828 120 160 0 0 debugger.chm

The first address is that of a control area data structure, which the memory manager
uses to keep track of an address range. (See Chapter 7 for more information.) The con-
trol area stores the pointer to the file object that corresponds to the view in the cache. A
file object identifies an instance of an open file, in this example the Debugging Tools for
Windows help file. Execute the following command using the address of the control
area of the entry you identified to see the control area structure:

lkd> !ca 8653c828

ControlArea @8653c828

Segment: e1bce428 Flink 0 Blink 0

Section Ref 1 Pfn Ref 46 Mapped Views 4

User Ref 0 WaitForDel 0 Flush Count 0

File Object 85d927a8 ModWriteCount 0 System Views 0

Flags (8008080) File WasPurged Accessed

File: \Program Files\Debugging Tools for Windows\debugger.chm

Next look at the file object referenced by the control area with this command:

lkd> dt _File_object 85d927a8

nt!_FILE_OBJECT

+0x000 Type : 5

+0x002 Size : 112

+0x004 DeviceObject : 0x86b78e30

+0x008 Vpb : 0x86b90d80

+0x00c FsContext : 0xe3b629e0

+0x010 FsContext2 : 0xe3b62b38

+0x014 SectionObjectPointer : 0x85e7a334

+0x018 PrivateCacheMap : 0x862f5a50

674 Microsoft Windows Internals, Fourth Edition
+0x01c FinalStatus : 0

+0x020 RelatedFileObject : (null)

+0x024 LockOperation : 0 ’’

…

The private cache map is at offset 0x18:

lkd> dt _private_cache_map 0x862f5a50

nt!_PRIVATE_CACHE_MAP

+0x000 NodeTypeCode : 766

+0x000 Flags : _PRIVATE_CACHE_MAP_FLAGS

+0x000 UlongFlags : 0x2fe

+0x004 ReadAheadMask : 0xffff

+0x008 FileObject : 0x85d927a8

+0x010 FileOffset1 : _LARGE_INTEGER 0x10b28

+0x018 BeyondLastByte1 : _LARGE_INTEGER 0x12206

+0x020 FileOffset2 : _LARGE_INTEGER 0x10b28

+0x028 BeyondLastByte2 : _LARGE_INTEGER 0x12206

+0x030 ReadAheadOffset : [2] _LARGE_INTEGER 0x0

+0x040 ReadAheadLength : [2] 0

+0x048 ReadAheadSpinLock : 0

+0x04c PrivateLinks : _LIST_ENTRY [0x862f5a10 - 0x862f5a10]

Finally, you can locate the shared cache map in the SectionObjectPointers structure of
the file object and then view its contents:

lkd> dt _Section_object_pointers 0x85e7a334

nt!_SECTION_OBJECT_POINTERS

+0x000 DataSectionObject : 0x8653c828

+0x004 SharedCacheMap : 0x862f5978

+0x008 ImageSectionObject : (null)

lkd> dt _shared_cache_map 0x862f5978 nt!_SHARED_CACHE_MAP

+0x000 NodeTypeCode : 767

+0x002 NodeByteSize : 304

+0x004 OpenCount : 1

+0x008 FileSize : _LARGE_INTEGER 0x19970a

+0x010 BcbList : _LIST_ENTRY [0x862f5988 - 0x862f5988]

+0x018 SectionSize : _LARGE_INTEGER 0x1c0000

+0x020 ValidDataLength : _LARGE_INTEGER 0x19970a

+0x028 ValidDataGoal : _LARGE_INTEGER 0x19970a

+0x030 InitialVacbs : [4] (null)

+0x040 Vacbs : 0x85d42c00 -> 0x86bba610

+0x044 FileObject : 0x85d927a8

+0x048 ActiveVacb : 0x86bba610

…

File System Interfaces
The first time a file’s data is accessed for a read or write operation, the file system driver is
responsible for determining whether some part of the file is mapped in the system cache. If it’s
not, the file system driver must call the CcInitializeCacheMap function to set up the per-file
data structures described in the preceding section.

Chapter 11: Cache Manager 675
Once a file is set up for cached access, the file system driver calls one of several functions to
access the data in the file. There are three primary methods for accessing cached data, each
intended for a specific situation:

■ The copy method copies user data between cache buffers in system space and a process
buffer in user space.

■ The mapping and pinning method uses virtual addresses to read and write data directly
to cache buffers.

■ The physical memory access method uses physical addresses to read and write data
directly to cache buffers.

File system drivers must provide two versions of the file read operation—cached and non-
cached—to prevent an infinite loop when the memory manager processes a page fault. When
the memory manager resolves a page fault by calling the file system to retrieve data from the
file (via the device driver, of course), it must specify this noncached read operation by setting
the “no cache” flag in the IRP.

Figure 11-13 illustrates the typical interactions between the cache manager, memory manager,
and file system drivers in response to user read or write file I/O. The cache manager is invoked by
a file system through the copy interfaces (the CcCopyRead and CcCopyWrite paths). To process a
CcFastCopyRead or CcCopyRead read, for example, the cache manager creates a view in the cache
to map a portion of the file being read and reads the file data into the user buffer by copying from
the view. The copy operation generates page faults as it accesses each previously invalid page in
the view, and in response the memory manager initiates noncached I/O into the file system driver
to retrieve the data corresponding to the part of the file mapped to the page that faulted.

Figure 11-13 File system interaction with cache and memory managers

The next three sections explain these cache access mechanisms, their purpose, and how
they’re used.

MmFlushSection

File system
driver

Storage
device
driver

Cache
manager

Lazy writer

Read-ahead

Virtual
memory
manager

Page fault
handler

Modified and
mapped page

writer

Page fault

Page faultNtCreateSection

MmCreateSection

CcCopyRead
CcCopyWrite

FastloRead, FastloWrite

loPageRead
loAsynchronousPageWrite

NtReadFile/NtWriteFile

IRP

Noncached
and paging I/O

CcFastCopyRead
CcFastCopyWrite

676 Microsoft Windows Internals, Fourth Edition
Copying to and from the Cache

Because the system cache is in system space, it is mapped into the address space of every pro-
cess. As with all system space pages, however, cache pages aren’t accessible from user mode
because that would be a potential security hole. (For example, a process might not have the
rights to read a file whose data is currently contained in some part of the system cache.) Thus,
user application file reads and writes to cached files must be serviced by kernel-mode routines
that copy data between the cache’s buffers in system space and the application’s buffers resid-
ing in the process address space. The functions that file system drivers can use to perform this
operation are listed in Table 11-4.

You can examine read activity from the cache via the performance counters or system vari-
ables listed in Table 11-5.

Table 11-4 Kernel-Mode Functions for Copying to and from the Cache

Function Description

CcCopyRead Copies a specified byte range from the system cache to a user buffer

CcFastCopyRead Faster variation of CcCopyRead, but limited to 32-bit file offsets and syn-
chronous reads

CcCopyWrite Copies a specified byte range from a user buffer to the system cache

CcFastCopyWrite Faster variation of CcCopyWrite, but limited to 32-bit file offsets and syn-
chronous, non-write-through writes (used by NTFS, not FAT)

Table 11-5 System Variables for Examining Read Activity from the Cache

Performance Counter
(frequency) System Variable (count) Description

Cache: Copy Read Hits % (CcCopyReadWait +
CcCopyReadNoWait) /
(CcCopyReadWait +
(CcCopyReadWaitMiss +
CcCopyReadNoWait) +
CcCopyReadNoWaitMiss)

Percentage of copy reads to parts of
files that were in the cache (A copy
read can still generate paging I/O—
the Memory: Cache Faults/Sec
counter reports page fault activity for
the system working set but includes
both hard and soft page faults, so the
counter still doesn’t indicate actual
paging I/O caused by cache faults.)

Cache: Copy Reads/Sec CcCopyReadWait +
CcCopyReadNoWait

Total copy reads from the cache

Cache: Sync Copy Reads/
Sec

CcCopyReadWait Synchronous copy reads from the
cache

Cache: Async Copy Reads/
Sec

CcCopyReadNoWait Asynchronous copy reads from the
cache

Chapter 11: Cache Manager 677
Caching with the Mapping and Pinning Interfaces

Just as user applications read and write data in files on a disk, file system drivers need to read
and write the data that describes the files themselves (the metadata, or volume structure
data). Because the file system drivers run in kernel mode, however, they could, if the cache
manager were properly informed, modify data directly in the system cache. To permit this
optimization, the cache manager provides the functions shown in Table 11-6. These functions
permit the file system drivers to find where in virtual memory the file system metadata
resides, thus allowing direct modification without the use of intermediary buffers.

If a file system driver needs to read file system metadata in the cache, it calls the cache man-
ager’s mapping interface to obtain the virtual address of the desired data. The cache manager
touches all the requested pages to bring them into memory and then returns control to the file
system driver. The file system driver can then access the data directly.

If the file system driver needs to modify cache pages, it calls the cache manager’s pinning ser-
vices, which keep the pages being modified in memory. The pages aren’t actually locked into
memory (such as when a device driver locks pages for direct memory access transfers). Most
of the time, a file system driver will mark its metadata stream “no write”, which instructs the
memory manager’s mapped page writer (explained in Chapter 7) to not write the pages to
disk until explicitly told to do so. When the file system driver unpins (releases) them, the
cache manager flushes any changes to disk and releases the cache view that the metadata
occupied.

The mapping and pinning interfaces solve one thorny problem of implementing a file system:
buffer management. Without directly manipulating cached metadata, a file system must pre-
dict the maximum number of buffers it will need when updating a volume’s structure. By
allowing the file system to access and update its metadata directly in the cache, the cache man-
ager eliminates the need for buffers, simply updating the volume structure in the virtual mem-
ory the memory manager provides. The only limitation the file system encounters is the
amount of available memory.

Table 11-6 Functions for Finding Metadata Locations

Function Description

CcMapData Maps the byte range for read access

CcPinRead Maps the byte range for read/write access and pins it

CcPreparePinWrite Maps and pins the byte range for write access (reads are not valid)

CcPinMappedData Pins a previously mapped buffer

CcSetDirtyPinnedData Notifies the cache manager that the data has been modified

CcUnpinData Releases the pages so that they can be removed from memory

678 Microsoft Windows Internals, Fourth Edition
You can examine pinning and mapping activity in the cache via the performance counters or
system variables listed in Table 11-7.

Caching with the Direct Memory Access Interfaces

In addition to the mapping and pinning interfaces used to access metadata directly in the
cache, the cache manager provides a third interface to cached data: direct memory access
(DMA). The DMA functions are used to read from or write to cache pages without intervening
buffers, such as when a network file system is doing a transfer over the network.

The DMA interface returns to the file system the physical addresses of cached user data (rather
than the virtual addresses, which the mapping and pinning interfaces return), which can then
be used to transfer data directly from physical memory to a network device. Although small
amounts of data (1 KB to 2 KB) can use the usual buffer-based copying interfaces, for larger
transfers, the DMA interface can result in significant performance improvements for a network
server processing file requests from remote systems.

Table 11-7 System Variables for Examining Pinning and Mapping Activity

Performance Counter
(frequency) System Variable (count) Description

Cache: Data Map Hits % (CcMapDataWait +
CcMapDataNoWait)/
(CcMapDataWait +
CcMapDataNoWait) +
(CcMapDataWaitMiss +
CcMapDataNoWaitMiss)

Percentage of data maps to parts
of files that were in the cache (A
copy read can still generate
paging I/O.)

Cache: Data Maps/Sec CcMapDataWait +
CcMapDataNoWait

Total data maps from the cache

Cache: Sync Data Maps/Sec CcMapDataWait Synchronous data maps from the
cache

Cache: Async Data Maps/Sec CcMapDataNoWait Asynchronous data maps from
the cache

Cache: Data Map Pins/Sec CcPinMappedDataCount Number of requests to pin
mapped data

Cache: Pin Read Hits % (CcPinReadWait +
CcPinReadNoWait) /
(CcPinReadWait +
CcPinReadNoWait) +
(CcPinReadWaitMiss +
CcPinReadNoWaitMiss)

Percentage of pinned reads to
parts of files that were in the
cache (A copy read can still
generate paging I/O.)

Cache: Pin Reads/Sec CcPinReadWait +
CcPinReadNoWait

Total pinned reads from the cache

Cache: Sync Pin Reads/Sec CcPinReadWait Synchronous pinned reads from
the cache

Cache: Async Pin Reads/Sec CcPinReadNoWait Asynchronous pinned reads from
the cache

Chapter 11: Cache Manager 679
To describe these references to physical memory, a memory descriptor list (MDL) is used.
(MDLs were introduced in Chapter 7.) The four separate functions described in Table 11-8
create the cache manager’s DMA interface.

You can examine MDL activity from the cache via the performance counters or system vari-
ables listed in Table 11-9.

Fast I/O
Whenever possible, reads and writes to cached files are handled by a high-speed mechanism
named fast I/O. Fast I/O is a means of reading or writing a cached file without going through
the work of generating an IRP, as described in Chapter 9. With fast I/O, the I/O manager calls
the file system driver’s fast I/O routine to see whether I/O can be satisfied directly from the
cache manager without generating an IRP.

Because the cache manager is architected on top of the virtual memory subsystem, file sys-
tem drivers can use the cache manager to access file data simply by copying to or from pages
mapped to the actual file being referenced without going through the overhead of generat-
ing an IRP.

Table 11-8 Functions That Create the DMA Interface

Function Description

CcMdlRead Returns an MDL describing the specified byte range

CcMdlReadComplete Frees the MDL

CcMdlWrite Returns an MDL describing a specified byte range (possibly containing
zeros)

CcMdlWriteComplete Frees the MDL, and marks the range as modified

Table 11-9 System Variables for Examining MDL Activity from the Cache

Performance Counter
(frequency) System Variable (count) Description

Cache: MDL Read Hits % (CcMdlReadWait +
CcMdlReadNoWait) /
(CcMdlReadWait +
CcMdlReadNoWait) +
(CcMdlReadWaitMiss +
(CcMdlReadWaitMiss +
CcMdlReadNoWaitMiss)

Percentage of MDL reads to parts
of files that were in the cache (Ref-
erences to pages satisfied by an
MDL read can still generate paging
I/O.)

Cache: MDL Reads/Sec CcMdlReadWait +
CcMdlReadNoWait

Total MDL reads from the cache

Cache: Sync MDL Reads/Sec CcMdlReadWait Synchronous MDL reads from the
cache

Cache: Async MDL Reads/Sec CcMdlReadNoWait Asynchronous MDL reads from the
cache

680 Microsoft Windows Internals, Fourth Edition
Fast I/O doesn’t always occur. For example, the first read or write to a file requires setting up the
file for caching (mapping the file into the cache and setting up the cache data structures, as
explained earlier in the section “Cache Data Structures”). Also, if the caller specified an asyn-
chronous read or write, fast I/O isn’t used because the caller might be stalled during paging I/O
operations required to satisfy the buffer copy to or from the system cache and thus not really
providing the requested asynchronous I/O operation. But even on a synchronous I/O, the file
system driver might decide that it can’t process the I/O operation by using the fast I/O mecha-
nism, say, for example, if the file in question has a locked range of bytes (as a result of calls to the
Windows32 LockFile and UnlockFile functions). Because the cache manager doesn’t know what
parts of which files are locked, the file system driver must check the validity of the read or write,
which requires generating an IRP. The decision tree for fast I/O is shown in Figure 11-14.

Figure 11-14 Fast I/O decision tree

These steps are involved in servicing a read or a write with fast I/O:

1. A thread performs a read or write operation.

2. If the file is cached and the I/O is synchronous, the request passes to the fast I/O entry
point of the file system driver. If the file isn’t cached, the file system driver sets up the file
for caching so that the next time, fast I/O can be used to satisfy a read or write request.

3. If the file system driver’s fast I/O routine determines that fast I/O is possible, it calls the
cache manager read or write routine to access the file data directly in the cache. (If fast
I/O isn’t possible, the file system driver returns to the I/O system, which then generates
an IRP for the I/O and eventually calls the file system’s regular read routine.)

Generate IRP

NtReadFile

Synchronize
and cached

data?

Fast I/O
possible?

Is file cached?

Cache manager
copies data to or

from process buffer

Cache manager
intializes cache

Cache complete

Yes

No

No Yes

Yes

No

File system driver Cache manager

Chapter 11: Cache Manager 681
4. The cache manager translates the supplied file offset into a virtual address in the cache.

5. For reads, the cache manager copies the data from the cache into the buffer of the pro-
cess requesting it; for writes, it copies the data from the buffer to the cache.

6. One of the following actions occurs:

❑ For reads where FILE_FLAG_RANDOM_ACCESS wasn’t specified when the file
was opened, the read-ahead information in the caller’s private cache map is
updated.

❑ For writes, the dirty bit of any modified page in the cache is set so that the lazy
writer will know to flush it to disk.

❑ For write-through files, any modifications are flushed to disk.

Note The fast I/O path isn’t limited to occasions when the requested data already resides in
physical memory. As noted in steps 5 and 6 of the preceding list, the cache manager simply
accesses the virtual addresses of the already opened file where it expects the data to be. If a
cache miss occurs, the memory manager dynamically pages the data into physical memory.

The performance counters or system variables listed in Table 11-10 can be used to determine
the fast I/O activity on the system.

Table 11-10 System Variables for Determining Fast I/O Activity

Performance Counter
(frequency) System Variable (count) Description

Cache: Sync Fast Reads/Sec CcFastReadWait Synchronous reads that were
handled as fast I/O requests

Cache: Async Fast Reads/Sec CcFastReadNoWait Asynchronous reads that were
handled as fast I/O requests
(These are always zero because
asynchronous fast reads aren’t
done in Windows.)

Cache: Fast Read Resource
Misses/Sec

CcFastReadResourceMiss Fast I/O operations that couldn’t
be satisfied because of resource
conflicts (This situation can oc-
cur with FAT but not with NTFS.)

Cache: Fast Read Not Possibles/
Sec

CcFastReadNotPossible Fast I/O operations that couldn’t
be satisfied (The file system driv-
er decides; for example, files
with byte range locks can’t use
fast I/O.)

682 Microsoft Windows Internals, Fourth Edition
Read Ahead and Write Behind
In this section, you’ll see how the cache manager implements reading and writing file data on
behalf of file system drivers. Keep in mind that the cache manager is involved in file I/O only
when a file is opened without the FILE_FLAG_NO_BUFFERING flag and then read from or
written to using the Windows I/O functions (for example, using the Windows ReadFile and
WriteFile functions). Mapped files don’t go through the cache manager, nor do files opened
with the FILE_FLAG_NO_BUFFERING flag set.

Intelligent Read-Ahead

The cache manager uses the principle of spatial locality to perform intelligent read-ahead by
predicting what data the calling process is likely to read next based on the data that it is read-
ing currently. Because the system cache is based on virtual addresses, which are contiguous
for a particular file, it doesn’t matter whether they’re juxtaposed in physical memory. File
read-ahead for logical block caching is more complex and requires tight cooperation between
file system drivers and the block cache because that cache system is based on the relative posi-
tions of the accessed data on the disk, and of course, files aren’t necessarily stored contigu-
ously on disk. You can examine read-ahead activity by using the Cache: Read Aheads/Sec
performance counter or the CcReadAheadIos system variable.

Reading the next block of file that is being accessed sequentially provides an obvious perfor-
mance improvement. To extend read-ahead benefits to cases of strided data accesses (both for-
ward and backward through a file), the cache manager maintains a history of the last two read
requests in the private cache map for the file handle being accessed, a method known as asyn-
chronous read-ahead with history. If a pattern can be determined from the caller’s apparently
random reads, the cache manager extrapolates it. For example, if the caller reads page 4000
and then page 3000, the cache manager assumes that the next page the caller will require is
page 2000 and prereads it.

Note Although a caller must issue a minimum of three read operations to establish a pre-
dictable sequence, only two are stored in the private cache map.

To make read-ahead even more efficient, the Windows32 CreateFile function provides a flag
indicating forward sequential file access: FILE_FLAG_SEQUENTIAL_SCAN. If this flag is
set, the cache manager doesn’t keep a read history for the caller for prediction but instead
performs sequential read-ahead. However, as the file is read into the cache’s working set, the
cache manager unmaps views of the file that are no longer active and, if they are unmodi-
fied, directs the memory manager to place the pages belonging to the unmapped views at
the front of the standby list so that they will be quickly reused. It also reads ahead two times
as much data (128 KB instead of 64 KB, for example). As the caller continues reading, the
cache manager prereads additional blocks of data, always staying about one read (of the size
of the current read) ahead of the caller.

Chapter 11: Cache Manager 683
The cache manager’s read-ahead is asynchronous because it is performed in a thread separate
from the caller’s thread and proceeds concurrently with the caller’s execution. When called to
retrieve cached data, the cache manager first accesses the requested virtual page to satisfy the
request and then queues an additional I/O request to retrieve additional data to a system worker
thread. The worker thread then executes in the background, reading additional data in anticipa-
tion of the caller’s next read request. The preread pages are faulted into memory while the pro-
gram continues executing so that when the caller requests the data it’s already in memory.

For applications that have no predictable read pattern, the FILE_FLAG_ RANDOM_ACCESS
flag can be specified when the CreateFile function is called. This flag instructs the cache man-
ager not to attempt to predict where the application is reading next and thus disables read-
ahead. The flag also stops the cache manager from aggressively unmapping views of the file as
the file is accessed so as to minimize the mapping/unmapping activity for the file when the
application revisits portions of the file.

Write-Back Caching and Lazy Writing

The Cache manager implements a write-back cache with lazy write. This means that data writ-
ten to files is first stored in memory in cache pages and then written to disk later. Thus, write
operations are allowed to accumulate for a short time and are then flushed to disk all at once,
reducing the overall number of disk I/O operations.

The cache manager must explicitly call the memory manager to flush cache pages because
otherwise the memory manager writes memory contents to disk only when demand for phys-
ical memory exceeds supply, as is appropriate for volatile data. Cached file data, however, rep-
resents nonvolatile disk data. If a process modifies cached data, the user expects the contents
to be reflected on disk in a timely manner.

The decision about how often to flush the cache is an important one. If the cache is flushed
too frequently, system performance will be slowed by unnecessary I/O. If the cache is flushed
too rarely, you risk losing modified file data in the cases of a system failure (a loss especially
irritating to users who know that they asked the application to save the changes) and running
out of physical memory (because it’s being used by an excess of modified pages).

To balance these concerns, once per second the cache manager’s lazy writer function executes
on a system worker thread and queues one-eighth of the dirty pages in the system cache to be
written to disk. If the rate at which dirty pages are being produced is greater than the amount
the lazy writer had determined it should write, the lazy writer writes an additional number of
dirty pages that it calculates are necessary to match that rate. System worker threads from the
systemwide critical worker thread pool actually perform the I/O operations.

Note The cache manager provides a means for file system drivers to track when and how much
data has been written to a file. After the lazy writer flushes dirty pages to the disk, the cache man-
ager notifies the file system, instructing it to update its view of the valid data length for the file.
(The cache manager and file systems separately track the valid data length for a file in memory.)

684 Microsoft Windows Internals, Fourth Edition
You can examine the activity of the lazy writer by examining the cache performance counters
or system variables listed in Table 11-11.

Disabling Lazy Writing for a File

If you create a temporary file by specifying the flag FILE_ATTRIBUTE_TEMPORARY in a call
to the Windows CreateFile function, the lazy writer won’t write dirty pages to the disk unless
there is a severe shortage of physical memory or the file is explicitly flushed. This characteris-
tic of the lazy writer improves system performance—the lazy writer doesn’t immediately write
data to a disk that might ultimately be discarded. Applications usually delete temporary files
soon after closing them.

Forcing the Cache to Write Through to Disk

Because some applications can’t tolerate even momentary delays between writing a file and see-
ing the updates on disk, the cache manager also supports write-through caching on a per-file
object basis; changes are written to disk as soon as they’re made. To turn on write-through cach-
ing, set the FILE_FLAG_WRITE_ THROUGH flag in the call to the CreateFile function. Alterna-
tively, a thread can explicitly flush an open file, by using the Windows FlushFileBuffers function,
when it reaches a point at which the data needs to be written to disk. You can observe cache
flush operations that are the result of write-through I/O requests or explicit calls to FlushFile-
Buffers via the performance counters or system variables shown in Table 11-12.

Flushing Mapped Files

If the lazy writer must write data to disk from a view that’s also mapped into another process’s
address space, the situation becomes a little more complicated because the cache manager
will only know about the pages it has modified. (Pages modified by another process are

Table 11-11 System Variables for Examining the Activity of the Lazy Writer

Performance Counter
(frequency) System Variable (count) Description

Cache: Lazy Write Flushes/Sec CcLazyWriteIos Number of lazy writer flushes

Cache: Lazy Write Pages/Sec CcLazyWritePages Number of pages written by the
lazy writer

Table 11-12 System Variables for Viewing Cache Flush Operations

Performance Counter
(frequency) System Variable (count) Description

Cache: Data Flushes/Sec CcDataFlushes Number of times cache pages were
flushed explicitly, because of write
through, or because of the lazy writer

Cache: Data Flush Pages/
Sec

CcDataPages Number of pages flushed explicitly,
because of write through, or because
of the lazy writer

Chapter 11: Cache Manager 685
known only to that process because the modified bit in the page table entries for modified
pages are kept in the process private page tables.) To address this situation, the memory man-
ager informs the cache manager when a user maps a file. When such a file is flushed in the
cache (for example, as a result of a call to the Windows FlushFileBuffers function), the cache
manager writes the dirty pages in the cache and then checks to see whether the file is also
mapped by another process. When the cache manager sees that the file is, the cache manager
then flushes the entire view of the section to write out pages that the second process might
have modified. If a user maps a view of a file that is also open in the cache, when the view is
unmapped, the modified pages are marked as dirty so that when the lazy writer thread later
flushes the view, those dirty pages will be written to disk. This procedure works as long as the
sequence occurs in the following order:

1. A user unmaps the view.

2. A process flushes file buffers.

If this sequence isn’t followed, you can’t predict which pages will be written to disk.

EXPERIMENT: Watching Cache Flushes
You can see the cache manager map views into the system cache and flush pages to disk
by running the Performance tool and adding the Data Maps/sec and Lazy Write
Flushes/sec counter and then copying a large file from one location to another. The line
with the generally higher line in the following screen shot is the Data Maps/sec and the
other is Lazy Write Flushes/sec.

686 Microsoft Windows Internals, Fourth Edition
Write Throttling

The file system and cache manager must determine whether a cached write request will affect
system performance and then schedule any delayed writes. First the file system asks the cache
manager whether a certain number of bytes can be written right now without hurting perfor-
mance by using the CcCanIWrite function and blocking that write if necessary. Then the file sys-
tem sets up a callback with the cache manager for automatically writing the bytes when writes
are again permitted by calling CcDeferWrite. Once it’s notified of an impending write operation,
the cache manager determines how many dirty pages are in the cache and how much physical
memory is available. If few physical pages are free, the cache manager momentarily blocks the
file system thread that’s requesting to write data to the cache. The cache manager’s lazy writer
flushes some of the dirty pages to disk and then allows the blocked file system thread to con-
tinue. This write throttling prevents system performance from degrading because of a lack of
memory when a file system or network server issues a large write operation.

Note The effects of write throttling are global to the system because the resource it is based
on, available physical memory, is global to the system. This means that if heavy write activity to
a slow device triggers write throttling, writes to other devices will also be throttled.

The dirty page threshold is the number of pages that the system cache will allow to be dirty
before throttling cached writers. This value is computed at system initialization time and
depends on physical memory size and the value of the registry LargeSystemCache value,
described earlier.

Table 11-13 contains the algorithm used to calculate the dirty page threshold. The calcula-
tions in Table 11-13 are overridden if the system maximum working set size is greater than 4
MB—and it often is. (See Chapter 7 to find out how the memory manager chooses system
working set sizes—that is, how it determines whether the size is small, medium, or large.)
When the maximum working set size exceeds 4 MB, the dirty page threshold is set to the
value of the system maximum working set size minus 2 MB.

Write throttling is also useful for network redirectors transmitting data over slow communica-
tion lines. For example, suppose a local process writes a large amount of data to a remote file
system over a 9600-baud line. The data isn’t written to the remote disk until the cache man-

Table 11-13 Algorithm for Calculating the Dirty Page Threshold

System Memory Size Dirty Page Threshold

Small Physical pages / 8

Medium Physical pages / 4

Large Sum of the above two values

Chapter 11: Cache Manager 687
ager’s lazy writer flushes the cache. If the redirector has accumulated lots of dirty pages that
are flushed to disk at once, the recipient could receive a network timeout before the data trans-
fer completes. By using the CcSetDirtyPageThreshold function, the cache manager allows net-
work redirectors to set a limit on the number of dirty cache pages they can tolerate, thus
preventing this scenario. By limiting the number of dirty pages, the redirector ensures that a
cache flush operation won’t cause a network timeout.

Note On Windows XP and later network redirectors, do not set the dirty page threshold and
instead rely on the default system values.

EXPERIMENT: Viewing the Write-Throttle Parameters
The !defwrites kernel debugger command dumps the values of the kernel variables the
cache manager uses, including the number of dirty pages in the file cache (CcTotalDirty-
Pages) when determining whether it should throttle write operations:

kd> !defwrites

*** Cache Write Throttle Analysis ***

CcTotalDirtyPages: 758 (3032 Kb)

CcDirtyPageThreshold: 770 (3080 Kb)

MmAvailablePages: 42255 (169020 Kb)

MmThrottleTop: 250 (1000 Kb)

MmThrottleBottom: 30 (120 Kb)

MmModifiedPageListHead.Total: 689 (2756 Kb)

CcTotalDirtyPages within 64 (max charge) pages of the threshold, writes

may be throttled

Check critical workqueue for the lazy writer, !exqueue 16

This output shows that the number of dirty pages is close to the number that triggers
write throttling (CcDirtyPageThreshold), so if a process tried to write more than 12 pages
(48 KB) at the time of the experiment, it would be delayed until the lazy writer lowered
the number of dirty pages.

System Threads

As mentioned earlier, the cache manager performs lazy write and read-ahead I/O operations by
submitting requests to the common critical system worker thread pool. However, it does limit
the use of these threads to one less than the total number of critical worker system threads for
small and medium memory systems (two less than the total for large memory systems).

688 Microsoft Windows Internals, Fourth Edition
Internally, the cache manager organizes its work requests into two lists (though these are ser-
viced by the same set of executive worker threads):

■ The express queue is used for read-ahead operations.

■ The regular queue is used for lazy write scans (for dirty data to flush), write behinds, and
lazy closes.

To keep track of the work items the worker threads need to perform, the cache manager cre-
ates its own internal per-processor look-aside list, a fixed-length list—one for each processor—of
worker queue item structures. (Look-aside lists are discussed in Chapter 7.) The number of
worker queue items depends on system size: 32 for small-memory systems, 64 for medium-
memory systems, 128 for large-memory Windows Professional systems, and 256 for large-
memory Windows Server systems.

Conclusion
The cache manager provides a high-speed, intelligent mechanism for reducing disk I/O and
increasing overall system throughput. By caching on the basis of virtual blocks, the cache
manager can perform intelligent read-ahead. By relying on the global memory manager’s
mapped file primitive to access file data, the cache manager can provide the special fast I/O
mechanism to reduce the CPU time required for read and write operations and also leave all
matters related to physical memory management to the single Windows global memory man-
ager, thus reducing code duplication and increasing efficiency.

Chapter 12

File Systems

In this chapter, we present an overview of the file system formats supported by Microsoft Win-
dows. We then describe the types of file system drivers and their basic operation, including
how they interact with other system components such as the memory manager and the cache
manager. Following that is a description of how to use Filemon (from www.sysinternals.com) to
troubleshoot a wide variety of file system access problems. In the balance of the chapter, we
focus on the on-disk layout of the native Windows file system format called NTFS and the
advanced features of NTFS, such as compression, recoverability, quotas, and encryption.

To fully understand this chapter, you should be familiar with the terminology introduced in
Chapter 10, including the terms volume and partition. You’ll also need to be acquainted with
these additional terms:

■ Sectors are hardware-addressable blocks on a storage medium. Hard disks for x86 sys-
tems almost always define a 512-byte sector size. Thus, if the operating system wants to
modify the 632nd byte on a disk, it must write a 512-byte block of data to the second
sector on the disk.

■ File system formats define the way that file data is stored on storage media, and they affect
a file system’s features. For example, a format that doesn’t allow user permissions to be
associated with files and directories can’t support security. A file system format can also
impose limits on the sizes of files and storage devices that the file system supports.
Finally, some file system formats efficiently implement support for either large or small
files or for large or small disks.

■ Clusters are the addressable blocks that many file system formats use. Cluster size is
always a multiple of the sector size, as shown in Figure 12-1. File system formats use
clusters to manage disk space more efficiently; a cluster size that is larger than the sector
size divides a disk into more manageable blocks. The potential trade-off of a larger clus-
ter size is wasted disk space, or internal fragmentation, that results because file sizes typ-
ically aren’t perfect multiples of cluster sizes.
689

690 Microsoft Windows Internals, Fourth Edition
Figure 12-1 Sectors and a cluster on a disk

■ Metadata is data stored on a volume in support of file system format management. It
isn’t typically made accessible to applications. Metadata includes the data that defines
the placement of files and directories on a volume, for example.

Windows File System Formats
Windows includes support for the following file system formats:

■ CDFS

■ UDF

■ FAT12, FAT16, and FAT32

■ NTFS

Each of these formats is best suited for certain environments, as you’ll see in the following
sections.

CDFS

CDFS (\Windows\System32\Drivers\Cdfs.sys), or CD-ROM file system, is a read-only file
system driver that supports a superset of the ISO-9660 format as well as a superset of the
Joliet disk format. While the ISO-9660 format is relatively simple and has limitations such as
ASCII uppercase names with a maximum length of 32 characters, Joliet is more flexible and
supports UNICODE names of arbitrary length, for example. If structures for both formats are
present on a disk (to offer maximum compatibility), CDFS uses the Joliet format. CDFS has a
number of restrictions:

■ A maximum file size of 4 GB

■ A maximum of 65,535 directories

CDFS is considered a legacy format because the industry has adopted the Universal Disk For-
mat (UDF) as the standard for read-only media.

Sector

Cluster (4 sectors)

Chapter 12: File Systems 691
UDF

The Windows UDF file system implementation is OSTA (Optical Storage Technology) UDF-
compliant. (UDF is a subset of the ISO-13346 format with extensions for formats such as
CD-R and DVD-R/RW.) OSTA defined UDF in 1995 as a format to replace the ISO-9660 for-
mat for magneto-optical storage media, mainly DVD-ROM. UDF is included in the DVD spec-
ification and is more flexible than CDFS. The UDF driver supports UDF versions 1.02, version
1.5 on Windows 2000, and versions 2.0 and 2.01 on Windows XP and Windows Server 2003.
UDF file systems have the following traits:

■ Directory and filenames can be 254 ASCII or 127 UNICODE characters long.

■ Files can be sparse. (Sparse files are defined later in the chapter.)

■ File sizes are specified with 64-bits.

Although the UDF format was designed with rewritable media in mind, the Windows UDF
driver (\Windows\System32\Drivers\Udfs.sys) provides read-only support. In addition,
Windows does not implement support for other UDF features, including named streams,
access control lists, or extended attributes.

FAT12, FAT16, and FAT32

Windows supports the FAT file system primarily to enable upgrades from other versions of
Microsoft Windows, for compatibility with other operating systems in multiboot systems, and
as a floppy disk format. The Windows FAT file system driver is implemented in \Windows\
System32\Drivers\Fastfat.sys.

The name of each FAT format includes a number that indicates the number of bits the format
uses to identify clusters on a disk. FAT12’s 12-bit cluster identifier limits a partition to storing
a maximum of 212 (4096) clusters. Windows uses cluster sizes from 512 bytes to 8 KB in size,
which limits a FAT12 volume size to 32 MB. Therefore, Windows uses FAT12 as the format for
all 5-inch floppy disks and 3.5-inch floppy disks, which store up to 1.44 MB of data.

Note All FAT file system types reserve the first two clusters and the last 16 clusters of a vol-
ume, so the number of usable clusters for a FAT12 volume, for instance, is slightly less than
4096.

FAT16, with a 16-bit cluster identifier, can address 216 (65,536) clusters. On Windows, FAT16
cluster sizes range from 512 bytes (the sector size) to 64 KB, which limits FAT16 volume sizes to
4 GB. The cluster size Windows uses depends on the size of a volume. The various sizes are
listed in Table 12-1. If you format a volume that is less than 16 MB as FAT by using the format
command or the Disk Management snap-in, Windows uses the FAT12 format instead of FAT16.

692 Microsoft Windows Internals, Fourth Edition
A FAT volume is divided into several regions, which are shown in Figure 12-2. The file alloca-
tion table, which gives the FAT file system format its name, has one entry for each cluster on
a volume. Because the file allocation table is critical to the successful interpretation of a vol-
ume’s contents, the FAT format maintains two copies of the table so that if a file system driver
or consistency-checking program (such as Chkdsk) can’t access one (because of a bad disk
sector, for example) it can read from the other.

Figure 12-2 FAT format organization

Entries in the file allocation table define file-allocation chains (shown in Figure 12-3) for files
and directories, where the links in the chain are indexes to the next cluster of a file’s data. A
file’s directory entry stores the starting cluster of the file. The last entry of the file’s allocation
chain is the reserved value of 0xFFFF for FAT16 and 0xFFF for FAT12. The FAT entries for
unused clusters have a value of 0. You can see in Figure 12-3 that FILE1 is assigned clusters 2,
3, and 4; FILE2 is fragmented and uses clusters 5, 6, and 8; and FILE3 uses only cluster 7.
Reading a file from a FAT volume can involve reading large portions of a file allocation table to
traverse the file’s allocation chains.

Figure 12-3 Sample FAT file-allocation chains

Table 12-1 Default FAT16 Cluster Sizes in Windows

Volume Size Cluster Size

0–32 MB 512 bytes

33 MB–64 MB 1 KB

65 MB–128 MB 2 KB

129 MB–256 MB 4 KB

257 MB–511 MB 8 KB

512 MB–1023 MB 16 KB

1024 MB–2047 MB 32 KB

2048 MB–4095 MB 64 KB

Boot
sector

File allocation
table 1

File allocation
table 2

(duplicate)

Root
directory

Other directories and all files

FILE1 0002

0003 0004 0006 0008FFFF FFFF 0000FFFF

FILE2

File directory entries

2 3 4 5 6 7 8 9

0005 FILE3 0007

Chapter 12: File Systems 693
The root directory of FAT12 and FAT16 volumes are preassigned enough space at the start of
a volume to store 256 directory entries, which places an upper limit on the number of files
and directories that can be stored in the root directory. (There’s no preassigned space or size
limit on FAT32 root directories.) A FAT directory entry is 32 bytes and stores a file’s name,
size, starting cluster, and time stamp (last-accessed, created, and so on) information. If a file
has a name that is Unicode or that doesn’t follow the MS-DOS 8.3 naming convention, addi-
tional directory entries are allocated to store the long filename. The supplementary entries
precede the file’s main entry. Figure 12-4 shows a sample directory entry for a file named “The
quick brown fox.” The system has created a THEQUI~1.FOX 8.3 representation of the name
(that is, you don’t see a “.” in the directory entry because it is assumed to come after the eighth
character) and used two more directory entries to store the Unicode long filename. Each row
in the figure is made up of 16 bytes.

Figure 12-4 FAT directory entry

FAT32 is the most recently defined FAT-based file system format, and it’s included with Windows
95 OSR2, Windows 98, and Windows Millennium Edition. FAT32 uses 32-bit cluster identifiers
but reserves the high 4 bits, so in effect it has 28-bit cluster identifiers. Because FAT32 cluster sizes
can be as large as 32 KB, FAT32 has a theoretical ability to address 8-terabyte (TB) volumes.
Although Windows works with existing FAT32 volumes of larger sizes (created in other operat-
ing systems), it limits new FAT32 volumes to a maximum of 32 GB. FAT32’s higher potential clus-
ter numbers let it manage disks more efficiently than FAT16; it can handle up to 128-MB volumes
with 512-byte clusters. Table 12-2 shows default cluster sizes for FAT32 volumes.

Table 12-2 Default Cluster Sizes for FAT32 Volumes

Partition Size Cluster Size

32 MB–8 GB 4 KB

8 GB–16 GB 8 KB

16 GB–32 GB 16 KB

32 GB 32 KB

Second (and last) long entry

Short entry

First long entry

0x42 w n . f o 0x0f 0x00 xCheck
sum

0x0000 0xFFFF 0xFFFF 0xFFFF 0xFFFF 0x0000 0xFFFF 0xFFFF

0x01 T h e q 0x0F 0x00 uCheck
sum

i c k b 0x0000 or

T H E Q U I ˜ 1 F O X 0X20 NT Create time

Create date Last access
date 0x0000 Last modi-

fied time
Last modi-
fied date First cluster File size

694 Microsoft Windows Internals, Fourth Edition
Besides the higher limit on cluster numbers, other advantages FAT32 has over FAT12 and
FAT16 include the fact that the FAT32 root directory isn’t stored at a predefined location on
the volume, the root directory doesn’t have an upper limit on its size, and FAT32 stores a sec-
ond copy of the boot sector for reliability. A limitation FAT32 shares with FAT16 is that the
maximum file size is 4 GB because directories store file sizes as 32-bit values.

Note Windows XP introduces support for FAT32 on DVD-RAM devices.

NTFS
As we said at the beginning of the chapter, the NTFS file system is the native file system format
of Windows. NTFS uses 64-bit cluster numbers. This capacity gives NTFS the ability to
address volumes of up to 16 exabytes (16 billion GB); however, Windows limits the size of an
NTFS volume to that addressable with 32-bit clusters, which is slightly less than 256 TB
(using 64-KB clusters). Table 12-3 shows the default cluster sizes for NTFS volumes. (You can
override the default when you format an NTFS volume.) NTFS also supports 232-1 files per
volume. The NTFS format allows for files that are 16 exabytes in size, but the implementation
limits the maximum file size to 16 TB.

NTFS includes a number of advanced features, such as file and directory security, disk quotas,
file compression, directory-based symbolic links, and encryption. One of its most significant
features is recoverability. If a system is halted unexpectedly, the metadata of a FAT volume can
be left in an inconsistent state, leading to the corruption of large amounts of file and directory
data. NTFS logs changes to metadata in a transactional manner so that file system structures
can be repaired to a consistent state with no loss of file or directory structure information.
(File data can be lost, however.)

We’ll describe NTFS data structures and advanced features in detail later in this chapter.

File System Driver Architecture
File system drivers (FSDs) manage file system formats. Although FSDs run in kernel mode,
they differ in a number of ways from standard kernel-mode drivers. Perhaps most significant,
they must register as an FSD with the I/O manager and they interact more extensively with
the memory manager. For enhanced performance, file system drivers also usually rely on the
services of the cache manager. Thus, they use a superset of the exported Ntoskrnl functions
that standard drivers use. Whereas you need the Windows DDK in order to build standard

Table 12-3 Default Cluster Sizes for NTFS Volumes

Volume Size Default Cluster Size

512 MB or less 512 bytes

513 MB–1024 MB (1 GB) 1 KB

1025 MB–2048 MB (2 GB) 2 KB

Greater than 2048 MB 4 KB

Chapter 12: File Systems 695
kernel-mode drivers, you must have the Windows Installable File System (IFS) Kit to build file
system drivers. (See Chapter 1 for more information on the DDK, and see www.microsoft.com/
whdc/devtools/ifskit for more information on the IFS Kit.)

Windows has two different types of file system drivers:

■ Local FSDs manage volumes directly connected to the computer.

■ Network FSDs allow users to access data volumes connected to remote computers.

Local FSDs

Local FSDs include Ntfs.sys, Fastfat.sys, Udfs.sys, Cdfs.sys, and the Raw FSD (integrated in
Ntoskrnl.exe). Figure 12-5 shows a simplified view of how local FSDs interact with the I/O
manager and storage device drivers. As we described in the section “Volume Mounting” in
Chapter 10, a local FSD is responsible for registering with the I/O manager. Once the FSD is
registered, the I/O manager can call on it to perform volume recognition when applications or
the system initially access the volumes. Volume recognition involves an examination of a vol-
ume’s boot sector and often, as a consistency check, the file system metadata.

The first sector of every Windows-supported file system format is reserved as the volume’s
boot sector. A boot sector contains enough information so that a local FSD can both identify
the volume on which the sector resides as containing a format that the FSD manages and
locate any other metadata necessary to identify where metadata is stored on the volume.

When a local FSD recognizes a volume, it creates a device object that represents the mounted
file system format. The I/O manager makes a connection through the volume parameter block
(VPB) between the volume’s device object (which is created by a storage device) and the
device object that the FSD created. The VPB’s connection results in the I/O manager redirect-
ing I/O requests targeted at the volume device object to the FSD device object. (See Chapter
10 for more information on VPBs.)

Figure 12-5 Local FSD

ApplicationApplication

Logical
volume

(partition)

User mode

Kernel mode

I/O manager

File system driver

Storage device drivers

696 Microsoft Windows Internals, Fourth Edition
To improve performance, local FSDs usually use the cache manager to cache file system data,
including metadata. They also integrate with the memory manager so that mapped files are
implemented correctly. For example, they must query the memory manager whenever an
application attempts to truncate a file in order to verify that no processes have mapped the
part of the file beyond the truncation point. Windows doesn’t permit file data that is mapped
by an application to be deleted either through truncation or file deletion.

Local FSDs also support file system dismount operations, which permit the system to discon-
nect the FSD from the volume object. A dismount occurs whenever an application requires
raw access to the on-disk contents of a volume or the media associated with a volume is
changed. The first time an application accesses the media after a dismount, the I/O manager
reinitiates a volume mount operation for the media.

Remote FSDs

Remote FSDs consist of two components: a client and a server. A client-side remote FSD
allows applications to access remote files and directories. The client FSD accepts I/O requests
from applications and translates them into network file system protocol commands that the
FSD sends across the network to a server-side component, which is typically a remote FSD. A
server-side FSD listens for commands coming from a network connection and fulfills them by
issuing I/O requests to the local FSD that manages the volume on which the file or directory
that the command is intended for resides.

Figure 12-6 CIFS file sharing

Disk

Client Server

User mode

Kernel mode

Protocol driver
(TDI transport)

Protocol driver
(TDI transport)

Local FSD
(NTFS, FAT)

File data

Network

Client
application Kernel32.dll

Ntdll.dll

Cache
manager

Server
FSD

User mode

Kernel mode

Cache
manager

Redirector
FSD

Chapter 12: File Systems 697
Windows includes a client-side remote FSD named LANMan Redirector (redirector) and a
server-side remote FSD server named LANMan Server (\Windows\System32\Drivers\Srv.sys
- server). The redirector is implemented as a port/miniport driver combination, where the
port driver (\Windows\System32\Drivers\Rdbss.sys) is implemented as a driver subroutine
library and the miniport (\Windows\System32\Drivers\Mrxsmb.sys) uses services imple-
mented by the port driver. Another redirector miniport driver is WebDAV (\Windows\
System32\Drivers\Mrxdav.sys), which implements the client side of file access over HTTP.
The port/miniport model simplifies redirector development because the port driver, which all
remote FSD miniport drivers share, handles many of the mundane details involved with inter-
facing a client-side remote FSD to the Windows I/O manager. In addition to the FSD compo-
nents, both LANMan Redirector and LANMan Server include Windows services named
Workstation and Server, respectively. Figure 12-6 shows the relationship bewteen a client
accessing files remotely from a server through the redirector and server FSDs.

Windows relies on the Common Internet File System (CIFS) protocol to format messages
exchanged between the redirector and the server. CIFS is a version of Microsoft’s Server Mes-
sage Block (SMB) protocol. (For more information on CIFS, go to www.cifs.com.)

Like local FSDs, client-side remote FSDs usually use cache manager services to locally cache
file data belonging to remote files and directories. However, client-side remote FSDs must
implement a distributed cache coherency protocol, called oplocks (opportunistic locking), so
that the data an application sees when it accesses a remote file is the same as the data applica-
tions running on other computers that are accessing the same file see. Although server-side
remote FSDs participate in maintaining cache coherency across their clients, they don’t cache
data from the local FSDs because local FSDs cache their own data.

When a client wants to access a server file, it must first request an oplock. The client dictates
the kind of caching that the client can perform based on the type of oplock that the server
grants.

There are three main types of oplock:

■ A Level I oplock is granted when a client has exclusive access to a file. A client holding
this type of oplock for a file can cache both reads and writes on the client system.

■ A Level II oplock represents a shared file lock. Clients that hold a Level II oplock can
cache reads, but writing to the file invalidates the Level II oplock.

■ A Batch oplock is the most permissive kind of oplock. A client with this oplock can
cache both reads and writes to the file as well as open and close the file without request-
ing additional oplocks. Batch oplocks are typically used only to support the execution of
batch files, which can open and close a file repeatedly as they execute.

If a client has no oplock, it can cache neither read nor write data locally and instead must
retrieve data from the server and send all modifications directly to the server.

698 Microsoft Windows Internals, Fourth Edition
An example, shown in Figure 12-7, will help illustrate oplock operation. The server automati-
cally grants a Level I oplock to the first client to open a server file for access. The redirector on
the client caches the file data for both reads and writes in the file cache of the client machine.
If a second client opens the file, it too requests a Level I oplock. However, because there are
now two clients accessing the same file, the server must take steps to present a consistent view
of the file’s data to both clients. If the first client has written to the file, as is the case in Figure
12-7, the server revokes its oplock and grants neither client an oplock. When the first client’s
oplock is revoked, or broken, the client flushes any data it has cached for the file back to the
server.

Figure 12-7 Oplock example

If the first client hadn’t written to the file, the first client’s oplock would have been broken to
a Level II oplock, which is the same type of oplock the server grants to the second client. Now
both clients can cache reads, but if either writes to the file, the server revokes their oplocks so
that noncached operation commences. Once oplocks are broken, they aren’t granted again for
the same open instance of a file. However, if a client closes a file and then reopens it, the server
reassesses what level of oplock to grant the client based on what other clients have the file
open and whether or not at least one of them has written to the file.

EXPERIMENT: Viewing the List of Registered File Systems
When the I/O manager loads a device driver into memory, it typically names the driver
object it creates to represent the driver so that it’s placed in the \Drivers object manager
directory. The driver objects for any driver the I/O manager loads that have a Type
attribute value of SERVICE_FILE_SYSTEM_DRIVER (2) are placed in the \FileSystem
directory by the I/O manager. Thus, using a tool such as Winobj (from www.sysinter-
nals.com), you can see the file systems that have registered on a system, as shown in the
following screen shot. (Note that some file system drivers also place device objects in
the \FileSystem directory.)

Time

File open

Cached read(s)
Cached write(s)

Flushes cached
modified data

Noncached read(s)
Noncached write(s)

Client 1 Client 2

Grant Level I
oplock to Client 1

File open

Oplock request

Oplock
request

Level I grant

Oplock break
to none

Data flush

No oplock
granted

Noncached read(s)
Noncached write(s)

Break Client 1
to no oplock

Do not grant
Client 2 oplock

Server

Chapter 12: File Systems 699
Another way to see registered file systems is to run the System Information viewer. On
Windows 2000, run the Computer Management MMC snap-in and select Drivers under
the Software Environment in the System Information node; on Windows XP and Win-
dows Server 2003, run Msinfo32 from the Start menu’s Run dialog box and select Sys-
tem Drivers under Software Environment. Sort the list of drivers by clicking the Type
column and drivers with a Type attribute of SERVICE_FILE_SYSTEM_DRIVER group
together.

Note that just because a driver registers as a file system driver type doesn’t mean that it
is a local or remote FSD. For example, Npfs (Named Pipe File System), which is visible
in the list just shown, is a network API driver that supports named pipes but imple-
ments a private namespace, and therefore, is in some ways like a file system driver. See
Chapter 13 for an experiment that reveals the Npfs namespace.

700 Microsoft Windows Internals, Fourth Edition
File System Operation

Applications and the system access files in two ways: directly, via file I/O functions (such as
ReadFile and WriteFile), and indirectly, by reading or writing a portion of their address space
that represents a mapped file section. (See Chapter 7 for more information on mapped files.)
Figure 12-8 is a simplified diagram that shows the components involved in these file system
operations and the ways in which they interact. As you can see, an FSD can be invoked
through several paths:

■ From a user or system thread performing explicit file I/O

■ From the memory manager’s modified and mapped page writers

■ Indirectly from the cache manager’s lazy writer

■ Indirectly from the cache manager’s read-ahead thread

■ From the memory manager’s page fault handler

Figure 12-8 Components involved in file system I/O

Process

Handle
table

File object

File object

Data
attribute

File
control
block

Named
stream

NTFS data
structures

Stream
control
blocks

...

Object
manager

data
structures

Master file
table

...

NTFS
database
(on disk)

Chapter 12: File Systems 701
The following sections describe the circumstances surrounding each of these scenarios and
the steps FSDs typically take in response to each one. You’ll see how much FSDs rely on the
memory manager and the cache manager.

Explicit File I/O

The most obvious way an application accesses files is by calling Windows I/O functions such
as CreateFile, ReadFile, and WriteFile. An application opens a file with CreateFile and then
reads, writes, or deletes the file by passing the handle returned from CreateFile to other Win-
dows functions. The CreateFile function, which is implemented in the Kernel32.dll Windows
client-side DLL, invokes the native function NtCreateFile, forming a complete root-relative
pathname for the path that the application passed to it (processing “.” and “..” symbols in the
pathname) and prepending the path with “\??” (for example, \??\C:\Daryl\Todo.txt).

The NtCreateFile system service uses ObOpenObjectByName to open the file, which parses the
name starting with the object manager root directory and the first component of the path
name (“??”). Chapter 3 includes a thorough description of object manager name resolution
and its use of process device maps, but we’ll review the steps it follows here with a focus on
volume drive letter lookup.

The first step the object manager takes is to translate \?? to the process’s per-session
namespace directory that the DosDevicesDirectory field of the device map structure in the
process object references. On Windows 2000 systems without Terminal Services, the DosDe-
vicesDirectory field references the \?? directory; and on Windows 2000 systems with Termi-
nal Services, the device map references a per-session directory in which symbolic link objects
representing all valid volume drive letters are stored. On Windows XP and Windows Server
2003, however, only volume names for network shares are typically stored in the per-session
directory, so on those systems when a name (C: in this example) is not present in the per-ses-
sion directory, the object manager restarts its search in the directory referenced by the Global-
DosDevicesDirectory field of the device map associated with the per-session directory. The
GlobalDosDevicesDirectory always points at the \Global?? directory, which is where Win-
dows XP and Windows Server 2003 store volume drive letters for local volumes. (See the sec-
tion “Session Namespace” in Chapter 3 for more information.)

The symbolic link for a volume drive letter points to a volume device object under \Device, so
when the object manager encounters the volume object, the object manager hands the rest of
the pathname to the parse function that the I/O manager has registered for device objects, Iop-
ParseDevice. (In volumes on dynamic disks, a symbolic link points to an intermediary sym-
bolic link, which points to a volume device object.) Figure 12-9 shows how volume objects are
accessed through the object manager namespace. The figure shows how the \??\C: symbolic
link points to the \Device\HarddiskVolume1 volume device object on Windows 2000 with-
out Terminal Services.

702 Microsoft Windows Internals, Fourth Edition
Figure 12-9 Drive-letter name resolution

After locking the caller’s security context and obtaining security information from the caller’s
token, IopParseDevice creates an I/O request packet (IRP) of type IRP_MJ_CREATE, creates a
file object that stores the name of the file being opened, follows the VPB of the volume device
object to find the volume’s mounted file system device object, and uses IoCallDriver to pass
the IRP to the file system driver that owns the file system device object.

When an FSD receives an IRP_MJ_CREATE IRP, it looks up the specified file, performs secu-
rity validation, and if the file exists and the user has permission to access the file in the way
requested, returns a success code. The object manager creates a handle for the file object in
the process’s handle table, and the handle propagates back through the calling chain, finally
reaching the application as a return parameter from CreateFile. If the file system fails the cre-
ate, the I/O manager deletes the file object it created for it.

We’ve skipped over the details of how the FSD locates the file being opened on the volume,
but a ReadFile function call operation shares many of the FSD’s interactions with the cache
manager and storage driver. The path into the kernel taken as the result of a call to ReadFile is
the same as for a call to CreateFile, but the NtReadFile system service doesn’t need to perform
a name lookup—it calls on the object manager to translate the handle passed from ReadFile
into a file object pointer. If the handle indicates that the caller obtained permission to read the
file when the file was opened, NtReadFile proceeds to create an IRP of type IRP_MJ_READ and
sends it to the FSD on which the file resides. NtReadFile obtains the FSD’s device object,
which is stored in the file object, and calls IoCallDriver, and the I/O manager locates the FSD
from the device object and gives the IRP to the FSD.

Chapter 12: File Systems 703
If the file being read can be cached (that is, the FILE_FLAG_NO_BUFFERING flag wasn’t
passed to CreateFile when the file was opened), the FSD checks to see whether caching has
already been initiated for the file object. The PrivateCacheMap field in a file object points to a
private cache map data structure (which we described in Chapter 11) if caching is initiated for
a file object. If the FSD hasn’t initialized caching for the file object (which it does the first time
a file object is read from or written to), the PrivateCacheMap field will be null. The FSD calls
the cache manager CcInitializeCacheMap function to initialize caching, which involves the
cache manager creating a private cache map and, if another file object referring to the same file
hasn’t initiated caching, a shared cache map and a section object.

After it has verified that caching is enabled for the file, the FSD copies the requested file data
from the cache manager’s virtual memory to the buffer that the thread passed to the ReadFile
function. The file system performs the copy within a try/except block so that it catches any
faults that are the result of an invalid application buffer. The function the file system uses to
perform the copy is the cache manager’s CcCopyRead function. CcCopyRead takes as parame-
ters a file object, file offset, and length.

When the cache manager executes CcCopyRead, it retrieves a pointer to a shared cache map,
which is stored in the file object. Recall from Chapter 11 that a shared cache map stores point-
ers to virtual address control blocks (VACBs), with one VACB entry per 256-KB block of the
file. If the VACB pointer for a portion of a file being read is null, CcCopyRead allocates a VACB,
reserving a 256-KB view in the cache manager’s virtual address space, and maps (using
MmMapViewInSystemCache) the specified portion of the file into the view. Then CcCopyRead
simply copies the file data from the mapped view to the buffer it was passed (the buffer origi-
nally passed to ReadFile). If the file data isn’t in physical memory, the copy operation gener-
ates page faults, which are serviced by MmAccessFault.

When a page fault occurs, MmAccessFault examines the virtual address that caused the fault
and locates the virtual address descriptor (VAD) in the VAD tree of the process that caused the
fault. (See Chapter 7 for more information on VAD trees.) In this scenario, the VAD describes
the cache manager’s mapped view of the file being read, so MmAccessFault calls MiDispatch-
Fault to handle a page fault on a valid virtual memory address. MiDispatchFault locates the
control area (which the VAD points to) and through the control area finds a file object repre-
senting the open file. (If the file has been opened more than once, there might be a list of file
objects linked through pointers in their private cache maps.)

With the file object in hand, MiDispatchFault calls the I/O manager function IoPageRead to
build an IRP (of type IRP_MJ_READ) and sends the IRP to the FSD that owns the device
object the file object points to. Thus, the file system is reentered to read the data that it
requested via CcCopyRead, but this time the IRP is marked as noncached and paging I/O.
These flags signal the FSD that it should retrieve file data directly from disk, and it does so by
determining which clusters on disk contain the requested data and sending IRPs to the vol-
ume manager that owns the volume device object on which the file resides. The volume
parameter block (VPB) field in the FSD’s device object points to the volume device object.

704 Microsoft Windows Internals, Fourth Edition
The virtual memory manager waits for the FSD to complete the IRP read and then returns
control to the cache manager, which continues the copy operation that was interrupted by a
page fault. When CcCopyRead completes, the FSD returns control to the thread that called
NtReadFile, having copied the requested file data—with the aid of the cache manager and the
virtual memory manager—to the thread’s buffer.

The path for WriteFile is similar except that the NtWriteFile system service generates an IRP of
type IRP_MJ_WRITE and the FSD calls CcCopyWrite instead of CcCopyRead. CcCopyWrite, like
CcCopyRead, ensures that the portions of the file being written are mapped into the cache and
then copies to the cache the buffer passed to WriteFile.

If a file’s data is already stored in the system’s working set, there are several variants on the
scenario we’ve just described. If a file’s data is already stored in the cache, CcCopyRead doesn’t
incur page faults. Also, under certain conditions, NtReadFile and NtWriteFile call an FSD’s fast
I/O entry point instead of immediately building and sending an IRP to the FSD. Some of these
conditions follow: the portion of the file being read must reside in the first 4 GB of the file, the
file can have no locks, and the portion of the file being read or written must fall within the
file’s currently allocated size.

The fast I/O read and write entry points for most FSDs call the cache manager’s CcFastCopy-
Read and CcFastCopyWrite functions. These variants on the standard copy routines ensure
that the file’s data is mapped in the file system cache before performing a copy operation. If
this condition isn’t met, CcFastCopyRead and CcFastCopyWrite indicate that fast I/O isn’t pos-
sible. When fast I/O isn’t possible, NtReadFile and NtWriteFile fall back on creating an IRP.
(See the section “Fast I/O” in Chapter 11 for a more complete description of fast I/O.)

Memory Manager’s Modified and Mapped Page Writer

The memory manager’s modified and mapped page writer threads wake up periodically and
when available memory runs low to flush modified pages. The threads call IoAsynchro-
nousPageWrite to create IRPs of type IRP_MJ_WRITE and write pages to either a paging file or
a file that was modified after being mapped. Like the IRPs that MiDispatchFault creates, these
IRPs are flagged as noncached and paging I/O. Thus, an FSD bypasses the file system cache
and issues IRPs directly to a storage driver to write the memory to disk.

Cache Manager’s Lazy Writer

The cache manager’s lazy writer thread also plays a role in writing modified pages because it
periodically flushes views of file sections mapped in the cache that it knows are dirty. The
flush operation, which the cache manager performs by calling MmFlushSection, triggers the
memory manager to write any modified pages in the portion of the section being flushed to
disk. Like the modified and mapped page writers, MmFlushSection uses IoSynchronousPage-
Write to send the data to the FSD.

Chapter 12: File Systems 705
Cache Manager’s Read-Ahead Thread

The cache manager includes a thread that is responsible for attempting to read data from files
before an application, a driver, or a system thread explicitly requests it. The read-ahead thread
uses the history of read operations that were performed on a file, which are stored in a file
object’s private cache map, to determine how much data to read. When the thread performs
a read-ahead, it simply maps the portion of the file it wants to read into the cache (allocating
VACBs as necessary) and touches the mapped data. The page faults caused by the memory
accesses invoke the page fault handler, which reads the pages into the system’s working set.

Memory Manager’s Page Fault Handler

We described how the page fault handler is used in the context of explicit file I/O and cache
manager read-ahead, but it is also invoked whenever any application accesses virtual memory
that is a view of a mapped file and encounters pages that represent portions of a file that aren’t
part of the application’s working set. The memory manager’s MmAccessFault handler follows
the same steps it does when the cache manager generates a page fault from CcCopyRead or
CcCopyWrite, sending IRPs via IoPageRead to the file system on which the file is stored.

File System Filter Drivers

A filter driver that layers over a file system driver is called a file system filter driver. (See Chapter
9 for more information on filter drivers.) The ability to see all file system requests and option-
ally modify or complete them enables a range of applications, including remote file replication
services, file encryption, efficient backup, and licensing. Every commercial on-access virus
scanner includes a file system filter driver that intercepts IRPs that deliver IRP_MJ_CREATE
commands that issue whenever an application opens a file. Before propagating the IRP to the
file system driver to which the command is directed, the virus scanner examines the file being
opened to ensure it’s clean of a virus. If the file is clean, the virus scanner passes the IRP on,
but if the file is infected the virus scanner communicates with its associated Windows service
process to quarantine or clean the file. If the file can’t be cleaned, the driver fails the IRP (typ-
ically with an access-denied error) so that the virus cannot become active.

In this section, we’ll describe the operation of two specific file system filter drivers: Filemon
and System Restore. Filemon, a file system activity monitoring utility from www.sysinter-
nals.com that has been used throughout this book, is an example of a passive filter driver,
which is one that does not modify the flow of IRPs between applications and file system driv-
ers. System Restore, a feature that was introduced in Windows XP, uses a file system filter
driver to watch for changes to key system files and make backups so that the files can be
returned to the state they had at particular points in time called restore points.

706 Microsoft Windows Internals, Fourth Edition
Note Windows XP Service Pack 2 and Windows Server 2003 include the Filesystem Filter Man-
ager (\Windows\System32\Drivers\Fltmgr.sys), which will also be made available for Windows
2000, as part of a port/miniport model for file system filter drivers. The Filesystem Filter Manager
greatly simplifies the development of filter drivers by interfacing a filter miniport driver to the
Windows I/O system and providing services for querying filenames, attaching to volumes, and
interacting with other filters. Vendors, including Microsoft, will write new file system filters and
migrate existing filters to the framework provided by the Filesystem Filter Manager.

Filemon

Filemon works by extracting a file system filter device driver (Filem.sys) from its executable
image (Filemon.exe) the first time you run it after a boot, installing the driver in memory, and
then deleting the driver image from disk. Through the Filemon GUI, you can direct it to mon-
itor file system activity on local volumes that have assigned drive letters, network shares,
named pipes, and mail slots. When the driver receives a command to start monitoring a vol-
ume, it creates a filter device object and attaches it to the device object that represents a
mounted file system on the volume. For example, if the NTFS driver had mounted a volume,
Filemon’s driver would attach, using the I/O manager function IoAttachDeviceToDeviceStack-
Safe, its own device object to that of NTFS. After an attach operation, the I/O manager redi-
rects an IRP targeted at the underlying device object to the driver owning the attached device,
in this case Filemon.

When the Filemon driver intercepts an IRP, it records information about the IRP’s command,
including target file name and other parameters specific to the command (such as read and
write lengths and offsets) to a nonpaged kernel buffer. Twice a second the Filemon GUI sends
an IRP to Filemon’s interface device object, which requests a copy of the buffer containing the
latest activity and displays the activity in its output window. Filemon’s use is described further
in the “Troubleshooting File System Problems” section later in this chapter.

System Restore

System Restore, which originally appeared in a more rudimentary form in Windows Me (Mil-
lennium Edition), provides a way to restore a Windows XP system to a previously known
good point that would otherwise require you to reinstall an application or even the entire
operating system. (System Restore is not available on Windows 2000 or Windows Server
2003.) For example, if you install one or more applications or make other system file changes,
registry changes, or both that cause applications to fail, you can use System Restore to revert
the system files and the Registry to the state it had before the change occurred. System Restore
is especially useful when you install an application that makes changes you would like to
undo. Windows XP–compatible setup applications integrate with System Restore to create a
“restore point” before an installation begins.

Chapter 12: File Systems 707
System Restore’s core lies in a service named SrService, which executes from a DLL
(\Windows\System32\Srsvc.dll) running in an instance of a generic service host
(\Windows\System32\Svchost.exe) process. (See Chapter 4 for a description of Svchost.)
The service’s role is both to automatically create restore points and to export an API so that
other applications—such as setup programs—can manually initiate restore point creation.
System Restore reads its configuration parameters from HKLM\Software\Microsoft\System
Restore, including ones that specify how much disk space must be available for it to operate
and at what interval automated restore-point creation occurs. By default, the service creates a
restore point prior to the installation of an unsigned device driver and tries to create an auto-
matic checkpoint every 24 hours. (See Chapter 9 for information on driver signing.) If the
DWORD registry value RPGlobalInterval is set under System Restore’s parameter key,
HKLM\System\CurrentControlSet\Services\SR\Parameters, it overrides this interval and
specifies the minimum time interval in seconds between automatic restore points.

When the System Restore service creates a new restore point, it creates a restore point direc-
tory and then “snapshots” a set of critical system files, including the system and user-profile
Registry hives, WMI configuration information, the IIS metabase file (if IIS is installed), and
the COM registration database. Then the system restore file system filter driver, \Windows\
System32\Drivers\Sr.sys, begins to track changes to files and directories, saving copies of files
that are being deleted or modified in the restore point, and noting other changes, such as
directory creation and deletion, in a restore point tracking log.

Restore point data is maintained on a per-volume basis, so tracking logs and saved files are
stored under the \System Volume Information_restore{XX-XXX-XXX } directory (where the
Xs represent the computer’s system-assigned GUID) of a file’s original volume. The restore
directory contains restore-point subdirectories having names in the form RPn, where n is a
restore point’s unique identifier. Files that make up a restore point’s initial snapshot are stored
under a restore point’s Snapshot directory.

Backup files copied by the System Restore driver are given unique names, such as
A0000135.dll, in an appropriate restore-point directory that reflect the assignment of an iden-
tifier and the preservation of the file’s original extension. A restore point can have multiple
tracking logs, each having a name like change.log.N, where N is a unique tracking log ID. A
tracking log contains records that store enough information regarding a change to a file or
directory for the change to be undone. For example, if a file was deleted, the tracking log entry
for that operation would store the copy’s name in the restore point (for example,
A0000135.dll) and the file’s original long and short file names. The System Restore driver
starts a new tracking log when a current one grows larger than 1 MB. Figure 12-10 depicts the
flow of file system requests as the System Restore driver updates a restore point in response to
modifications.

708 Microsoft Windows Internals, Fourth Edition
Figure 12-10 System Restore filter driver operation

Figure 12-11 shows a screen shot of a System Restore directory, which includes several restore
point subdirectories, as well as the contents of the subdirectory corresponding to restore
point 1. Note that the \System Volume Information directories are not accessible by user or
even administrator accounts, but they are by the local system account. To view the contents of
this folder, follow these steps with the PsExec utility from www.sysinternals.com:

C:\WINDOWS\SYSTEM32>psexec -s cmd

PsExec v1.55 - Execute processes remotely

Copyright (C) 2001-2004 Mark Russinovich

Sysinternals - www.sysinternals.com

Microsoft Windows XP [Version 5.1.2600]

(C) Copyright 1985-2001 Microsoft Corp.

C:\WINDOWS\system32>cd \system*

C:\System Volume Information>cd _rest*

C:\System Volume Information_restore{987E0331-0F01-427C-A58A-7A2E4AABF84D}>

Once in the System Restore directory, you can examine its contents with the DIR command or
navigate into directories associated with restore points.

Applications

System Restore Filter

File System Driver (NTFS/FAT)

…

Change.log,1

A0009653.exe

A0009654.ini

User mode

Kernel mode File system request

\System Volume Information\
_restore{XX-XXX-XXX}\
RP5

Chapter 12: File Systems 709
Figure 12-11 System Restore directory and restore point contents

The restore point directory on the boot volume also stores a file named _filelst.cfg, which is a
binary file that includes the extensions of files for which changes should be stored in a restore
point and the list of directories—such as those that store temporary files—for which changes
should be ignored. This list, which is documented in the Platform SDK, directs System
Restore to track only nondata files. For example, you wouldn’t want an important Microsoft
Word document to be deleted just because you rolled back the system to correct an applica-
tion configuration problem.

EXPERIMENT: Looking at System Restore Filter Device Objects
To monitor changes to files and directories, the System Restore filter driver must attach
filter device objects to the FAT and NTFS device objects representing volumes. In addi-
tion, it attaches a filter device object to the device objects representing file system drivers
so that it can become aware of new volumes as they are mounted by the file system and
then subsequently attach filter device objects to them. You can see System Restore’s
device objects with a kernel debugger:

lkd> !drvobj \filesystem\sr

Driver object (81543850) is for:

\FileSystem\sr

Driver Extension List: (id , addr)

Device Object list:

814ee370 81542dd0 81543728

710 Microsoft Windows Internals, Fourth Edition
In this sample output, the System Restore driver has three device objects. The last one in
the list is named SystemRestore, so it serves as the interface to which the user-mode com-
ponents of System Restore direct commands:

lkd> !devobj 81543728

Device object (81543728) is for:

SystemRestore \FileSystem\sr DriverObject 81543850

Current Irp 00000000 RefCount 1 Type 00000022 Flags 00000040

Dacl e128feac DevExt 00000000 DevObjExt 815437e0

ExtensionFlags (0x80000000) DOE_DESIGNATED_FDO

Device queue is not busy.

The first and second objects are attached to NTFS file system device objects:

lkd> !devobj 814ee370

Device object (814ee370) is for:

\FileSystem\sr DriverObject 81543850

Current Irp 00000000 RefCount 0 Type 00000008 Flags 00000000

DevExt 814ee428 DevObjExt 814ee570

ExtensionFlags (0x80000000) DOE_DESIGNATED_FDO

AttachedTo (Lower) 81532020 \FileSystem\Ntfs

Device queue is not busy.

lkd> !devobj 81542dd0

Device object (81542dd0) is for:

\FileSystem\sr DriverObject 81543850

Current Irp 00000000 RefCount 0 Type 00000008 Flags 00000000

DevExt 81542e88 DevObjExt 81542fd0

ExtensionFlags (0x80000000) DOE_DESIGNATED_FDO

AttachedTo (Lower) 815432e8 \FileSystem\Ntfs

Device queue is not busy.

One of the NTFS device objects is the NTFS file system driver’s interface device because
its name is NTFS:

lkd> !devobj 815432e8

Device object (815432e8) is for:

Ntfs \FileSystem\Ntfs DriverObject 81543410

Current Irp 00000000 RefCount 1 Type 00000008 Flags 00000040

Dacl e1297154 DevExt 00000000 DevObjExt 815433a0

ExtensionFlags (0x80000000) DOE_DESIGNATED_FDO

AttachedDevice (Upper) 81542dd0 \FileSystem\sr

Device queue is not busy.

The other represents the mounted NTFS volume on C:, the system’s only volume, so it
does not have a name:

lkd> !devobj 81532020

Device object (81532020) is for:

\FileSystem\Ntfs DriverObject 81543410

Current Irp 00000000 RefCount 0 Type 00000008 Flags 00000000

DevExt 815320d8 DevObjExt 81532880

ExtensionFlags (0x80000000) DOE_DESIGNATED_FDO

AttachedDevice (Upper) 814ee370 \FileSystem\sr

Device queue is not busy.

Chapter 12: File Systems 711
When the user directs the system to perform a restore, the System Restore Wizard (\Win-
dows\System32\Restore\Rstrui.exe) creates a DWORD value named RestoreInProgress under
the System Restore parameters key and sets it to 1. Then it initiates a system shutdown with
reboot by calling the Windows ExitWindowsEx function. After the reboot, the WinLogon pro-
cess (\Windows\System32\Winlogon.exe) realizes that it should perform a restore, and then
copies saved files from the Restore Point’s directory to their original locations and uses the log
files to undo file system changes to files and directories. When the process is complete, the
boot continues. Besides making restores safer, the reboot is necessary to activate restored Reg-
istry hives.

The Platform SDK documents two System Restore–related APIs, SRSetRestorePoint and SRRe-
moveRestorePoint, for use by installation programs, and developers should examine the file
extensions that their applications use in light of System Restore. Files that store user data
should not have extensions matching those protected by System Restore; otherwise, users
could lose data when rolling back to a restore point.

Troubleshooting File System Problems
Chapter 4 describes the way that the system and applications store data in the registry, mak-
ing registry-related problems such as misconfigured security and missing registry values and
keys the source of many system and application failures. The system and applications also use
files to store data, and they access executable and DLL image files. Misconfigured NTFS secu-
rity and missing files or directories are therefore also a common source of system and applica-
tion failures. This is because the system and applications often make assumptions about what
they should be able to access and then misbehave in unexpected ways when the assumptions
are violated.

Filemon shows all file activity as it occurs, which makes it an ideal tool for troubleshooting file
system–related system and application failures. Filemon’s user interface is virtually identical
to Regmon’s, and Filemon includes the same filtering, highlighting and search features as Reg-
mon. To run Filemon the first time on a system, an account must have the same privileges as
to run Regmon: Load Driver and Debug. After loading, the driver remains resident, so subse-
quent executions require only the Debug privilege.

Filemon Basic vs. Advanced Modes

When you run Filemon, it starts in basic mode, which shows the file system activity most
often useful for troubleshooting. When in basic mode, Filemon omits certain file system oper-
ations from display, including:

■ Accesses to NTFS metadata files

■ Activity that occurs in the System process

■ I/O to the paging file

712 Microsoft Windows Internals, Fourth Edition
■ I/O generated by the Filemon process

■ Fast I/O failures

While in basic mode, Filemon also reports file I/O operations with friendly names rather than
the IRP types used to represent them. For example, both IRP_MJ_WRITE and
FASTIO_WRITE operations display as Write, and IRP_MJ_CREATE operations show as Open
if they represent an open operation and as Create for the creation of new files.

EXPERIMENT: Viewing File System Activity on an Idle System
Windows file system drivers implement support for file change notification, which enables
applications to request notification of file system changes without polling for them. The
Windows functions for doing so include ReadDirectoryChangesW and the Find-
FirstChangeNotification, FindNextChangeNofification pair. When you run Filemon on a sys-
tem that’s idle, you should therefore not see the repeated accesses to files or directories
because that activity unnecessarily negatively affects a system’s overall performance.

Run Filemon, and after several seconds examine the output log to see whether you can
spot polling behavior. Right-click on an output line associated with polling and choose
Process Properties from the context menu to view details of the process performing the
activity.

Filemon Troubleshooting Techniques

The two basic Filemon troubleshooting techniques are identical to those of Regmon: looking
at the last thing in a Filemon trace that an application did before it failed, or comparing a
Filemon trace of a failing application with a trace from a working system. See the section “Reg-
mon Troubleshooting Techniques” in Chapter 4 for more information on these techniques.

Entries in a Filemon trace that have values of FILE NOT FOUND, NO SUCH FILE, PATH
NOT FOUND, SHARING VIOLATION, and ACCESS DENIED in the Result column are ones
that you should investigate. The first three are reported when an application or the system
attempts to open a nonexistent file or directory. In many cases, these errors do not indicate a
serious problem. When you execute a program from the Start menu’s Run dialog box without
specifying its full path, for instance, Explorer will search the directories listed in the system
PATH environment variable for the image file until it locates the file or has searched all the
listed directories. Each attempt to find the image in a directory that does not contain it results
in a Filemon output line similar to this:

5:28:26 PMEXPLORER.EXE:1568FASTIO_QUERY_OPENC:\Documents and Settings\mark.AUSTIN\Start Menu

\test.exe FILE NOT FOUND Attributes: Error

Access-denied errors are a common source of file system–related application failures, and they
occur when an application does not have permission to open the file or directory for the

Chapter 12: File Systems 713
access types it desires. Some applications do not check error codes or perform error recovery,
and they fail by crashing or terminating; others display misleading error messages that mask
the root cause of the error.

Buffer-overflow exploits are a serious security concern, but a code result of BUFFER OVER-
FLOW is simply a file system driver’s way to indicate to an application that the buffer it spec-
ified to store result data was too small to hold the data. Application developers use this
behavior to determine how large a buffer should be because the file system driver also returns
the size of the buffer required to store the data. Operations with a buffer overflow result are
usually followed by the same operation with a successful result.

EXPERIMENT: Seeing an Error’s Root Cause with Filemon
Applications sometimes present error messages in response to an error condition that do
not reveal the root cause of the error. These error messages can be frustrating because they
might lead you to spend time diagnosing or resolving problems that do not exist. If the
error message is related to a file system issue, Filemon will show you what underlying
errors might have occurred prior to the appearance of an error message.

In this experiment, you’ll set permission on a directory and then perform a file save
operation in Notepad that results in a misleading error message. Filemon’s trace shows
the actual error and the source of the message displayed in Notepad’s error dialog box.

1. Run Filemon, and set the include filter to “notepad.exe”.

2. Open Explorer, and create a directory named “Test” in a directory on an NTFS vol-
ume. (In this example, the root directory was used.)

3. Edit the security permissions on the Test directory to remove all access. This might
require you to open the Advanced Security Settings dialog box and use the settings
on the Permissions tab to remove inherited security.

714 Microsoft Windows Internals, Fourth Edition
When you apply the modified security, Explorer should warn you that no one will
have access to the folder.

4. Run Notepad, and enter some text into its window. Then select the Save entry in
the File menu. In the File Name field of the Save dialog box, enter c:\test\test.txt
(assuming the folder you created is on the volume C:).

5. Notepad will display the following error message:

6. The message implies that C:\Test does not exist.

7. The Filemon trace you see should look something like this:

The output at the bottom of the figure was generated immediately prior to the appear-
ance of the error message. Line 331 shows that Notepad tried to open C:\Test and got an
access-denied error. Immediately afterward on line 332, it tried to open the
C:\Test\Test.txt directory (as indicated by the Directory option in the Other column of
that line) and received a file-not-found error because the directory does not exist. The
error message Notepad displays, “Path does not exist”, is consistent with a file-not-found
error, not an access-denied error. So it appears that Notepad first tried to open the direc-
tory, and when that failed it assumed for some reason that the name C:\Test\Test.txt
was the name of a directory instead of a file. When it couldn’t open that directory, Note-
pad presented the error message, but the root cause, which Filemon reveals, is the
access denied error.

Filemon has been used extensively within Microsoft and other organizations to solve difficult
or nearly impossible-to-diagnose problems. One example of Filemon being used to trouble-
shoot a problem revealed the root cause of a misleading error message generated by the

Chapter 12: File Systems 715
Windows Installer service. When the user tried to install an application using its Windows
Installer Package file, the Windows Installer service reported the error shown in Figure 12-12,
which states that the service cannot write to the Temp folder. The user verified that, contrary to the
error message’s claims, his profile’s temporary directory (that he obtained by typing set temp in a
console window) was located on a volume with adequate free space and had default permissions.

Figure 12-12 Microsoft Windows Installer error message

The user ran Filemon to capture a trace of the file system activity leading up to the error and
identified the highlighted line in Figure 12-13 as the root cause of the error. The conclusion
that the user drew from the trace is that the Windows Installer service was referring to \Win-
dows\Installer, not his profile’s temporary directory, as the Temp folder in the error message.
The access-denied line in the output reports that the Windows Installer service was running
in the local system account, so the user modified the permissions on \Windows\Installer to
allow the local system account write access and resolved the problem.

Figure 12-13 Microsoft Windows Installer Service Filemon trace

Another Filemon troubleshooting example involved Microsoft Word. The user in this case
would launch Word and type for a few seconds, only to have the Word window close without
notice. A Filemon trace of the scenario, part of which is shown in Figure 12-14, shows Word
repeatedly reading from the same part of a file named Mssp3es.lex immediately before exiting.
(When a process exits, the system closes all its handles, which you can see happening from
line 25460 onward.) The user determined that .lex files are related to Microsoft Office Proof-
ing Tools and reinstalled that component, which resolved the problem.

Figure 12-14 Microsoft Word reading a .lex file

716 Microsoft Windows Internals, Fourth Edition
In another example, a user encountered the error message shown in Figure 12-15 every time
she started Microsoft Excel. The Filemon trace in Figure 12-16 that the user captured during
Excel’s startup reveals Excel reading from a file named 59403e20 in a directory named Xlstart
in the Microsoft Office installation directory. The user investigated the problem and learned
from Excel’s documentation that Excel automatically tries to open files stored in the Xlstart
directory. However, the file visible in the trace was not an Excel file, which resulted in the error
message. Deleting the file caused the errors to cease.

Figure 12-15 Microsoft Excel startup error message

Figure 12-16 Filemon trace of Microsoft Excel startup

A final example of Filemon troubleshooting involves out-of-date DLLs. A particular user
would run Microsoft Access 2000 and experience a hang when he tried to import a Microsoft
Excel file. The user tried to import the same file on another system with Microsoft Access
2000 and was able to do so successfully. After capturing traces of the import operation on
both systems and saving them to log files, the user compared the logs with Windiff. The
results of the comparison are shown in Figure 12-17.

After discounting unimportant differences such as the different temporary file names seen in
line 19 and the different casing of file names seen in line 26, the user determined that the first
relevant difference between the traces is line 37. On the system where the import fails, Microsoft
Access loads a copy of Accwiz.dll from the \Winnt\System32 directory, whereas on the system
where the import succeeds it reads Accwiz.dll from \Progra~1\Files\Microsoft\Office. The user
examined the Accwiz.dll copy in \Winnt\System32 and discovered that it was from an older
version of Microsoft Access, but the system’s DLL search order caused it to find that instance
instead of the one in the Microsoft Access installation directory. Deleting that copy and register-
ing the proper copy fixed the problem.

Chapter 12: File Systems 717
Figure 12-17 Comparison of Microsoft Access trace logs

These are just a few examples showing how Filemon can be used to discover the root cause of
file system problems that might not be reported clearly by the application. The remainder of
the chapter focuses on the native Windows file system, NTFS.

NTFS Design Goals and Features
In the following section, we’ll look at the requirements that drove the design of NTFS. Then in
the subsequent section, we’ll examine the advanced features of NTFS.

High-End File System Requirements

From the start, NTFS was designed to include features required of an enterprise-class file sys-
tem. To minimize data loss in the face of an unexpected system outage or crash, a file system
must ensure that the integrity of its metadata is guaranteed at all times; and to protect sensi-
tive data from unauthorized access, a file system must have an integrated security model.
Finally, a file system must allow for software-based data redundancy as a low-cost alternative
to hardware-redundant solutions for protecting user data. In this section, you’ll find out how
NTFS implements each of these capabilities.

Recoverability

To address the requirement for reliable data storage and data access, NTFS provides file sys-
tem recovery based on the concept of an atomic transaction. Atomic transactions are a tech-
nique for handling modifications to a database so that system failures don’t affect the

718 Microsoft Windows Internals, Fourth Edition
correctness or integrity of the database. The basic tenet of atomic transactions is that some
database operations, called transactions, are all-or-nothing propositions. (A transaction is
defined as an I/O operation that alters file system data or changes the volume’s directory
structure.) The separate disk updates that make up the transaction must be executed atomi-
cally—that is, once the transaction begins to execute, all its disk updates must be completed. If
a system failure interrupts the transaction, the part that has been completed must be undone,
or rolled back. The rollback operation returns the database to a previously known and consis-
tent state, as if the transaction had never occurred.

NTFS uses atomic transactions to implement its file system recovery feature. If a program ini-
tiates an I/O operation that alters the structure of an NTFS volume—that is, changes the direc-
tory structure, extends a file, allocates space for a new file, and so on—NTFS treats that
operation as an atomic transaction. It guarantees that the transaction is either completed or, if
the system fails while executing the transaction, rolled back. The details of how NTFS does
this are explained in the section “NTFS Recovery Support” later in the chapter.

In addition, NTFS uses redundant storage for vital file system information so that if a sector
on the disk goes bad, NTFS can still access the volume’s critical file system data. This redun-
dancy of file system data contrasts with the on-disk structures of both the FAT file system and
the HPFS file system (OS/2’s native file system format), which have single sectors containing
critical file system data. On these file systems, if a read error occurs in one of those sectors an
entire volume is lost.

Security

Security in NTFS is derived directly from the Windows object model. Files and directories are
protected from being accessed by unauthorized users. (For more information on Windows
security, see Chapter 8.) An open file is implemented as a file object with a security descriptor
stored on disk as a part of the file. Before a process can open a handle to any object, including
a file object, the Windows security system verifies that the process has appropriate authoriza-
tion to do so. The security descriptor, combined with the requirement that a user log on to the
system and provide an identifying password, ensures that no process can access a file unless
given specific permission to do so by a system administrator or by the file’s owner. (For more
information about security descriptors, see the section “Security Descriptors and Access Con-
trol” in Chapter 8, and for more details about file objects, see the section “File Objects” in
Chapter 9.)

Data Redundancy and Fault Tolerance

In addition to recoverability of file system data, some customers require that their own data
not be endangered by a power outage or catastrophic disk failure. The NTFS recovery capabil-
ities do ensure that the file system on a volume remains accessible, but they make no guaran-
tees for complete recovery of user files. Protection for applications that can’t risk losing file
data is provided through data redundancy.

Chapter 12: File Systems 719
Data redundancy for user files is implemented via the Windows layered driver model
(explained in Chapter 9), which provides fault-tolerant disk support. NTFS communicates
with a volume manager, which in turn communicates with a hard disk driver to write data to
disk. A volume manager can mirror, or duplicate, data from one disk onto another disk so that
a redundant copy can always be retrieved. This support is commonly called RAID level 1. Vol-
ume managers also allow data to be written in stripes across three or more disks, using the
equivalent of one disk to maintain parity information. If the data on one disk is lost or
becomes inaccessible, the driver can reconstruct the disk’s contents by means of exclusive-OR
operations. This support is called RAID level 5. (See Chapter 10 for more information on
striped volumes, mirrored volumes, and RAID-5 volumes.)

Advanced Features of NTFS

In addition to NTFS being recoverable, secure, reliable, and efficient for mission-critical systems,
it includes the following advanced features that allow it to support a broad range of applications.
Some of these features are exposed as APIs for applications to leverage, and others are internal
features:

■ Multiple data streams

■ Unicode-based names

■ General indexing facility

■ Dynamic bad-cluster remapping

■ Hard links and junctions

■ Compression and sparse files

■ Change logging

■ Per-user volume quotas

■ Link tracking

■ Encryption

■ POSIX support

■ Defragmentation

■ Read-only support

The following sections provide an overview of these features.

Multiple Data Streams

In NTFS, each unit of information associated with a file—including its name, its owner, its time
stamps, its contents, and so on—is implemented as a file attribute (NTFS object attribute).
Each attribute consists of a single stream—that is, a simple sequence of bytes. This generic
implementation makes it easy to add more attributes (and therefore more streams) to a file.

720 Microsoft Windows Internals, Fourth Edition
Because a file’s data is “just another attribute” of the file and because new attributes can be
added, NTFS files (and file directories) can contain multiple data streams.

An NTFS file has one default data stream, which has no name. An application can create addi-
tional, named data streams and access them by referring to their names. To avoid altering the
Microsoft Windows I/O APIs, which take a string as a filename argument, the name of the
data stream is specified by appending a colon (:) to the filename. Because the colon is a
reserved character, it can serve as a separator between the filename and the data stream name,
as illustrated in this example:

myfile.dat:stream2

Each stream has a separate allocation size (which defines how much disk space has been
reserved for it), actual size (which is how many bytes the caller has used), and valid data
length (which is how much of the stream has been initialized). In addition, each stream is
given a separate file lock that is used to lock byte ranges and to allow concurrent access.

One component in Windows that uses multiple data streams is the Apple Macintosh file
server support that comes with Windows Server. Macintosh systems use two streams per file—
one to store data and the other to store resource information, such as the file type and the icon
used to represent the file. Because NTFS allows multiple data streams, a Macintosh user can
copy an entire Macintosh folder to a Windows server, and another Macintosh user can copy
the folder from the server without losing resource information.

Windows Explorer is another application that uses streams. When you right-click on an NTFS
file and select Properties, the Summary tab of the resulting dialog box lets you associate infor-
mation with the file, such as a title, subject, author, and keywords. Windows Explorer stores
the information in an alternate stream it adds to the file, named Summary Information.

Other applications can use the multiple data stream feature as well. A backup utility, for exam-
ple, might use an extra data stream to store backup-specific time stamps on files. Or an archi-
val utility might implement hierarchical storage in which files that are older than a certain date
or that haven’t been accessed for a specified period of time are moved to tape. The utility could
copy the file to tape, set the file’s default data stream to 0, and add a data stream that specifies
the name and location of the tape on which the file is stored.

EXPERIMENT: Looking at Streams
Most Windows applications aren’t designed to work with alternate named streams, but
both the echo and more commands are. Thus, a simple way to view streams in action is to
create a named stream using echo and then display it using more. The following com-
mand sequence creates a file named test with a stream named stream:

C:\>echo hello > test:stream

C:\>more < test:stream

hello

C:\>

Chapter 12: File Systems 721
If you perform a directory listing, test’s file size doesn’t reflect the data stored in the
alternate stream because NTFS returns the size of only the unnamed data stream for file
query operations, including directory listings.

C:\>dir test

Volume in drive C is WINDOWS

Volume Serial Number is 3991-3040

Directory of C:\

08/01/00 02:37p 0 test

1 File(s) 0 bytes

112,558,080 bytes free

You can determine what files and directories on your system have alternate data streams
with the Streams utility from www.sysinternals.com:

C:\>streams test

Streams v1.5 - Enumerate alternate NTFS data streams

Copyright (C) 1999-2003 Mark Russinovich

Sysinternals - www.sysinternals.com

 C:\Temp\test:

:stream:$DATA 8

Unicode-Based Names

Like Windows as a whole, NTFS is fully Unicode enabled, using Unicode characters to store
names of files, directories, and volumes. Unicode, a 16-bit character-coding scheme, allows
each character in each of the world’s major languages to be uniquely represented, which aids
in moving data easily from one country to another. Unicode is an improvement over the tradi-
tional representation of international characters—using a double-byte coding scheme that
stores some characters in 8 bits and others in 16 bits, a technique that requires loading vari-
ous code pages to establish the available characters. Because Unicode has a unique represen-
tation for each character, it doesn’t depend on which code page is loaded. Each directory and
filename in a path can be as many as 255 characters long and can contain Unicode characters,
embedded spaces, and multiple periods.

General Indexing Facility

The NTFS architecture is structured to allow indexing of file attributes on a disk volume. This
structure enables the file system to efficiently locate files that match certain criteria—for exam-
ple, all the files in a particular directory. The FAT file system indexes filenames but doesn’t
sort them, making lookups in large directories slow.

Several NTFS features take advantage of general indexing, including consolidated security
descriptors, in which the security descriptors of a volume’s files and directories are stored in
a single internal stream, have duplicates removed, and are indexed using an internal security

722 Microsoft Windows Internals, Fourth Edition
identifier that NTFS defines. The use of indexing by these features is described in the section
“NTFS On-Disk Structure” later in this chapter.

Dynamic Bad-Cluster Remapping

Ordinarily, if a program tries to read data from a bad disk sector, the read operation fails and
the data in the allocated cluster becomes inaccessible. If the disk is formatted as a fault-toler-
ant NTFS volume, however, the Windows fault-tolerant driver dynamically retrieves a good
copy of the data that was stored on the bad sector and then sends NTFS a warning that the
sector is bad. NTFS allocates a new cluster, replacing the cluster in which the bad sector
resides, and copies the data to the new cluster. It flags the bad cluster and no longer uses it.
This data recovery and dynamic bad-cluster remapping is an especially useful feature for file
servers and fault-tolerant systems or for any application that can’t afford to lose data. If the vol-
ume manager isn’t loaded when a sector goes bad, NTFS still replaces the cluster and doesn’t
reuse it, but it can’t recover the data that was on the bad sector.

Hard Links and Junctions

A hard link allows multiple paths to refer to the same file. (Hard links are not supported on
directories.) If you create a hard link named C:\Users\Documents\Spec.doc that refers to the
existing file C:\My Documents\Spec.doc, the two paths link to the same on-disk file and you
can make changes to the file using either path. Processes can create hard links with the Win-
dows CreateHardLink function or the ln POSIX function.

In addition to hard links, NTFS supports another type of redirection called junctions. Junc-
tions, also called symbolic links, allow a directory to redirect file or directory pathname trans-
lation to an alternate directory. For example, if the path C:\Drivers is a junction that redirects
to C:\Windows\System32\Drivers, an application reading C:\Drivers\Ntfs.sys actually reads
C:\Windows\System\Drivers\Ntfs.sys. Junctions are a useful way to lift directories that are
deep in a directory tree to a more convenient depth without disturbing the original tree’s
structure or contents. The example just cited lifts the drivers directory to the volume’s root
directory, reducing the directory depth of Ntfs.sys from three levels to one when Ntfs.sys is
accessed through the junction. You can’t use junctions to link to remote directories—only to
directories on local volumes.

Junctions are based on an NTFS mechanism called reparse points. (Reparse points are dis-
cussed further in the section “Reparse Points” later in this chapter.) A reparse point is a file or
directory that has a block of data called reparse data associated with it. Reparse data is user-
defined data about the file or directory, such as its state or location, that can be read from the
reparse point by the application that created the data, a file system filter driver, or the I/O
manager. When NTFS encounters a reparse point during a file or directory lookup, it returns
a reparse status code, which signals file system filter drivers that are attached to the volume, and
the I/O manager, to examine the reparse data. Each reparse point type has a unique reparse

Chapter 12: File Systems 723
tag. The reparse tag allows the component responsible for interpreting the reparse point’s rep-
arse data to recognize the reparse point without having to check the reparse data. A reparse
tag owner, either a file system filter driver or the I/O manager, can choose one of the following
options when it recognizes reparse data:

■ The reparse tag owner can manipulate the pathname specified in the file I/O operation
that crosses the reparse point and let the I/O operation reissue with the altered path-
name. Junctions take this approach to redirect a directory lookup, for example.

■ The reparse tag owner can remove the reparse point from the file, alter the file in some
way, and then reissue the file I/O operation. The Windows Hierarchical Storage Manage-
ment (HSM) system uses reparse points in this way. HSM archives files by moving their
contents to tape, leaving reparse points in their place. When a process accesses a file that
has been archived, the HSM filter driver (\Windows\System32\Drivers\Rsfilter.sys)
removes the reparse point from the file, reads the file’s data from the archival media, and
reissues the access. Thus, the retrieval of the offline data is transparent to a process
accessing an archived file.

There are no Windows functions for creating reparse points. Instead, processes must use the
FSCTL_SET_REPARSE_POINT file system control code with the Windows DeviceIoControl
function. A process can query a reparse point’s contents with the FSCTL_GET_REPARSE_
POINT file system control code. The FILE_ATTRIBUTE_REPARSE_POINT flag is set in a rep-
arse point’s file attributes, so applications can check for reparse points by using the Windows
GetFileAttributes function.

EXPERIMENT: Creating a Junction
Windows doesn’t include any tools for creating junctions, but you can create a junction
with either the Junction tool from www.sysinternals.com (which includes source code) or
the Windows resource kits tool Linkd. The Linkd tool also lets you view the definition
of existing junctions, and Junction lets you view information about junctions and other
reparse point tags.

Compression and Sparse Files

NTFS supports compression of file data. Because NTFS performs compression and decom-
pression procedures transparently, applications don’t have to be modified to take advantage
of this feature. Directories can also be compressed, which means that any files subsequently
created in the directory are compressed.

Applications compress and decompress files by passing DeviceIoControl the FSCTL_SET_
COMPRESSION file system control code. They query the compression state of a file or directory
with the FSCTL_GET_COMPRESSION file system control code. A file or directory that is
compressed has the FILE_ATTRIBUTE_COMPRESSED flag set in its attributes, so applications
can also determine a file or directory’s compression state with GetFileAttributes.

724 Microsoft Windows Internals, Fourth Edition
A second type of compression is known as sparse files. If a file is marked as sparse, NTFS
doesn’t allocate space on a volume for portions of the file that an application designates as
empty. NTFS returns 0-filled buffers when an application reads from empty areas of a sparse
file. This type of compression can be useful for client/server applications that implement cir-
cular-buffer logging, in which the server records information to a file and clients asynchro-
nously read the information. Because the information that the server writes isn’t needed after
a client has read it, there’s no need to store the information in the file. By making such a file
sparse, the client can specify the portions of the file it reads as empty, freeing up space on the
volume. The server can continue to append new information to the file, without fear that the
file will grow to consume all available space on the volume.

As for compressed files, NTFS manages sparse files transparently. Applications specify a file’s
sparseness state by passing the FSCTL_SET_SPARSE file system control code to DeviceIoCon-
trol. To set a range of a file to empty, applications use the FSCTL_SET_ZERO_DATA code, and
they can ask NTFS for a description of what parts of a file are sparse by using the control code
FSCTL_QUERY_ALLOCATED_RANGES. One application of sparse files is the NTFS change
journal, described next.

Change Logging

Many types of applications need to monitor volumes for file and directory changes. For exam-
ple, an automatic backup program might perform an initial full backup and then incremental
backups based on file changes. An obvious way for an application to monitor a volume for
changes is for it to scan the volume, recording the state of files and directories, and on a sub-
sequent scan detect differences. This process can adversely affect system performance, how-
ever, especially on computers with thousands or tens of thousands of files.

An alternate approach is for an application to register a directory notification by using the Find-
FirstChangeNotification or ReadDirectoryChangesW Windows functions. As an input parameter,
the application specifies the name of a directory it wants to monitor, and the function returns
whenever the contents of the directory changes. Although this approach is more efficient than
volume scanning, it requires the application to be running at all times. Using these functions can
also require an application to scan directories because FindFirstChangeNotification doesn’t indi-
cate what changed—just that something in the directory has changed. An application can pass a
buffer to ReadDirectoryChangesW that the FSD fills in with change records. If the buffer over-
flows, however, the application must be prepared to fall back on scanning the directory.

NTFS provides a third approach that overcomes the drawbacks of the first two: an application
can configure the NTFS change journal facility by using the DeviceIoControl function’s
FSCTL_CREATE_USN_JOURNAL file system control code to have NTFS record information
about file and directory changes to an internal file called the change journal. A change journal
is usually large enough to virtually guarantee that applications get a chance to process changes
without missing any. Applications use the FSCTL_QUERY_USN_JOURNAL file system con-
trol to read records from a change journal, and they can specify that the DeviceIoControl func-
tion not complete until new records are available.

Chapter 12: File Systems 725
Per-User Volume Quotas

Systems administrators often need to track or limit user disk space usage on shared storage
volumes, so NTFS includes quota-management support. NTFS quota-management support
allows for per-user specification of quota enforcement, which is useful for usage tracking and
tracking when a user reaches warning and limit thresholds. NTFS can be configured to log an
event indicating the occurrence to the system Event Log if a user surpasses his warning limit.
Similarly, if a user attempts to use more volume storage then her quota limit permits, NTFS
can log an event to the system Event Log and fail the application file I/O that would have
caused the quota violation with a “disk full” error code.

NTFS tracks a user’s volume usage by relying on the fact that it tags files and directories with
the security ID (SID) of the user who created them. (See Chapter 8 for a definition of SIDs.)
The logical sizes of files and directories a user owns count against the user’s administrator-
defined quota limit. Thus, a user can’t circumvent his or her quota limit by creating an empty
sparse file that is larger than the quota would allow and then fill the file with nonzero data.
Similarly, whereas a 50-KB file might compress to 10 KB, the full 50 KB is used for quota
accounting.

By default, volumes don’t have quota tracking enabled. You need to use the Quota tab of a vol-
ume’s Properties dialog box, shown in Figure 12-18, to enable quotas, to specify default warn-
ing and limit thresholds, and to configure the NTFS behavior that occurs when a user hits the
warning or limit threshold. The Quota Entries tool, which you can launch from this dialog
box, enables an administrator to specify different limits and behavior for each user. Applica-
tions that want to interact with NTFS quota management use COM quota interfaces, includ-
ing IDiskQuotaControl, IDiskQuotaUser, and IDiskQuotaEvents.

Figure 12-18 Volume Properties dialog box

726 Microsoft Windows Internals, Fourth Edition
Link Tracking

Shell shortcuts allow users to place files in their shell namespace (on their desktop, for exam-
ple) that link to files located in the file system namespace. The Windows Start menu uses shell
shortcuts extensively. Similarly, object linking and embedding (OLE) links allow documents
from one application to be transparently embedded in the documents of other applications.
The products of the Microsoft Office suite, including PowerPoint, Excel, and Word, use OLE
linking.

Although shell and OLE links provide an easy way to connect files with one another and with
the shell namespace, they have in the past been difficult to manage. If a user moves the source
of a shell or OLE link (a link source is the file or directory to which a link points) in Windows
NT 4, Windows 95, or Windows 98, the link will be broken and the system has to rely on heu-
ristics to attempt to locate the link’s source. NTFS in Windows includes support for a service
application called distributed link-tracking, which maintains the integrity of shell and OLE
links when link targets move. Using the NTFS link-tracking support, if a link source located
on an NTFS volume moves to any other NTFS volume within the originating volume’s
domain, the link-tracking service can transparently follow the movement and update the link
to reflect the change.

NTFS link-tracking support is based on an optional file attribute known as an object ID. An appli-
cation can assign an object ID to a file by using the FSCTL_CREATE_OR_GET_OBJECT_ID
(which assigns an ID if one isn’t already assigned) and FSCTL_SET_OBJECT_ID file system
control codes. Object IDs are queried with the FSCTL_CREATE_OR_GET_OBJECT_ID and
FSCTL_GET_OBJECT_ID file system control codes. The FSCTL_DELETE_OBJECT_ID file sys-
tem control code lets applications delete object IDs from files.

Encryption

Corporate users often store sensitive information on their computers. Although data stored
on company servers is usually safely protected with proper network security settings and
physical access control, data stored on laptops can be exposed when a laptop is lost or stolen.
NTFS file permissions don’t offer protection because NTFS volumes can be fully accessed
without regard to security by using NTFS file-reading software that doesn’t require Windows
to be running. Furthermore, NTFS file permissions are rendered useless when an alternate
Windows installation is used to access files from an administrator account. Recall from Chap-
ter 8 that the administrator account has the take-ownership and backup privileges, both of
which allow it to access any secured object by overriding the object’s security settings.

NTFS includes a facility called Encrypting File System (EFS), which users can use to encrypt
sensitive data. The operation of EFS, as that of file compression, is completely transparent to
applications, which means that file data is automatically decrypted when an application run-
ning in the account of a user authorized to view the data reads it and is automatically
encrypted when an authorized application changes the data.

Chapter 12: File Systems 727
Note NTFS doesn’t permit the encryption of files located in the system volume’s root direc-
tory or in the \Windows directory because many files in these locations are required during the
boot process and EFS isn’t active during the boot process.

EFS relies on cryptographic services supplied by Windows in user mode, so it consists of both
a kernel-mode component that tightly integrates with NTFS as well as user-mode DLLs that
communicate with the Local Security Authority Subsystem (LSASS) and cryptographic DLLs.

Files that are encrypted can be accessed only by using the private key of an account’s EFS pri-
vate/public key pair, and private keys are locked using an account’s password. Thus, EFS-
encrypted files on lost or stolen laptops can’t be accessed using any means (other than a
brute-force cryptographic attack) without the password of an account that is authorized to
view the data.

Applications can use the EncryptFile and DecryptFile Windows API functions to encrypt and
decrypt files, and FileEncryptionStatus to retrieve a file or directory’s EFS-related attributes,
such as whether the file or directory is encrypted.

POSIX Support

As explained in Chapter 2, one of the mandates for Windows was to fully support the POSIX
1003.1 standard. In the file system area, the POSIX standard requires support for case-sensi-
tive file and directory names, traversal permissions (where security for each directory of a
path is used when determining whether a user has access to a file or directory), a “file-change-
time” time stamp (which is different than the MS-DOS “time-last-modified” stamp), and hard
links (multiple directory entries that point to the same file). NTFS implements each of these
features.

Defragmentation

A common myth that many people have held since the introduction of NTFS is that it auto-
matically optimizes file placement on disk so as not to fragment the files. While it does make
efforts to keep files contiguous, a volume’s files can become fragmented over time, especially
when there is limited free space. A file is fragmented if its data occupies discontiguous clus-
ters. For example, Figure 12-19 shows a fragmented file consisting of three fragments. How-
ever, like most file systems (including versions of FAT on Windows), NTFS makes no special
efforts to keep files contiguous, other than to reserve a region of disk space known as the mas-
ter file table (MFT) zone for the MFT. (NTFS lets other files allocate from the MFT zone when
volume free space runs low.) Keeping an area free for the MFT can help it stay contiguous, but
it, too, can become fragmented. (See the section “Master File Table” later in this chapter for
more information on MFTs.)

728 Microsoft Windows Internals, Fourth Edition
Figure 12-19 Fragmented and contiguous files

To facilitate the development of third-party disk defragmentation tools, Windows includes a
defragmentation API that such tools can use to move file data so that files occupy contiguous
clusters. The API consists of file system controls that let applications obtain a map of a vol-
ume’s free and in-use clusters (FSCTL_GET_VOLUME_BITMAP), obtain a map of a file’s clus-
ter usage (FSCTL_GET_RETRIEVAL_POINTERS), and move a file (FSCTL_MOVE_ FILE).

Windows includes a built-in defragmentation tool that is accessible by using the Disk Defrag-
menter utility (\Windows\System32\Dfrg.msc). The built-in defragmentation tool has a
number of limitations that on Windows 2000 include an inability to be run from the com-
mand prompt or to be automatically scheduled. In Windows XP and Windows Server 2003,
the defragmenter has a command-line interface, \Windows\System32\Defrag.exe, that you
can run interactively or schedule, but that does not produce detailed reports or offer control—
such as excluding files or directories—over the defragmentation process. Third-party disk
defragmentation products typically offer a richer feature set.

In Windows XP, the defragmentation support in NTFS was rewritten to alleviate restrictions
present in Windows 2000. For example, in Windows 2000 the defragmenting support in
NTFS relies on the cache manager, which introduces a number of limitations such as the
inability to move pieces of a file that cross a 256-KB boundary within the file or to defragment
NTFS metadata files (such as the Master File Table). (Note that 256 KB is the size of a cache
manager view. See Chapter 11 for more information on the cache manager.) In Windows XP
and Windows Server 2003, the only limitations imposed by the defragmentation implemen-
tation in NTFS is that paging files and NTFS log files cannot be defragmented.

Read-Only Support

Prior to Windows XP, the NTFS file system driver required that volumes it mounted be on
writeable media so that it could reset its transactional log files. The Windows XP and Win-
dows Server 2003 NTFS drivers can mount volumes on read-only media, functionality
required by embedded systems that have read-only base file system images.

Fragmented file Contiguous file

Chapter 12: File Systems 729
NTFS File System Driver
As described in Chapter 9, in the framework of the Windows I/O system, NTFS and other file
systems are loadable device drivers that run in kernel mode. They are invoked indirectly by
applications that use Windows or other I/O APIs (such as POSIX). As Figure 12-20 shows, the
Windows environment subsystems call Windows system services, which in turn locate the
appropriate loaded drivers and call them. (For a description of system service dispatching, see
the section “System Service Dispatching” in Chapter 3.)

Figure 12-20 Components of the Windows I/O system

The layered drivers pass I/O requests to one another by calling the Windows executive’s I/O
manager. Relying on the I/O manager as an intermediary allows each driver to maintain inde-
pendence so that it can be loaded or unloaded without affecting other drivers. In addition, the
NTFS driver interacts with the three other Windows executive components, shown in the left
side of Figure 12-21, that are closely related to file systems.

Environment
subsystem

or DLL

User mode

Kernel mode

Kernel

Object
manager

Security
reference
monitor

Windows
executive

… Local
procedure

call
facility

Virtual
memory
manager

Windows system services

NTFS driver

Volume
manager

Disk driver

I/O manager

730 Microsoft Windows Internals, Fourth Edition
Figure 12-21 NTFS and related components

The log file service (LFS) is the part of NTFS that provides services for maintaining a log of
disk writes. The log file LFS writes is used to recover an NTFS-formatted volume in the case of
a system failure. (See the section “Log File Service (LFS).”)

The cache manager is the component of the Windows executive that provides systemwide
caching services for NTFS and other file system drivers, including network file system drivers
(servers and redirectors). All file systems implemented for Windows access cached files by
mapping them into system address space and then accessing the virtual memory. The cache
manager provides a specialized file system interface to the Windows memory manager for this
purpose. When a program tries to access a part of a file that isn’t loaded into the cache (a cache
miss), the memory manager calls NTFS to access the disk driver and obtain the file contents
from disk. The cache manager optimizes disk I/O by using its lazy writer threads to call the
memory manager to flush cache contents to disk as a background activity (asynchronous disk
writing). (For a complete description of the cache manager, see Chapter 11.)

NTFS participates in the Windows object model by implementing files as objects. This imple-
mentation allows files to be shared and protected by the object manager, the component of
Windows that manages all executive-level objects. (The object manager is described in the sec-
tion “Object Manager” in Chapter 3.)

Log file
service

Write the
cache

Cache
manager

Access the mapped
file or flush the cache

Virtual memory
manager

Flush the
log file

Log the
transaction

Read/write the file

Load data
from disk

into
memory

Read/write a
mirrored or
striped volume

Read/write
the disk

Disk driver

Volume
manager

NTFS driver

I/O manager

Chapter 12: File Systems 731
An application creates and accesses files just as it does other Windows objects: by means of
object handles. By the time an I/O request reaches NTFS, the Windows object manager and
security system have already verified that the calling process has the authority to access the
file object in the way it is attempting to. The security system has compared the caller’s access
token to the entries in the access-control list for the file object. (See Chapter 8 for more infor-
mation about access-control lists.) The I/O manager has also transformed the file handle into
a pointer to a file object. NTFS uses the information in the file object to access the file on disk.

Figure 12-22 shows the data structures that link a file handle to the file system’s on-disk structure.

Figure 12-22 NTFS data structures

NTFS follows several pointers to get from the file object to the location of the file on disk. As
Figure 12-22 shows, a file object, which represents a single call to the open-file system service,
points to a stream control block (SCB) for the file attribute that the caller is trying to read or
write. In Figure 12-22, a process has opened both the unnamed data attribute and a named
stream (alternate data attribute) for the file. The SCBs represent individual file attributes and
contain information about how to find specific attributes within a file. All the SCBs for a file
point to a common data structure called a file control block (FCB). The FCB contains a pointer
(actually, a file reference, explained in the section “File Reference Numbers” later in this chap-
ter) to the file’s record in the disk-based master file table (MFT), which is described in detail
in the following section.

Object
manager

data
structures

Process

…

…

Handle
table

File object

File object

NTFS data
structures

(used to manage
the on-disk structure)

Stream
control
blocks

File
control
block

Data
attribute

Named
stream

Master file
table

NTFS
database
(on disk)

732 Microsoft Windows Internals, Fourth Edition
NTFS On-Disk Structure
This section describes the on-disk structure of an NTFS volume, including how disk space
is divided and organized into clusters, how files are organized into directories, how the
actual file data and attribute information is stored on disk, and finally, how NTFS data com-
pression works.

Volumes

The structure of NTFS begins with a volume. A volume corresponds to a logical partition on a
disk, and it is created when you format a disk or part of a disk for NTFS. You can also create a
RAID volume that spans multiple disks by using the Windows Disk Management MMC snap-in.

A disk can have one volume or several. NTFS handles each volume independently of the oth-
ers. Three sample disk configurations for a 150-MB hard disk are illustrated in Figure 12-23.

Figure 12-23 Sample disk configurations

A volume consists of a series of files plus any additional unallocated space remaining on the
disk partition. In the FAT file system, a volume also contains areas specially formatted for use
by the file system. An NTFS volume, however, stores all file system data, such as bitmaps and
directories, and even the system bootstrap, as ordinary files.

Note The on-disk format of NTFS volumes on Windows 2000 is version 3.0, and because of
minor changes to the format, it is version 3.1 on Windows XP and Windows Server 2003. The
version number of a volume is stored in its $Volume metadata file.

Clusters

The cluster size on an NTFS volume, or the cluster factor, is established when a user formats
the volume with either the format command or the Disk Management MMC snap-in. The
default cluster factor varies with the size of the volume, but it is an integral number of physical
sectors, always a power of 2 (1 sector, 2 sectors, 4 sectors, 8 sectors, and so on). The cluster
factor is expressed as the number of bytes in the cluster, such as 512 bytes, 1 KB, or 2 KB.

C:
(150 MB)

NTFS
Volume

C:
(75 MB)

D:
(75 MB)

NTFS
Volume 1

NTFS
Volume 2

C:
(60 MB)

D:
(90 MB)

FAT
Volume

NTFS
Volume

Chapter 12: File Systems 733
Internally, NTFS refers only to clusters. (However, NTFS forms low-level volume I/O opera-
tions such that it is sector-aligned and its length is a multiple of the sector size.) NTFS uses the
cluster as its unit of allocation to maintain its independence from physical sector sizes. This
independence allows NTFS to efficiently support very large disks by using a larger cluster fac-
tor or to support nonstandard disks that have a sector size other than 512 bytes. On a larger
volume, use of a larger cluster factor can reduce fragmentation and speed allocation, at a small
cost in terms of wasted disk space. Both the format command available from the Windows
Command Prompt and the Format menu option under the All Tasks option on the Action
menu in the Disk Management MMC snap-in choose a default cluster factor based on the vol-
ume size, but you can override this size.

NTFS refers to physical locations on a disk by means of logical cluster numbers (LCNs). LCNs
are simply the numbering of all clusters from the beginning of the volume to the end. To con-
vert an LCN to a physical disk address, NTFS multiplies the LCN by the cluster factor to get
the physical byte offset on the volume, as the disk driver interface requires. NTFS refers to the
data within a file by means of virtual cluster numbers (VCNs). VCNs number the clusters
belonging to a particular file from 0 through m. VCNs aren’t necessarily physically contigu-
ous, however; they can be mapped to any number of LCNs on the volume.

Master File Table

In NTFS, all data stored on a volume is contained in files, including the data structures used
to locate and retrieve files, the bootstrap data, and the bitmap that records the allocation state
of the entire volume (the NTFS metadata). Storing everything in files allows the file system to
easily locate and maintain the data, and each separate file can be protected by a security
descriptor. In addition, if a particular part of the disk goes bad, NTFS can relocate the meta-
data files to prevent the disk from becoming inaccessible.

The MFT is the heart of the NTFS volume structure. The MFT is implemented as an array of
file records. The size of each file record is fixed at 1 KB, regardless of cluster size. (The struc-
ture of a file record is described in the “File Records” section later in this chapter.) Logically,
the MFT contains one record for each file on the volume, including a record for the MFT itself.
In addition to the MFT, each NTFS volume includes a set of metadata files containing the
information that’s used to implement the file system structure. Each of these NTFS metadata
files has a name that begins with a dollar sign ($), although the signs are hidden. For example,
the filename of the MFT is $Mft. The rest of the files on an NTFS volume are normal user files
and directories, as shown in Figure 12-24.

734 Microsoft Windows Internals, Fourth Edition
Figure 12-24 File records for NTFS metadata files in the MFT

Usually, each MFT record corresponds to a different file. If a file has a large number of
attributes or becomes highly fragmented, however, more than one record might be needed for
a single file. In such cases, the MFT first record, which stores the locations of the others, is
called the base file record.

EXPERIMENT: Viewing the MFT
The Nfi utility included in the OEM Support Tools (part of the Windows debugging
tools and available for download at support.microsoft.com/support/kb/articles/Q253/0/
66.asp) allows you to dump the contents of an NTFS volume’s MFT as well as to trans-
late a volume cluster number or physical-disk sector number (on non-RAID volumes
only) to the file that contains it, if it’s part of a file. The first 16 entries of the MFT are
reserved for metadata files, but optional metadata files (which are present only if a vol-
ume uses an associated feature) fall outside this area: \$Extend\$Quota,
\$Extend\$ObjId, \$Extend\$UsnJrnl, and \$Extend\$Reparse. The following dump
was performed on a volume that uses reparse points ($Reparse), quotas ($Quota), and
object IDs ($ObjId):

C:\>nfi G:\

NTFS File Sector Information Utility.

Copyright (C) Microsoft Corporation 1999. All rights reserved.

$Mft - MFT0

$MftMirr - MFT mirror1

$LogFile - Log file2

$Volume - Volume file3

$AttrDef - Attribute definition table4

\ - Root directory5

$Bitmap - Volume cluster allocation file6

$Boot - Boot sector7

$BadClus - Bad-cluster file8

$Secure - Security settings file9

$UpCase - Uppercase character mapping10

11

12

Unused15

User files and directories16

$Extend - Extended metadata directory

Unused

Reserved for NTFS
metadata files

File

Chapter 12: File Systems 735

File 0

Master File Table ($Mft)

$STANDARD_INFORMATION (resident)

$FILE_NAME (resident)

$DATA (nonresident)

logical sectors 32-52447 (0x20-0xccdf)

$BITMAP (nonresident)

logical sectors 16-23 (0x10-0x17)

File 1

Master File Table Mirror ($MftMirr)

$STANDARD_INFORMATION (resident)

$FILE_NAME (resident)

$DATA (nonresident)

logical sectors 2048728-2048735 (0x1f42d8-0x1f42df)

File 2

Log File ($LogFile)

$STANDARD_INFORMATION (resident)

$FILE_NAME (resident)

$DATA (nonresident)

logical sectors 2048736-2073343 (0x1f42e0-0x1fa2ff)

File 3

DASD ($Volume)

$STANDARD_INFORMATION (resident)

$FILE_NAME (resident)

$OBJECT_ID (resident)

$SECURITY_DESCRIPTOR (resident)

$VOLUME_NAME (resident)

$VOLUME_INFORMATION (resident)

$DATA (resident)

File 4

Attribute Definition Table ($AttrDef)

$STANDARD_INFORMATION (resident)

$FILE_NAME (resident)

$SECURITY_DESCRIPTOR (resident)

$DATA (nonresident)

logical sectors 512256-512263 (0x7d100-0x7d107)

File 5

Root Directory

$STANDARD_INFORMATION (resident)

$FILE_NAME (resident)

$SECURITY_DESCRIPTOR (resident)

$INDEX_ROOT $I30 (resident)

$INDEX_ALLOCATION $I30 (nonresident)

logical sectors 2073416-2073423 (0x1fa348-0x1fa34f)

$BITMAP $I30 (resident)

File 6

Volume Bitmap ($BitMap)

$STANDARD_INFORMATION (resident)

$FILE_NAME (resident)

736 Microsoft Windows Internals, Fourth Edition
$DATA (nonresident)

logical sectors 2073424-2073675 (0x1fa350-0x1fa44b)

File 7

Boot Sectors ($Boot)

$STANDARD_INFORMATION (resident)

$FILE_NAME (resident)

$SECURITY_DESCRIPTOR (resident)

$DATA (nonresident)

logical sectors 0-15 (0x0-0xf)

File 8

Bad Cluster List ($BadClus)

$STANDARD_INFORMATION (resident)

$FILE_NAME (resident)

$DATA (resident)

$DATA $Bad (nonresident)

File 9

Security ($Secure)

$STANDARD_INFORMATION (resident)

$FILE_NAME (resident)

$DATA $SDS (nonresident)

logical sectors 2073932-2074447 (0x1fa54c-0x1fa74f)

logical sectors 523160-523163 (0x7fb98-0x7fb9b)

$INDEX_ROOT $SDH (resident)

$INDEX_ROOT $SII (resident)

$INDEX_ALLOCATION $SDH (nonresident)

logical sectors 1876152-1876159 (0x1ca0b8-0x1ca0bf)

$INDEX_ALLOCATION $SII (nonresident)

logical sectors 24-31 (0x18-0x1f)

$BITMAP $SDH (resident)

$BITMAP $SII (resident)

File 10

Upcase Table ($UpCase)

$STANDARD_INFORMATION (resident)

$FILE_NAME (resident)

$DATA (nonresident)

logical sectors 2073676-2073931 (0x1fa44c-0x1fa54b)

File 11

Extend Table ($Extend)

$STANDARD_INFORMATION (resident)

$FILE_NAME (resident)

$INDEX_ROOT $I30 (resident)

File 12

(unknown/unnamed)

$STANDARD_INFORMATION (resident)

$SECURITY_DESCRIPTOR (resident)

$DATA (resident)

File 13

(unknown/unnamed)

$STANDARD_INFORMATION (resident)

$SECURITY_DESCRIPTOR (resident)

Chapter 12: File Systems 737
$DATA (resident)

File 14

(unknown/unnamed)

$STANDARD_INFORMATION (resident)

$SECURITY_DESCRIPTOR (resident)

$DATA (resident)

File 15

(unknown/unnamed)

$STANDARD_INFORMATION (resident)

$SECURITY_DESCRIPTOR (resident)

$DATA (resident)

File 24

\$Extend\$Quota

$STANDARD_INFORMATION (resident)

$FILE_NAME (resident)

$INDEX_ROOT $O (resident)

$INDEX_ROOT $Q (resident)

File 25

\$Extend\$ObjId

$STANDARD_INFORMATION (resident)

$FILE_NAME (resident)

$INDEX_ROOT $O (resident)

File 26 \$Extend\$Reparse

$STANDARD_INFORMATION (resident)

$FILE_NAME (resident)

$INDEX_ROOT $R (resident)

When it first accesses a volume, NTFS must mount it—that is, read metadata from the disk and
construct internal data structures so that it can process application file system accesses. To
mount the volume, NTFS looks in the boot sector to find the physical disk address of the
MFT. The MFT’s own file record is the first entry in the table; the second file record points to
a file located in the middle of the disk called the MFT mirror (filename $MftMirr) that con-
tains a copy of the first few rows of the MFT. This partial copy of the MFT is used to locate
metadata files if part of the MFT file can’t be read for some reason.

Once NTFS finds the file record for the MFT, it obtains the VCN-to-LCN mapping information
in the file record’s data attribute and stores it in memory. Each run has a VCN-to-LCN map-
ping and a run length because that’s all the information necessary to locate an LCN for any
VCN. This mapping information tells NTFS where the runs composing the MFT are located
on the disk. (Runs are explained later in this chapter in the section “Resident and Nonresident
Attributes.”) NTFS then processes the MFT records for several more metadata files and opens
the files. Next, NTFS performs its file system recovery operation (described in the section
“Recovery”), and finally, it opens its remaining metadata files. The volume is now ready for
user access.

738 Microsoft Windows Internals, Fourth Edition
Note For the sake of clarity, the text and diagrams in this chapter depict a run as including
a VCN, LCN, and run length. NTFS actually compresses this information on disk into an LCN/
next-VCN pair. Given a starting VCN, NTFS can determine the length of a run by subtracting
the starting VCN from the next VCN.

As the system runs, NTFS writes to another important metadata file, the log file (filename
$LogFile). NTFS uses the log file to record all operations that affect the NTFS volume struc-
ture, including file creation or any commands, such as Copy, that alter the directory structure.
The log file is used to recover an NTFS volume after a system failure, and is also described in
the “Recovery” section later in this chapter.

Another entry in the MFT is reserved for the root directory (also known as “\”). Its file record
contains an index of the files and directories stored in the root of the NTFS directory struc-
ture. When NTFS is first asked to open a file, it begins its search for the file in the root direc-
tory’s file record. After opening a file, NTFS stores the file’s MFT file reference so that it can
directly access the file’s MFT record when it reads and writes the file later.

NTFS records the allocation state of the volume in the bitmap file (filename $Bitmap). The
data attribute for the bitmap file contains a bitmap, each of whose bits represents a cluster on
the volume, identifying whether the cluster is free or has been allocated to a file.

The security file (filename $Secure) stores the volume-wide security descriptor database. NTFS
files and directories have individually settable security descriptors, but to conserve space, NTFS
stores the settings in a common file, which allows files and directories that have the same secu-
rity settings to reference the same security descriptor. In most environments, entire directory
trees have the same security settings, so this optimization provides a significant savings.

Another system file, the boot file (filename $Boot), stores the Windows bootstrap code. For
the system to boot, the bootstrap code must be located at a specific disk address. During for-
matting, however, the format command defines this area as a file by creating a file record for it.
Creating the boot file allows NTFS to adhere to its rule of making everything on the disk a file.
The boot file as well as NTFS metadata files can be individually protected by means of the
security descriptors that are applied to all Windows objects. Using this “everything on the
disk is a file” model also means that the bootstrap can be modified by normal file I/O,
although the boot file is protected from editing.

NTFS also maintains a bad-cluster file (filename $BadClus) for recording any bad spots on the
disk volume and a file known as the volume file (filename $Volume), which contains the vol-
ume name, the version of NTFS for which the volume is formatted, and a bit that when set sig-
nifies that a disk corruption has occurred and must be repaired by the Chkdsk utility. (The
Chkdsk utility is covered in more detail later in the chapter.) The uppercase file (filename
$UpCase) includes a translation table between lowercase and uppercase characters. NTFS
maintains a file containing an attribute definition table (filename $AttrDef) that defines the
attribute types supported on the volume and indicates whether they can be indexed, recov-
ered during a system recovery operation, and so on.

Chapter 12: File Systems 739
NTFS stores several metadata files in the extensions (directory name $Extend) metadata direc-
tory, including the object identifier file (filename $ObjId), the quota file (filename $Quota), the
change journal file (filename $UsnJrnl), and the reparse point file (filename $Reparse). These
files store information related to optional features of NTFS. The object identifier file stores file
object IDs, the quota file stores quota limit and behavior information on volumes that have
quotas enabled, the change journal file records file and directory changes, and the reparse
point file stores information about which files and directories on the volume include reparse
point data.

EXPERIMENT: Viewing NTFS Information
In Windows 2000, you can use the NTFSInfo tool from www.sysinternals.com to view
information about an NTFS volume, including the placement and size of the MFT and
MFT zone; and in Windows XP and Windows Server 2003, you can use the built-in
Fsutil.exe command-line program:

C:\Windows\System32>fsutil fsinfo ntfsinfo c:

NTFS Volume Serial Number : 0xe82828e72828b68a

Version : 3.1

Number Sectors : 0x0000000001e461b7

Total Clusters : 0x00000000003c8c36

Free Clusters : 0x00000000000164c8

Total Reserved : 0x00000000000001b0

Bytes Per Sector : 512

Bytes Per Cluster : 4096

Bytes Per FileRecord Segment : 1024

Clusters Per FileRecord Segment : 0

Mft Valid Data Length : 0x0000000006413800

Mft Start Lcn : 0x00000000000c5294

Mft2 Start Lcn : 0x000000000002f427

Mft Zone Start : 0x00000000003bf7e0

Mft Zone End : 0x00000000003bf800

File Reference Numbers

A file on an NTFS volume is identified by a 64-bit value called a file reference. The file reference
consists of a file number and a sequence number. The file number corresponds to the posi-
tion of the file’s file record in the MFT minus 1 (or to the position of the base file record minus
1 if the file has more than one file record). The file reference sequence number, which is incre-
mented each time an MFT file record position is reused, enables NTFS to perform internal
consistency checks. A file reference is illustrated in Figure 12-25.

Figure 12-25 File reference

File number
Sequence
number

63 47 0

740 Microsoft Windows Internals, Fourth Edition
File Records

Instead of viewing a file as just a repository for textual or binary data, NTFS stores files as a
collection of attribute/value pairs, one of which is the data it contains (called the unnamed
data attribute). Other attributes that comprise a file include the filename, time stamp informa-
tion, and possibly additional named data attributes. Figure 12-26 illustrates an MFT record for
a small file.

Figure 12-26 MFT record for a small file

Each file attribute is stored as a separate stream of bytes within a file. Strictly speaking, NTFS
doesn’t read and write files—it reads and writes attribute streams. NTFS supplies these
attribute operations: create, delete, read (byte range), and write (byte range). The read and
write services normally operate on the file’s unnamed data attribute. However, a caller can
specify a different data attribute by using the named data stream syntax.

Table 12-4 lists the attributes for files on an NTFS volume. (Not all attributes are present for
every file.)

Master file table

Standard
information Filename

…

Data

Table 12-4 Attributes for NTFS Files

Attribute Attribute Name Description

Volume information $VOLUME_INFORMATION,
$VOLUME_NAME

These attributes are present only in the $Volume
metadata file. They store volume version and
label information.

Standard information $STANDARD_INFORMATION File attributes such as read-only, archive, and so
on; time stamps, including when the file was cre-
ated or last modified; and how many directories
point to the file (its hard link count).

Chapter 12: File Systems 741
Filename $FILE_NAME The file’s name in Unicode characters. A file can
have multiple filename attributes, as it does
when a hard link to a file exists or when a file
with a long name has an automatically generat-
ed “short name” for access by MS-DOS and 16-
bit Microsoft Windows applications.

Security descriptor $SECURITY_DESCRIPTOR This attribute is present for backward compatibil-
ity with previous versions of NTFS. The Windows
version of NTFS stores all security descriptors in
the $Secure metadata file, sharing descriptors
among files and directories that have the same
settings. Previous versions of NTFS stored private
security descriptor information with each file and
directory.

Data $DATA The contents of the file. In NTFS, a file has one
default unnamed data attribute and can have
additional named data attributes—that is, a file
can have multiple data streams. A directory has
no default data attribute but can have optional
named data attributes.

Index root, index
allocation, and index
bitmap

$INDEX_ROOT,
$INDEX_ALLOCATION,
$BITMAP

Three attributes used to implement filename al-
location and bitmap indexes for large directories
(directories only).

Attribute list $ATTRIBUTE_LIST A list of the attributes that make up the file and
the file reference of the MFT file record in which
each attribute is located. This seldom-used at-
tribute is present when a file requires more than
one MFT file record.

Object ID $OBJECT_ID A 64-byte identifier for a file or directory, with
the lowest 16 bytes (128 bits) unique to the vol-
ume. The link-tracking service assigns object IDs
to shell shortcut and OLE link source files. NTFS
provides APIs so that files and directories can be
opened with their object ID rather than their
filename.

Reparse information $REPARSE_POINT This attribute stores a file’s reparse point data.
NTFS junctions and mount points include this at-
tribute.

Extended attributes $EA, $EA_INFORMATION Extended attributes aren’t actively used but are
provided for backward compatibility with OS/2
applications.

EFS information $EFS EFS stores data in this attribute that’s used to
manage a file’s encryption, such as the encrypt-
ed version of the key needed to decrypt the file
and a list of users that are authorized to access
the file.

Table 12-4 Attributes for NTFS Files

Attribute Attribute Name Description

742 Microsoft Windows Internals, Fourth Edition
Table 12-4 shows attribute names; however, attributes actually correspond to numeric type
codes, which NTFS uses to order the attributes within a file record. The file attributes in an
MFT record are ordered by these type codes (numerically in ascending order), with some
attribute types appearing more than once—if a file has multiple data attributes, for example, or
multiple filenames.

Each attribute in a file record is identified with its attribute type code and has a value and an
optional name. An attribute’s value is the byte stream composing the attribute. For example,
the value of the $FILE_NAME attribute is the file’s name; the value of the $DATA attribute is
whatever bytes the user stored in the file.

Most attributes never have names, though the index-related attributes and the $DATA
attribute often do. Names distinguish among multiple attributes of the same type that a file
can include. For example, a file that has a named data stream has two $DATA attributes: an
unnamed $DATA attribute storing the default unnamed data stream and a named $DATA
attribute having the name of the alternate stream and storing the named stream’s data.

Filenames

Both NTFS and FAT allow each filename in a path to be as many as 255 characters long. File-
names can contain Unicode characters as well as multiple periods and embedded spaces. How-
ever, the FAT file system supplied with MS-DOS is limited to 8 (non-Unicode) characters for its
filenames, followed by a period and a 3-character extension. Figure 12-27 provides a visual rep-
resentation of the different file namespaces Windows supports and shows how they intersect.

Figure 12-27 Windows file namespaces

The POSIX subsystem requires the biggest namespace of all the application execution envi-
ronments that Windows supports, and therefore the NTFS namespace is equivalent to the
POSIX namespace. The POSIX subsystem can create names that aren’t visible to Windows
and MS-DOS applications, including names with trailing periods and trailing spaces. Ordi-
narily, creating a file using the large POSIX namespace isn’t a problem because you would do
that only if you intended the POSIX subsystem or POSIX client systems to use that file.

"TrailingDots..."
"SameNameDifferentCase"
"samenamedifferentcase"
"TrailingSpaces "

Examples

"LongFileName"
"UnicodeName.Φ∆∏Λ"
"File.Name.With.Dots"
"File.Name2.With.Dots"
"Name With Embedded Spaces"
".BeginningDot"

"EIGHTCHR.123"
"CASEBLND.TYP"

POSIX
subsystem

Win32
subsystem

MS-DOS–Windows
clients

Chapter 12: File Systems 743
The relationship between 32-bit Windows (Windows) applications and MS-DOS Windows appli-
cations is a much closer one, however. The Windows area in Figure 12-26 represents filenames
that the Windows subsystem can create on an NTFS volume but that MS-DOS and 16-bit Win-
dows applications can’t see. This group includes filenames longer than the 8.3 format of MS-DOS
names, those containing Unicode (international) characters, those with multiple period charac-
ters or a beginning period, and those with embedded spaces. When a file is created with such a
name, NTFS automatically generates an alternate, MS-DOS-style filename for the file. Windows
displays these short names when you use the /x option with the dir command.

The MS-DOS filenames are fully functional aliases for the NTFS files and are stored in the
same directory as the long filenames. The MFT record for a file with an autogenerated MS-
DOS filename is shown in Figure 12-28.

Figure 12-28 MFT file record with an MS-DOS filename attribute

The NTFS name and the generated MS-DOS name are stored in the same file record and there-
fore refer to the same file. The MS-DOS name can be used to open, read from, write to, or copy
the file. If a user renames the file using either the long filename or the short filename, the new
name replaces both the existing names. If the new name isn’t a valid MS-DOS name, NTFS
generates another MS-DOS name for the file.

Note POSIX hard links are implemented in a similar way. When a hard link to a POSIX file is
created, NTFS adds another filename attribute to the file’s MFT file record. The two situations
differ in one regard, however. When a user deletes a POSIX file that has multiple names (hard
links), the file record and the file remain in place. The file and its record are deleted only when
the last filename (hard link) is deleted. If a file has both an NTFS name and an autogenerated
MS-DOS name, however, a user can delete the file using either name.

Here’s the algorithm NTFS uses to generate an MS-DOS name from a long filename:

1. Remove from the long name any characters that are illegal in MS-DOS names, including
spaces and Unicode characters. Remove preceding and trailing periods. Remove all
other embedded periods, except the last one.

2. Truncate the string before the period (if present) to six characters, and append the
string “~n” (where n is a number, starting with 1, that is used to distinguish different
files that truncate to the same name). Truncate the string after the period (if present) to
three characters.

Standard
information

NTFS
filename

MS-DOS
filename Data

New filename
attribute

744 Microsoft Windows Internals, Fourth Edition
3. Put the result in uppercase letters. MS-DOS is case-insensitive, and this step guarantees
that NTFS won’t generate a new name that differs from the old only in case.

4. If the generated name duplicates an existing name in the directory, increment the ~n
string.

Table 12-5 shows the long Windows filenames from Figure 12-26 and their NTFS-generated
MS-DOS versions. The current algorithm and the examples in Figure 12-26 should give you
an idea of what NTFS-generated MS-DOS–style filenames look like.

Note Although not generally recommended because it can cause incompatibilities with
applications that rely on them, you can disable short name generation by setting HKLM\Sys-
tem\CurrentControlSet\Control\FileSystem\NtfsDisable8dot3NameCreation in the registry to
a DWORD value of 1.

Resident and Nonresident Attributes

If a file is small, all its attributes and their values (its data, for example) fit in the file record.
When the value of an attribute is stored directly in the MFT, the attribute is called a resident
attribute. (In Figure 12-27, for example, all attributes are resident.) Several attributes are
defined as always being resident so that NTFS can locate nonresident attributes. The standard
information and index root attributes are always resident, for example.

Each attribute begins with a standard header containing information about the attribute,
information that NTFS uses to manage the attributes in a generic way. The header, which is
always resident, records whether the attribute’s value is resident or nonresident. For resident
attributes, the header also contains the offset from the header to the attribute’s value and the
length of the attribute’s value, as Figure 12-29 illustrates for the filename attribute.

Table 12-5 NTFS-Generated Filenames

Windows Long Name NTFS-Generated Short Name

LongFileName LONGFI~1

UnicodeName.���� UNICOD~1

File.Name.With.Dots FILENA~1.DOT

File.Name2.With.Dots FILENA~2.DOT

Name With Embedded Spaces NAMEWI~1

.BeginningDot BEGINN~1

Chapter 12: File Systems 745
Figure 12-29 Resident attribute header and value

When an attribute’s value is stored directly in the MFT, the time it takes NTFS to access the
value is greatly reduced. Instead of looking up a file in a table and then reading a succession
of allocation units to find the file’s data (as the FAT file system does, for example), NTFS
accesses the disk once and retrieves the data immediately.

The attributes for a small directory, as well as for a small file, can be resident in the MFT, as
Figure 12-30 shows. For a small directory, the index root attribute contains an index of file ref-
erences for the files and the subdirectories in the directory.

Figure 12-30 MFT file record for a small directory

Of course, many files and directories can’t be squeezed into a 1-KB fixed-size MFT record. If a
particular attribute, such as a file’s data attribute, is too large to be contained in an MFT file
record, NTFS allocates clusters for the attribute’s data separate from the MFT. This area is
called a run (or an extent). If the attribute’s value later grows (if a user appends data to the file,
for example), NTFS allocates another run for the additional data. Attributes whose values are
stored in runs rather than in the MFT are called nonresident attributes. The file system decides
whether a particular attribute is resident or nonresident; the location of the data is transparent
to the process accessing it.

When an attribute is nonresident, as the data attribute for a large file might be, its header con-
tains the information NTFS needs to locate the attribute’s value on the disk. Figure 12-31
shows a nonresident data attribute stored in two runs.

Standard
information Filename Data

“RESIDENT”
Offset: 8h
Length: 14h

Attribute header

Attribute value

MYFILE.DAT

Standard
information Filename Index root

Index of files

file1, file2, file3, ...
Empty

746 Microsoft Windows Internals, Fourth Edition
Figure 12-31 MFT file record for a large file with two data runs

Among the standard attributes, only those that can grow can be nonresident. For files, the
attributes that can grow are the data and the attribute list (not shown in Figure 12-31). The
standard information and filename attributes are always resident.

A large directory can also have nonresident attributes (or parts of attributes), as Figure 12-32
shows. In this example, the MFT file record doesn’t have enough room to store the index of
files that make up this large directory. A part of the index is stored in the index root attribute,
and the rest of the index is stored in nonresident runs called index buffers. The index root,
index allocation, and bitmap attributes are shown here in a simplified form. They are
described in more detail in the next section. The standard information and filename attributes
are always resident. The header and at least part of the value of the index root attribute are
also resident for directories.

Figure 12-32 MFT file record for a large directory with a nonresident filename index

When a file’s (or a directory’s) attributes can’t fit in an MFT file record and separate alloca-
tions are needed, NTFS keeps track of the runs by means of VCN-to-LCN mapping pairs.
LCNs represent the sequence of clusters on an entire volume from 0 through n. VCNs number
the clusters belonging to a particular file from 0 through m. For example, the clusters in the
runs of a nonresident data attribute are numbered as shown in Figure 12-33.

HPFS
extended
attributes

Standard
information Filename Data

Data Data

Index
allocation Bitmap

Standard
information Filename Index root

Index buffers file1 file2 file3 file5 file6

Index of files

file4 file8

Chapter 12: File Systems 747
Figure 12-33 VCNs for a nonresident data attribute

If this file had more than two runs, the numbering of the third run would start with VCN 8.
As Figure 12-34 shows, the data attribute header contains VCN-to-LCN mappings for the two
runs here, which allows NTFS to easily find the allocations on the disk.

Figure 12-34 VCN-to-LCN mappings for a nonresident data attribute

Although Figure 12-33 shows just data runs, other attributes can be stored in runs if there
isn’t enough room in the MFT file record to contain them. And if a particular file has too many
attributes to fit in the MFT record, a second MFT record is used to contain the additional
attributes (or attribute headers for nonresident attributes). In this case, an attribute called the
attribute list is added. The attribute list attribute contains the name and type code of each of
the file’s attributes and the file reference of the MFT record where the attribute is located. The
attribute list attribute is provided for those cases in which a file grows so large or so frag-
mented that a single MFT record can’t contain the multitude of VCN-to-LCN mappings
needed to find all its runs. Files with more than 200 runs typically require an attribute list.

Data Compression and Sparse Files

NTFS supports compression on a per-file, per-directory, or per-volume basis. (NTFS compres-
sion is performed only on user data, not file system metadata.) You can tell whether a volume
is compressed by using the Windows GetVolumeInformation function. To retrieve the actual
compressed size of a file, use the Windows GetCompressedFileSize function. Finally, to

Standard
information

0 1 2 3

1355 1356 1357 1358

Filename Data

Data Data

File 16

4 5 6 7

1588 1589 1590 1591

VCN

LCN

Standard
information

0 1 2 3

1355 1356 1357 1358

Filename Data

Data Data

File 16

4 5 6 7

1588 1589 1590 1591

VCN

LCN

1355

1588

4

4

0

4

Starting
VCN

Starting
LCN

Number of
clusters

748 Microsoft Windows Internals, Fourth Edition
examine or change the compression setting for a file or directory, use the Windows DeviceIo-
Control function. (See the FSCTL_GET_COMPRESSION and FSCTL_SET_COMPRESSION
file system control codes.) Keep in mind that although setting a file’s compression state com-
presses (or decompresses) the file right away, setting a directory’s or volume’s compression
state doesn’t cause any immediate compression or decompression. Instead, setting a direc-
tory’s or volume’s compression state sets a default compression state that will be given to all
newly created files and subdirectories within that directory or volume.

The following section introduces NTFS compression by examining the simple case of com-
pressing sparse data. The subsequent sections extend the discussion to the compression of
ordinary files and sparse files.

Compressing Sparse Data

Sparse data is often large but contains only a small amount of nonzero data relative to its size.
A sparse matrix is one example of sparse data. As described earlier, NTFS uses VCNs, from 0
through m, to enumerate the clusters of a file. Each VCN maps to a corresponding LCN,
which identifies the disk location of the cluster. Figure 12-35 illustrates the runs (disk alloca-
tions) of a normal, noncompressed file, including its VCNs and the LCNs they map to.

Figure 12-35 Runs of a noncompressed file

This file is stored in 3 runs, each of which is 4 clusters long, for a total of 12 clusters. Figure 12-36
shows the MFT record for this file. As described earlier, to save space, the MFT record’s data
attribute, which contains VCN-to-LCN mappings, records only one mapping for each run,
rather than one for each cluster. Notice, however, that each VCN from 0 through 11 has a
corresponding LCN associated with it. The first entry starts at VCN 0 and covers 4 clusters, the
second entry starts at VCN 4 and covers 4 clusters, and so on. This entry format is typical for a
noncompressed file.

Figure 12-36 MFT record for a noncompressed file

When a user selects a file on an NTFS volume for compression, one NTFS compression tech-
nique is to remove long strings of zeros from the file. If the file’s data is sparse, it typically

0 1 2 3

1355 1356 1357 1358

Data Data

4 5 6 7

1588 1589 1590 1591

Data

8 9 10 11

2033 2034 2035 2036

VCN

LCN

Standard
information Filename Data

1355

1588

4

4

0

2033 48

4

Starting
VCN

Starting
LCN

Number of
clusters

Chapter 12: File Systems 749
shrinks to occupy a fraction of the disk space it would otherwise require. On subsequent
writes to the file, NTFS allocates space only for runs that contain nonzero data.

Figure 12-37 depicts the runs of a compressed file containing sparse data. Notice that certain
ranges of the file’s VCNs (16–31 and 64–127) have no disk allocations.

Figure 12-37 Runs of a compressed file containing sparse data

The MFT record for this compressed file omits blocks of VCNs that contain zeros and there-
fore have no physical storage allocated to them. The first data entry in Figure 12-38, for exam-
ple, starts at VCN 0 and covers 16 clusters. The second entry jumps to VCN 32 and covers 16
clusters.

Figure 12-38 MFT record for a compressed file containing sparse data

When a program reads data from a compressed file, NTFS checks the MFT record to deter-
mine whether a VCN-to-LCN mapping covers the location being read. If the program is read-
ing from an unallocated “hole” in the file, it means that the data in that part of the file consists
of zeros, so NTFS returns zeros without accessing the disk. If a program writes nonzero data
to a “hole,” NTFS quietly allocates disk space and then writes the data. This technique is very
efficient for sparse file data that contains a lot of zero data.

0 15

133

Data

Data

Data

Data

VCN

LCN 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148

32 47

193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208

48 63

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111

128 143

324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339

Standard
information Filename Data

133

193

16

16

0

96 1648

32

Starting
VCN

Starting
LCN

Number of
clusters

324 16128

750 Microsoft Windows Internals, Fourth Edition
Compressing Nonsparse Data

The preceding example of compressing a sparse file is somewhat contrived. It describes “com-
pression” for a case in which whole sections of a file were filled with zeros but the remaining
data in the file wasn’t affected by the compression. The data in most files isn’t sparse, but it
can still be compressed by the application of a compression algorithm.

In NTFS, users can specify compression for individual files or for all the files in a directory.
(New files created in a directory marked compressed are automatically compressed—existing
files must be compressed individually.) When it compresses a file, NTFS divides the file’s
unprocessed data into compression units 16 clusters long (equal to 8 KB for a 512-byte cluster,
for example). Certain sequences of data in a file might not compress much, if at all; so for each
compression unit in the file, NTFS determines whether compressing the unit will save at least
1 cluster of storage. If compressing the unit won’t free up at least 1 cluster, NTFS allocates a
16-cluster run and writes the data in that unit to disk without compressing it. If the data in a
16-cluster unit will compress to 15 or fewer clusters, NTFS allocates only the number of clus-
ters needed to contain the compressed data and then writes it to disk. Figure 12-39 illustrates
the compression of a file with four runs. The unshaded areas in this figure represent the actual
storage locations that the file occupies after compression. The first, second, and fourth runs
were compressed; the third run wasn’t. Even with one noncompressed run, compressing this
file saved 26 clusters of disk space, or 41 percent.

Figure 12-39 Data runs of a compressed file

Note Although the diagrams in this chapter show contiguous LCNs, a compression unit
need not be stored in physically contiguous clusters. Runs that occupy noncontiguous clusters
produce slightly more complicated MFT records than the one shown in Figure 12-39.

0 15

19

VCN

LCN 20 21 22

16 31

23 24 25 26 27 28 29 30

32 47

11297 98 99 100 101 102 103 104 105 106 107 108 109 110 111

48 63

113 114 115 116 117 118 119 120 121 122

Noncompressed data

Compressed dataCompressed data

Compressed dataCompressed data

Compressed dataCompressed data

Chapter 12: File Systems 751
When it writes data to a compressed file, NTFS ensures that each run begins on a virtual 16-
cluster boundary. Thus the starting VCN of each run is a multiple of 16, and the runs are no
longer than 16 clusters. NTFS reads and writes at least one compression unit at a time when
it accesses compressed files. When it writes compressed data, however, NTFS tries to store
compression units in physically contiguous locations so that it can read them all in a single I/O
operation. The 16-cluster size of the NTFS compression unit was chosen to reduce internal frag-
mentation: the larger the compression unit, the less the overall disk space needed to store the
data. This 16-cluster compression unit size represents a trade-off between producing smaller
compressed files and slowing read operations for programs that randomly access files. The
equivalent of 16 clusters must be decompressed for each cache miss. (A cache miss is more
likely to occur during random file access.) Figure 12-40 shows the MFT record for the com-
pressed file shown in Figure 12-39.

Figure 12-40 MFT record for a compressed file

One difference between this compressed file and the earlier example of a compressed file con-
taining sparse data is that three of the compressed runs in this file are less than 16 clusters
long. Reading this information from a file’s MFT file record enables NTFS to know whether
data in the file is compressed. Any run shorter than 16 clusters contains compressed data that
NTFS must decompress when it first reads the data into the cache. A run that is exactly 16
clusters long doesn’t contain compressed data and therefore requires no decompression.

If the data in a run has been compressed, NTFS decompresses the data into a scratch buffer
and then copies it to the caller’s buffer. NTFS also loads the decompressed data into the cache,
which makes subsequent reads from the same run as fast as any other cached read. NTFS
writes any updates to the file to the cache, leaving the lazy writer to compress and write the
modified data to disk asynchronously. This strategy ensures that writing to a compressed file
produces no more significant delay than writing to a noncompressed file would.

NTFS keeps disk allocations for a compressed file contiguous whenever possible. As the LCNs
indicate, the first two runs of the compressed file shown in Figure 12-38 are physically contigu-
ous, as are the last two. When two or more runs are contiguous, NTFS performs disk read-
ahead, as it does with the data in other files. Because the reading and decompression of contig-
uous file data take place asynchronously before the program requests the data, subsequent read
operations obtain the data directly from the cache, which greatly enhances read performance.

Standard
information Filename Data

19

23

4

8

0

97 1632

16

Starting
VCN

Starting
LCN

Number of
clusters

113 1048

752 Microsoft Windows Internals, Fourth Edition
Sparse Files

Sparse files (the NTFS file type, as opposed to files that consist of sparse data, described ear-
lier) are essentially compressed files for which NTFS doesn’t apply compression to the file’s
nonsparse data. However, NTFS manages the run data of a sparse file’s MFT record the same
way it does for compressed files that consist of sparse and nonsparse data.

The Change Journal File
The change journal file, \$Extend\$UsnJrnl, is a sparse file that NTFS creates only when an
application enables change logging. The journal stores change entries in the $J data stream.
Entries include the following information about a file or directory change:

■ The time of the change

■ The change type (delete, rename, size extend, and so on)

■ The file or directory’s attributes

■ The file or directory’s name

■ The file or directory’s file reference number

■ The file reference number of the file’s parent directory

The journal is sparse so that it never overflows; when the journal’s on-disk size exceeds the
maximum defined for the file, NTFS simply begins zeroing the file data that precedes the win-
dow of change information having a size equal to the maximum journal size, as shown in
Figure 12-41. To prevent constant resizing when an application is continuously exceeding the
journal’s size, NTFS shrinks the journal only when its size is twice an application-defined
value over the maximum configured size.

Figure 12-41 Change journal ($UsnJrnl) space allocation

File name
Type of change
Time of change
File MFT entry number
…

$J Alternate stream

Virtual size of $UsnJrnl

Physical size of $UsnJrnl

Change Entry

Empty

…

Chapter 12: File Systems 753
Indexing

In NTFS, a file directory is simply an index of filenames—that is, a collection of filenames
(along with their file references) organized in a particular way for quick access. To create a
directory, NTFS indexes the filename attributes of the files in the directory. The MFT record
for the root directory of a volume is shown in Figure 12-42.

Figure 12-42 Filename index for a volume’s root directory

Conceptually, an MFT entry for a directory contains in its index root attribute a sorted list of
the files in the directory. For large directories, however, the filenames are actually stored in
4-KB fixed-size index buffers that contain and organize the filenames. Index buffers imple-
ment a b+ tree data structure, which minimizes the number of disk accesses needed to find a
particular file, especially for large directories. The index root attribute contains the first level of
the b+ tree (root subdirectories) and points to index buffers containing the next level (more
subdirectories, perhaps, or files).

Figure 12-42 shows only filenames in the index root attribute and the index buffers (file6, for
example), but each entry in an index also contains the file reference in the MFT where the file
is described and time stamp and file size information for the file. NTFS duplicates the time
stamp and file size information from the file’s MFT record. This technique, which is used by
FAT and NTFS, requires updated information to be written in two places. Even so, it’s a signif-
icant speed optimization for directory browsing because it enables the file system to display
each file’s time stamps and size without opening every file in the directory.

0 1 2 3

1355 1356 1357 1358

file0 file11 file12 file13 file14file1 file3

File 5

8 9 10 11

2033 2034 2035 2036

VCN

LCN

VCN

LCN

4 5 6 7

1588 1589 1590 1591

VCN

LCN

Standard
information Filename Index root

Index
allocation Bitmap

Index of files

file4 file10 file15
"\" VCN-to-LCN

mappings

file6 file8 file9

754 Microsoft Windows Internals, Fourth Edition
The index allocation attribute maps the VCNs of the index buffer runs to the LCNs that indi-
cate where the index buffers reside on the disk, and the bitmap attribute keeps track of which
VCNs in the index buffers are in use and which are free. Figure 12-42 shows one file entry per
VCN (that is, per cluster), but filename entries are actually packed into each cluster. Each 4-KB
index buffer can contain about 20 to 30 filename entries.

The b+ tree data structure is a type of balanced tree that is ideal for organizing sorted data
stored on a disk because it minimizes the number of disk accesses needed to find an entry. In
the MFT, a directory’s index root attribute contains several filenames that act as indexes into
the second level of the b+ tree. Each filename in the index root attribute has an optional
pointer associated with it that points to an index buffer. The index buffer it points to contains
filenames with lexicographic values less than its own. In Figure 12-42, for example, file4 is a
first-level entry in the b+ tree. It points to an index buffer containing filenames that are (lexi-
cographically) less than itself—the filenames file0, file1, and file3. Note that the names file1,
file2, and so on that are used in this example are not literal filenames but names intended to
show the relative placement of files that are lexicographically ordered according to the dis-
played sequence.

Storing the filenames in b+ trees provides several benefits. Directory lookups are fast because
the filenames are stored in a sorted order. And when higher-level software enumerates the files
in a directory, NTFS returns already-sorted names. Finally, because b+ trees tend to grow wide
rather than deep, NTFS’s fast lookup times don’t degrade as directories grow.

NTFS also provides general support for indexing data besides filenames, and several NTFS
features—including object IDs, quota tracking, and consolidated security—use indexing to
manage internal data.

Object IDs

In addition to storing the object ID assigned to a file or directory in the $OBJECT_ID attribute
of its MFT record, NTFS also keeps the correspondence between object IDs and their file ref-
erence numbers in the $O index of the \$Extend\$ObjId metadata file. The index collates
entries by object ID, making it easy for NTFS to quickly locate a file based on its ID. This fea-
ture allows applications, using undocumented native API functionality, to open a file or direc-
tory using its object ID. Figure 12-43 demonstrates the correspondence of the $Objid
metadata file and $OBJECT_ID attributes in MFT records.

Chapter 12: File Systems 755
Figure 12-43 $Objid and $OBJECT_ID relationships

Quota Tracking

NTFS stores quota information in the \$Extend\$Quota metadata file, which consists of the
indexes $O and $Q. Figure 12-44 shows the organization of these indexes. Just as NTFS
assigns each security descriptor a unique internal security ID, NTFS assigns each user a
unique user ID. When an administrator defines quota information for a user, NTFS allocates
a user ID that corresponds to the user’s SID. In the $O index, NTFS creates an entry that maps
a SID to a user ID and sorts the index by user ID; in the $Q index, NTFS creates a quota con-
trol entry. A quota control entry contains the value of the user’s quota limits, as well as the
amount of disk space the user consumes on the volume.

Figure 12-44 $Quota indexing

ID passed when an
application opens a

file using its object ID

$0 index

$ObjId metadata file MFT entry

MFT

Object ID 0

MFT entry number
optional application data

MFT entry number
optional application data

Object ID 1

Object ID 2

MFT entry number
optional application data

Standard
information

$0 index
root

$0 index
allocationFilename

File 3 $OBJECT_ID

File 1 $OBJECT_ID

File 2 $OBJECT_ID

…

SID taken from
application when a file
or directory is created

$0 index

SID 0

User ID 0

SID 1

User ID 1

SID 2

User ID 2

User ID taken from a file’s
$STANDARD_INFORMATION

attribute during a file operation

$0 index

User ID 0

Quota entry for user 0

User ID 1

Quota entry for user 1

User ID 2

Quota entry for user 2

756 Microsoft Windows Internals, Fourth Edition
When an application creates a file or directory, NTFS obtains the application user’s SID and
looks up the associated user ID in the $O index. NTFS records the user ID in the new file or
directory’s $STANDARD_INFORMATION attribute, which counts all disk space allocated to
the file or directory against that user’s quota. Then NTFS looks up the quota entry in the $Q
index and determines whether the new allocation causes the user to exceed his or her warn-
ing or limit threshold. When a new allocation causes the user to exceed a threshold, NTFS
takes appropriate steps, such as logging an event to the System event log or not letting the
user create the file or directory. As a file or directory changes size, NTFS updates the quota
control entry associated with the user ID stored in the $STANDARD_INFORMATION
attribute. NTFS uses general indexing to efficiently correlate user IDs with account SIDs, and,
given a user ID, to efficiently look up a user’s quota control information.

Consolidated Security

NTFS has always supported security, which lets an administrator specify which users can and
can’t access individual files and directories. In pre–Windows 2000 NTFS, every file and direc-
tory stores its security descriptor in its own security attribute. In most cases, administrators
apply the same security settings to an entire directory tree, which results in duplication of
security descriptors across all the files and subdirectories to which the settings apply. This
duplication can intensively utilize disk space in multiuser environments, such as Windows
2000 Server Terminal Services, in which security descriptors might contain entries for multi-
ple accounts. NTFS in Windows 2000 and later optimizes disk utilization for security descrip-
tors by using a central metadata file named $Secure to store only one instance of each security
descriptor on a volume.

The $Secure file contains two index attributes—$SDH and $SII—and a data-stream attribute
named $SDS, as Figure 12-45 shows. NTFS assigns every unique security descriptor on a vol-
ume an internal NTFS security ID (not to be confused with a SID, which uniquely identifies
computers and user accounts) and hashes the security descriptor according to a simple hash
algorithm. A hash is a potentially nonunique shorthand representation of a descriptor. Entries
in the $SDH index map the security descriptor hashes to the security descriptor’s storage loca-
tion within the $SDS data attribute, and the $SII index entries map NTFS security IDs to the
security descriptor’s location in the $SDS data attribute.

Chapter 12: File Systems 757
Figure 12-45 $Secure indexing

When you apply a security descriptor to a file or directory, NTFS obtains a hash of the descriptor
and looks through the $SDH index for a match. NTFS sorts the $SDH index entries according
to the hash of their corresponding security descriptor and stores the entries in a b+ tree. If NTFS
finds a match for the descriptor in the $SDH index, NTFS locates the offset of the entry’s secu-
rity descriptor from the entry’s offset value and reads the security descriptor from the $SDS
attribute. If the hashes match but the security descriptors don’t, NTFS looks for another match-
ing entry in the $SDH index. When NTFS finds a precise match, the file or directory to which
you’re applying the security descriptor can reference the existing security descriptor in the $SDS
attribute. NTFS makes the reference by reading the NTFS security identifier from the $SDH
entry and storing it in the file or directory’s $STANDARD_INFORMATION attribute. The NTFS
$STANDARD_INFORMATION attribute, which all files and directories have, stores basic infor-
mation about a file, including its attributes, timestamp information, and file’s security identifier.

If NTFS doesn’t find in the $SDH index an entry that has a security descriptor that matches the
descriptor you’re applying, the descriptor you’re applying is unique to the volume and NTFS
assigns the descriptor a new internal security ID. NTFS internal security IDs are 32-bit values,
whereas SIDs are typically several times larger, so representing SIDs with NTFS security IDs
saves space in the $STANDARD_ INFORMATION attribute. NTFS then adds the security
descriptor to the $SDS attribute, which is sorted in a b+ tree by the NTFS security ID, and it adds
to the $SDH and $SII indexes entries that reference the descriptor’s offset in the $SDS data.

When an application attempts to open a file or directory, NTFS uses the $SII index to look up
the file or directory’s security descriptor. NTFS reads the file or directory’s internal security ID
from the MFT entry’s $STANDARD_INFORMATION attribute. It then uses the $Secure file’s

Hash of a security
descriptor when a security

setting is applied to a
file or directory

$SDH index

Hash 1

$SDS offset

Hash 2

$SDS offset

Hash 0

$SDS offset

$SDS data stream

Security descriptor
0

Security descriptor
1

Security descriptor
2

ID taken from a file’s
$STANDARD_INFORMATION

attribute during a file or
directory security check

$SII index

NTFS security ID 0

$SDS offset

NTFS security ID 1

$SDS offset

NTFS security ID 2

$SDS offset

758 Microsoft Windows Internals, Fourth Edition
$SII index to locate the ID’s entry in the $SDS attribute. The offset into the $SDS attribute lets
NTFS read the security descriptor and complete the security check. NTFS stores the 32 most
recently accessed security descriptors with their $SII indices in a cache so that it will access
only the $Secure file when the $SII isn’t cached.

NTFS doesn’t delete entries in the $Secure file, even if no file or directory on a volume references
the entry. Not deleting these entries doesn’t significantly decrease disk space because most vol-
umes, even those used for long periods, have relatively few unique security descriptors.

NTFS’s use of general indexing lets files and directories that have the same security settings
efficiently share security descriptors. The $SII index lets NTFS quickly look up a security
descriptor in the $Secure file while performing security checks, and the $SDH index lets
NTFS quickly determine whether a security descriptor being applied to a file or directory is
already stored in the $Secure file and can be shared.

Reparse Points

As described earlier in the chapter, a reparse point is a block of up to 16 KB of application-
defined reparse data and a 32-bit reparse tag that are stored in the $REPARSE_POINT
attribute of a file or directory. Whenever an application creates or deletes a reparse point,
NTFS updates the \$Extend\$Reparse metadata file, in which NTFS stores entries that iden-
tify the file record numbers of files and directories that contain reparse points. Storing the
records in a central location enables NTFS to provide interfaces for applications to enumerate
all a volume’s reparse points or just specific types of reparse points, such as mount points.
(See Chapter 10 for more information on mount points.) The \$Extend\$Reparse file uses
the general indexing facility of NTFS by collating the file’s entries (in an index named $R) by
reparse point tags.

NTFS Recovery Support
NTFS recovery support ensures that if a power failure or a system failure occurs, no file system
operations (transactions) will be left incomplete and the structure of the disk volume will
remain intact without the need to run a disk repair utility. The NTFS Chkdsk utility is used to
repair catastrophic disk corruption caused by I/O errors (bad disk sectors, electrical anoma-
lies, or disk failures, for example) or software bugs. But with the NTFS recovery capabilities in
place, Chkdsk is rarely needed.

As mentioned earlier (in the section “Recoverability”), NTFS uses a transaction-processing
scheme to implement recoverability. This strategy ensures a full disk recovery that is also
extremely fast (on the order of seconds) for even the largest disks. NTFS limits its recovery
procedures to file system data to ensure that at the very least the user will never lose a volume
because of a corrupted file system; however, unless an application takes specific action (such
as flushing cached files to disk), NTFS doesn’t guarantee user data to be fully updated if a
crash occurs. Transaction-based protection of user data is available in most of the database

Chapter 12: File Systems 759
products available for Windows, such as Microsoft SQL Server. Microsoft chose not to imple-
ment user-data recovery at the file system level because applications often implement their
own data-recovery schemes that are tailored for the type of data they store.

The following sections describe the evolution of file system reliability as a context for an intro-
duction to recoverable file systems, detail the transaction-logging scheme NTFS uses to record
modifications to file system data structures, and explain how NTFS recovers a volume if the
system fails.

Evolution of File System Design

The development of a recoverable file system was a step forward in the evolution of file system
design. In the past, two techniques were common for constructing a file system’s I/O and
caching support: careful write and lazy write. The file systems developed for Digital Equipment
Corporation (now Compaq) VAX/VMS and for some other proprietary operating systems
employed a careful write algorithm, while OS/2 HPFS and most older UNIX file systems used
a lazy write file system scheme.

The next two subsections briefly review these two types of file systems and their intrinsic
trade-offs between safety and performance. The third subsection describes NTFS’s recover-
able approach and explains how it differs from the other two strategies.

Careful Write File Systems

When an operating system crashes or loses power, I/O operations in progress are immedi-
ately, and often prematurely, interrupted. Depending on what I/O operation or operations
were in progress and how far along they were, such an abrupt halt can produce inconsisten-
cies in a file system. An inconsistency in this context is a file system corruption—a filename
appears in a directory listing, for example, but the file system doesn’t know the file is there or
can’t access the file. The worst file system corruptions can leave an entire volume inaccessible.

A careful write file system doesn’t try to prevent file system inconsistencies. Rather, it orders
its write operations so that, at worst, a system crash will produce predictable, noncritical
inconsistencies, which the file system can fix at its leisure.

When any kind of file system receives a request to update the disk, it must perform several sub-
operations before the update will be complete. In a file system that uses the careful write strat-
egy, the suboperations are always written to disk serially. When allocating disk space for a file,
for example, the file system first sets some bits in its bitmap and then allocates the space to the
file. If the power fails immediately after the bits are set, the careful write file system loses access
to some disk space—to the space represented by the set bits—but existing data isn’t corrupted.

Serializing write operations also means that I/O requests are filled in the order in which they are
received. If one process allocates disk space and shortly thereafter another process creates a file,
a careful write file system completes the disk allocation before it starts to create the file because
interleaving the suboperations of the two I/O requests could result in an inconsistent state.

760 Microsoft Windows Internals, Fourth Edition
Note The FAT file system uses a write-through algorithm that causes disk modifications to
be immediately written to the disk. Unlike the careful write approach, the write-through tech-
nique doesn’t require the file system to order its writes to prevent inconsistencies.

The main advantage of a careful write file system is that in the event of a failure the volume
stays consistent and usable without the need to immediately run a slow volume-repair utility.
Such a utility is needed to correct the predictable, nondestructive disk inconsistencies that
occur as the result of a system failure, but the utility can be run at a convenient time, typically
when the system is rebooted.

Lazy Write File Systems

A careful write file system sacrifices speed for the safety it provides. A lazy write file system
improves performance by using a write-back caching strategy; that is, it writes file modifica-
tions to the cache and flushes the contents of the cache to disk in an optimized way, usually
as a background activity.

The performance improvements associated with the lazy write caching technique take several
forms. First, the overall number of disk writes is reduced. Because serialized, immediate disk
writes aren’t required, the contents of a buffer can be modified several times before they are
written to disk. Second, the speed of servicing application requests is greatly increased
because the file system can return control to the caller without waiting for disk writes to be
completed. Finally, the lazy write strategy ignores the inconsistent intermediate states on a file
volume that can result when the suboperations of two or more I/O requests are interleaved. It
is thus easier to make the file system multithreaded, allowing more than one I/O operation to
be in progress at a time.

The disadvantage of the lazy write technique is that it creates intervals during which a volume
is in too inconsistent a state to be corrected by the file system. Consequently, lazy write file
systems must keep track of the volume’s state at all times. In general, lazy write file systems
gain a performance advantage over careful write systems—at the expense of greater risk and
user inconvenience if the system fails.

Recoverable File Systems

A recoverable file system such as NTFS tries to exceed the safety of a careful write file system
while achieving the performance of a lazy write file system. A recoverable file system ensures
volume consistency by using logging techniques (sometimes called journaling) originally
developed for transaction processing. If the operating system crashes, the recoverable file sys-
tem restores consistency by executing a recovery procedure that accesses information that has
been stored in a log file. Because the file system has logged its disk writes, the recovery proce-
dure takes only seconds, regardless of the size of the volume.

Chapter 12: File Systems 761
The recovery procedure for a recoverable file system is exact, guaranteeing that the volume
will be restored to a consistent state. In NTFS, none of the inadequate restorations associated
with lazy write file systems can happen.

A recoverable file system incurs some costs for the safety it provides. Every transaction that
alters the volume structure requires that one record be written to the log file for each of the
transaction’s suboperations. This logging overhead is ameliorated by the file system’s batching
of log records—writing many records to the log file in a single I/O operation. In addition, the
recoverable file system can employ the optimization techniques of a lazy write file system. It
can even increase the length of the intervals between cache flushes because the file system can
be recovered if the system crashes before the cache changes have been flushed to disk. This
gain over the caching performance of lazy write file systems makes up for, and often exceeds,
the overhead of the recoverable file system’s logging activity.

Neither careful write nor lazy write file systems guarantee protection of user file data. If the
system crashes while an application is writing a file, the file can be lost or corrupted. Worse,
the crash can corrupt a lazy write file system, destroying existing files or even rendering an
entire volume inaccessible.

The NTFS recoverable file system implements several strategies that improve its reliability
over that of the traditional file systems. First, NTFS recoverability guarantees that the volume
structure won’t be corrupted, so all files will remain accessible after a system failure.

Second, although NTFS doesn’t guarantee protection of user data in the event of a system
crash—some changes can be lost from the cache—applications can take advantage of the NTFS
write-through and cache-flushing capabilities to ensure that file modifications are recorded on
disk at appropriate intervals. Both cache write-through—forcing write operations to be immedi-
ately recorded on disk—and cache flushing—forcing cache contents to be written to disk—are
efficient operations. NTFS doesn’t have to do extra disk I/O to flush modifications to several
different file system data structures because changes to the data structures are recorded—in a
single write operation—in the log file; if a failure occurs and cache contents are lost, the file sys-
tem modifications can be recovered from the log. Furthermore, unlike the FAT file system,
NTFS guarantees that user data will be consistent and available immediately after a write-
through operation or a cache flush, even if the system subsequently fails.

Logging

NTFS provides file system recoverability by means of a transaction-processing technique
called logging. In NTFS logging, the suboperations of any transaction that alters important file
system data structures are recorded in a log file before they are carried through on the disk.
That way, if the system crashes, partially completed transactions can be redone or undone
when the system comes back on line. In transaction processing, this technique is known as
write-ahead logging. In NTFS, transactions include writing to the disk or deleting a file and can
be made up of several suboperations.

762 Microsoft Windows Internals, Fourth Edition
Log File Service (LFS)

The log file service (LFS) is a series of kernel-mode routines inside the NTFS driver that NTFS
uses to access the log file. Although originally designed to provide logging and recovery ser-
vices for more than one client, the LFS is used only by NTFS. The caller—NTFS in this case—
passes the LFS a pointer to an open file object, which specifies a log file to be accessed. The
LFS either initializes a new log file or calls the Windows cache manager to access the existing
log file through the cache, as shown in Figure 12-46.

Figure 12-46 Log file service (LFS)

The LFS divides the log file into two regions: a restart area and an “infinite” logging area, as
shown in Figure 12-47.

Figure 12-47 Log file regions

NTFS calls the LFS to read and write the restart area. NTFS uses the restart area to store con-
text information such as the location in the logging area at which NTFS will begin to read dur-
ing recovery after a system failure. The LFS maintains a second copy of the restart data in case
the first becomes corrupted or otherwise inaccessible. The remainder of the log file is the log-
ging area, which contains transaction records NTFS writes to recover a volume in the event of
a system failure. The LFS makes the log file appear infinite by reusing it circularly (while guar-
anteeing that it doesn’t overwrite information it needs). The LFS uses logical sequence numbers

Log file
service

Flush the
log file

Read/write/flush
the log file

Log the transaction

Write the
volume updates

NTFS driver

…

I/O manager

Cache
manager

Call the virtual memory
manager to access

the mapped file

Log records

Logging area

Copy 2Copy 1

LFS restart area

Chapter 12: File Systems 763
(LSNs) to identify records written to the log file. As the LFS cycles through the file, it increases
the values of the LSNs. NTFS uses 64 bits to represent LSNs, so the number of possible LSNs
is so large as to be virtually infinite.

NTFS never reads transactions from or writes transactions to the log file directly. The LFS pro-
vides services NTFS calls to open the log file, write log records, read log records in forward or
backward order, flush log records up to a particular LSN, or set the beginning of the log file to
a higher LSN. During recovery, NTFS calls the LFS to perform the following actions: read for-
ward through the log records to redo any transactions that were recorded in the log file but
weren’t flushed to disk at the time of the system failure; read backward through the log
records to undo, or roll back, any transactions that weren’t completely logged before the
crash; and set the beginning of the log file to a record with a higher LSN when NTFS no longer
needs the older transaction records in the log file.

Here’s how the system guarantees that the volume can be recovered:

1. NTFS first calls the LFS to record in the (cached) log file any transactions that will mod-
ify the volume structure.

2. NTFS modifies the volume (also in the cache).

3. The cache manager prompts the LFS to flush the log file to disk. (The LFS implements
the flush by calling the cache manager back, telling it which pages of memory to flush.
Refer back to the calling sequence shown in Figure 12-46.)

4. After the cache manager flushes the log file to disk, it flushes the volume changes (the
metadata operations themselves) to disk.

These steps ensure that if the file system modifications are ultimately unsuccessful, the corre-
sponding transactions can be retrieved from the log file and can be either redone or undone
as part of the file system recovery procedure.

File system recovery begins automatically the first time the volume is used after the system is
rebooted. NTFS checks whether the transactions that were recorded in the log file before the
crash were applied to the volume, and if they weren’t, it redoes them. NTFS also guarantees
that transactions not completely logged before the crash are undone so that they don’t appear
on the volume.

Log Record Types

The LFS allows its clients to write any kind of record to their log files. NTFS writes several
types of records. Two types, update records and checkpoint records, are described here.

Update records Update records are the most common type of record NTFS writes to the
log file. Each update record contains two kinds of information:

764 Microsoft Windows Internals, Fourth Edition
■ Redo information How to reapply one suboperation of a fully logged (“committed”)
transaction to the volume if a system failure occurs before the transaction is flushed
from the cache

■ Undo information How to reverse one suboperation of a transaction that was only par-
tially logged (“not committed”) at the time of a system failure

Figure 12-48 shows three update records in the log file. Each record represents one suboper-
ation of a transaction, creating a new file. The redo entry in each update record tells NTFS how
to reapply the suboperation to the volume, and the undo entry tells NTFS how to roll back
(undo) the suboperation.

Figure 12-48 Update records in the log file

After logging a transaction (in this example, by calling the LFS to write the three update
records to the log file), NTFS performs the suboperations on the volume itself, in the cache.
When it has finished updating the cache, NTFS writes another record to the log file, recording
the entire transaction as complete—a suboperation known as committing a transaction. Once a
transaction is committed, NTFS guarantees that the entire transaction will appear on the vol-
ume, even if the operating system subsequently fails.

When recovering after a system failure, NTFS reads through the log file and redoes each com-
mitted transaction. Although NTFS completed the committed transactions before the system
failure, it doesn’t know whether the cache manager flushed the volume modifications to disk
in time. The updates might have been lost from the cache when the system failed. Therefore,
NTFS executes the committed transactions again just to be sure that the disk is up to date.

After redoing the committed transactions during a file system recovery, NTFS locates all the
transactions in the log file that weren’t committed at failure and rolls back (undoes) each sub-
operation that had been logged. In Figure 12-47, NTFS would first undo the T1c suboperation
and then follow the backward pointer to T1b and undo that suboperation. It would continue
to follow the backward pointers, undoing suboperations, until it reached the first subopera-
tion in the transaction. By following the pointers, NTFS knows how many and which update
records it must undo to roll back a transaction.

Redo: Allocate/initialize an MFT file record
Undo: Deallocate the file record

Redo: Set bits 3–9 in the bitmap
Undo: Clear bits 3–9 in the bitmap

Redo: Add the filename to the index
Undo: Remove the filename from the index

LFS restart area Logging area

Log file records

T1a T1b T1c… ...

Chapter 12: File Systems 765
Redo and undo information can be expressed either physically or logically. Physical descrip-
tions specify volume updates in terms of particular byte ranges on the disk that are to be
changed, moved, and so on. Logical descriptions express updates in terms of operations such
as “delete file A.dat.” As the lowest layer of software maintaining the file system structure,
NTFS writes update records with physical descriptions. Transaction-processing or other
application-level software might benefit from writing update records in logical terms, how-
ever, because logically expressed updates are more compact than physically expressed ones.
Logical descriptions necessarily depend on NTFS to understand what operations such as
deleting a file involve.

NTFS writes update records (usually several) for each of the following transactions:

■ Creating a file

■ Deleting a file

■ Extending a file

■ Truncating a file

■ Setting file information

■ Renaming a file

■ Changing the security applied to a file

The redo and undo information in an update record must be carefully designed because
although NTFS undoes a transaction, recovers from a system failure, or even operates nor-
mally, it might try to redo a transaction that has already been done or, conversely, to undo a
transaction that never occurred or that has already been undone. Similarly, NTFS might try to
redo or undo a transaction consisting of several update records, only some of which are com-
plete on disk. The format of the update records must ensure that executing redundant redo or
undo operations is idempotent, that is, has a neutral effect. For example, setting a bit that is
already set has no effect, but toggling a bit that has already been toggled does. The file system
must also handle intermediate volume states correctly.

Checkpoint records In addition to update records, NTFS periodically writes a checkpoint
record to the log file, as illustrated in Figure 12-49.

Figure 12-49 Checkpoint record in the log file

Checkpoint
record

LFS restart area

NTFS restart

Logging area

Log file records

LSN
2058

LSN
2061

... ...LSN
2059

LSN
2060

766 Microsoft Windows Internals, Fourth Edition
A checkpoint record helps NTFS determine what processing would be needed to recover a
volume if a crash were to occur immediately. Using information stored in the checkpoint
record, NTFS knows, for example, how far back in the log file it must go to begin its recovery.
After writing a checkpoint record, NTFS stores the LSN of the record in the restart area so that
it can quickly find its most recently written checkpoint record when it begins file system
recovery after a crash occurs.

Although the LFS presents the log file to NTFS as if it were infinitely large, it isn’t. The gener-
ous size of the log file and the frequent writing of checkpoint records (an operation that usu-
ally frees up space in the log file) make the possibility of the log file’s filling up a remote one.
Nevertheless, the LFS accounts for this possibility by tracking several numbers:

■ The available log space

■ The amount of space needed to write an incoming log record and to undo the write,
should that be necessary

■ The amount of space needed to roll back all active (noncommitted) transactions, should
that be necessary

If the log file doesn’t contain enough available space to accommodate the total of the last two
items, the LFS returns a “log file full” error and NTFS raises an exception. The NTFS excep-
tion handler rolls back the current transaction and places it in a queue to be restarted later.

To free up space in the log file, NTFS must momentarily prevent further transactions on files.
To do so, NTFS blocks file creation and deletion and then requests exclusive access to all sys-
tem files and shared access to all user files. Gradually, active transactions either are completed
successfully or receive the “log file full” exception. NTFS rolls back and queues the transac-
tions that receive the exception.

Once it has blocked transaction activity on files as just described, NTFS calls the cache man-
ager to flush unwritten data to disk, including unwritten log file data. After everything is safely
flushed to disk, NTFS no longer needs the data in the log file. It resets the beginning of the log
file to the current position, making the log file “empty.” Then it restarts the queued transac-
tions. Beyond the short pause in I/O processing, the “log file full” error has no effect on exe-
cuting programs.

This scenario is one example of how NTFS uses the log file not only for file system recovery
but also for error recovery during normal operation. You’ll find out more about error recovery
in the following section.

Chapter 12: File Systems 767
Recovery

NTFS automatically performs a disk recovery the first time a program accesses an NTFS vol-
ume after the system has been booted. (If no recovery is needed, the process is trivial.) Recov-
ery depends on two tables NTFS maintains in memory:

■ The transaction table keeps track of transactions that have been started but aren’t yet
committed. The suboperations of these active transactions must be removed from the
disk during recovery.

■ The dirty page table records which pages in the cache contain modifications to the file
system structure that haven’t yet been written to disk. This data must be flushed to disk
during recovery.

NTFS writes a checkpoint record to the log file once every 5 seconds. Just before it does, it
calls the LFS to store a current copy of the transaction table and of the dirty page table in the
log file. NTFS then records in the checkpoint record the LSNs of the log records containing
the copied tables. When recovery begins after a system failure, NTFS calls the LFS to locate
the log records containing the most recent checkpoint record and the most recent copies of
the transaction and dirty page tables. It then copies the tables to memory.

The log file usually contains more update records following the last checkpoint record. These
update records represent volume modifications that occurred after the last checkpoint record
was written. NTFS must update the transaction and dirty page tables to include these opera-
tions. After updating the tables, NTFS uses the tables and the contents of the log file to update
the volume itself.

To effect its volume recovery, NTFS scans the log file three times, loading the file into memory
during the first pass to minimize disk I/O. Each pass has a particular purpose:

1. Analysis

2. Redoing transactions

3. Undoing transactions

Analysis Pass

During the analysis pass, as shown in Figure 12-50, NTFS scans forward in the log file from the
beginning of the last checkpoint operation to find update records and use them to update the
transaction and dirty page tables it copied to memory. Notice in the figure that the checkpoint
operation stores three records in the log file and that update records might be interspersed
among these records. NTFS therefore must start its scan at the beginning of the checkpoint
operation.

768 Microsoft Windows Internals, Fourth Edition
Figure 12-50 Analysis pass

Most update records that appear in the log file after the checkpoint operation begins represent
a modification to either the transaction table or the dirty page table. If an update record is a
“transaction committed” record, for example, the transaction the record represents must be
removed from the transaction table. Similarly, if the update record is a “page update” record that
modifies a file system data structure, the dirty page table must be updated to reflect that change.

Once the tables are up to date in memory, NTFS scans the tables to determine the LSN of the
oldest update record that logs an operation that hasn’t been carried out on disk. The transac-
tion table contains the LSNs of the noncommitted (incomplete) transactions, and the dirty
page table contains the LSNs of records in the cache that haven’t been flushed to disk. The
LSN of the oldest update record that NTFS finds in these two tables determines where the
redo pass will begin. If the last checkpoint record is older, however, NTFS will start the redo
pass there instead.

Redo Pass

During the redo pass, as shown in Figure 12-51, NTFS scans forward in the log file from the
LSN of the oldest update record, which it found during the analysis pass. It looks for “page
update” records, which contain volume modifications that were written before the system fail-
ure but that might not have been flushed to disk. NTFS redoes these updates in the cache.

Figure 12-51 Redo pass

When NTFS reaches the end of the log file, it has updated the cache with the necessary vol-
ume modifications and the cache manager’s lazy writer can begin writing cache contents to
disk in the background.

Analysis pass

Beginning of
checkpoint operation

End of checkpoint
operation

Dirty page
table

Update
record

Transaction
table

Checkpoint
record

Update
record

Update
record

......

Redo pass

Beginning of
checkpoint operation

Oldest unwritten
log record

Dirty page
table

Update
record

Update
record

Transaction
table

Checkpoint
record

Update
record

...... ...

Chapter 12: File Systems 769
Undo Pass

After it completes the redo pass, NTFS begins its undo pass, in which it rolls back any transac-
tions that weren’t committed when the system failed. Figure 12-52 shows two transactions in
the log file; transaction 1 was committed before the power failure, but transaction 2 wasn’t.
NTFS must undo transaction 2.

Figure 12-52 Undo pass

Suppose that transaction 2 created a file, an operation that comprises three suboperations,
each with its own update record. The update records of a transaction are linked by backward
pointers in the log file because they are usually not contiguous.

The NTFS transaction table lists the LSN of the last-logged update record for each noncom-
mitted transaction. In this example, the transaction table identifies LSN 4049 as the last
update record logged for transaction 2. As shown from right to left in Figure 12-53, NTFS rolls
back transaction 2.

Figure 12-53 Undoing a transaction

After locating LSN 4049, NTFS finds the undo information and executes it, clearing bits 3
through 9 in its allocation bitmap. NTFS then follows the backward pointer to LSN 4048,
which directs it to remove the new filename from the appropriate filename index. Finally, it
follows the last backward pointer and deallocates the MFT file record reserved for the file, as
the update record with LSN 4046 specifies. Transaction 2 is now rolled back. If there are other

...
LSN
4044

LSN
4049

LSN
4045

LSN
4046

LSN
4047

LSN
4048

“Transaction committed” recordTransaction 1

Transaction 2

Undo pass

Power failure

... LSN
4044

LSN
4049

LSN
4045

LSN
4046

LSN
4047

LSN
4048

Transaction 1

Transaction 2

Redo: Allocate/initialize an MFT file record
Undo: Deallocate the file record

Redo: Add the filename to the index
Undo: Remove the filename from the index

Redo: Set bits 3–9 in the bitmap
Undo: Clear bits 3–9 in the bitmap

770 Microsoft Windows Internals, Fourth Edition
noncommitted transactions to undo, NTFS follows the same procedure to roll them back.
Because undoing transactions affects the volume’s file system structure, NTFS must log the
undo operations in the log file. After all, the power might fail again during the recovery, and
NTFS would have to redo its undo operations!

When the undo pass of the recovery is finished, the volume has been restored to a consistent
state. At this point, NTFS flushes the cache changes to disk to ensure that the volume is up to
date. NTFS then writes an “empty” LFS restart area to indicate that the volume is consistent
and that no recovery need be done if the system should fail again immediately. Recovery is
complete.

NTFS guarantees that recovery will return the volume to some preexisting consistent state,
but not necessarily to the state that existed just before the system crash. NTFS can’t make that
guarantee because, for performance, it uses a “lazy commit” algorithm, which means that the
log file isn’t immediately flushed to disk each time a “transaction committed” record is writ-
ten. Instead, numerous “transaction committed” records are batched and written together,
either when the cache manager calls the LFS to flush the log file to disk or when the LFS
writes a checkpoint record (once every 5 seconds) to the log file. Another reason the recov-
ered volume might not be completely up to date is that several parallel transactions might be
active when the system crashes and some of their “transaction committed” records might
make it to disk whereas others might not. The consistent volume that recovery produces
includes all the volume updates whose “transaction committed” records made it to disk and
none of the updates whose “transaction committed” records didn’t make it to disk.

NTFS uses the log file to recover a volume after the system fails, but it also takes advantage of
an important “freebie” it gets from logging transactions. File systems necessarily contain a lot
of code devoted to recovering from file system errors that occur during the course of normal
file I/O. Because NTFS logs each transaction that modifies the volume structure, it can use the
log file to recover when a file system error occurs and thus can greatly simplify its error han-
dling code. The “log file full” error described earlier is one example of using the log file for
error recovery.

Most I/O errors a program receives aren’t file system errors and therefore can’t be resolved
entirely by NTFS. When called to create a file, for example, NTFS might begin by creating a file
record in the MFT and then enter the new file’s name in a directory index. When it tries to
allocate space for the file in its bitmap, however, it could discover that the disk is full and the
create request can’t be completed. In such a case, NTFS uses the information in the log file to
undo the part of the operation it has already completed and to deallocate the data structures
it reserved for the file. Then it returns a “disk full” error to the caller, which in turn must
respond appropriately to the error.

Chapter 12: File Systems 771
NTFS Bad-Cluster Recovery

The volume managers included with Windows, FtDisk (for basic disks) and Logical Disk Man-
ager (LDM, for dynamic disks), can recover data from a bad sector on a fault-tolerant volume, but
if the hard disk doesn’t use the SCSI protocol or runs out of spare sectors, a volume manager can’t
perform sector sparing to replace the bad sector. (See Chapter 10 for more information on the vol-
ume managers.) When the file system reads from the sector, the volume manager instead recov-
ers the data and returns the warning to the file system that there is only one copy of the data.

The FAT file system doesn’t respond to this volume manager warning. Moreover, neither these
file systems nor the volume managers keep track of the bad sectors, so a user must run the
Chkdsk or Format utility to prevent a volume manager from repeatedly recovering data for the
file system. Both Chkdsk and Format are less than ideal for removing bad sectors from use.
Chkdsk can take a long time to find and remove bad sectors, and Format wipes all the data off
the partition it’s formatting.

In the file system equivalent of a volume manager’s sector sparing, NTFS dynamically replaces
the cluster containing a bad sector and keeps track of the bad cluster so that it won’t be
reused. (Recall that NTFS maintains portability by addressing logical clusters rather than
physical sectors.) NTFS performs these functions when the volume manager can’t perform
sector sparing. When a volume manager returns a bad-sector warning or when the hard disk
driver returns a bad-sector error, NTFS allocates a new cluster to replace the one containing
the bad sector. NTFS copies the data that the volume manager has recovered into the new
cluster to reestablish data redundancy.

Figure 12-54 shows an MFT record for a user file with a bad cluster in one of its data runs as
it exited before the cluster went bad. When it receives a bad-sector error, NTFS reassigns the
cluster containing the sector to its bad-cluster file. This prevents the bad cluster from being
allocated to another file. NTFS then allocates a new cluster for the file and changes the file’s
VCN-to-LCN mappings to point to the new cluster. This bad-cluster remapping (introduced
earlier in this chapter) is illustrated in Figure 12-55. Cluster number 1357, which contains the
bad sector, is replaced by a new cluster, number 1049.

772 Microsoft Windows Internals, Fourth Edition
Figure 12-54 MFT record for a user file with a bad cluster

Bad-sector errors are undesirable, but when they do occur, the combination of NTFS and vol-
ume managers provides the best possible solution. If the bad sector is on a redundant volume,
the volume manager recovers the data and replaces the sector if it can. If it can’t replace the
sector, it returns a warning to NTFS and NTFS replaces the cluster containing the bad sector.

If the volume isn’t configured as a redundant volume, the data in the bad sector can’t be recov-
ered. When the volume is formatted as a FAT volume and the volume manager can’t recover
the data, reading from the bad sector yields indeterminate results. If some of the file system’s
control structures reside in the bad sector, an entire file or group of files (or potentially, the
whole disk) can be lost. At best, some data in the affected file (often, all the data in the file
beyond the bad sector) is lost. Moreover, the FAT file system is likely to reallocate the bad sec-
tor to the same or another file on the volume, causing the problem to resurface.

Like the other file systems, NTFS can’t recover data from a bad sector without help from a vol-
ume manager. However, NTFS greatly contains the damage a bad sector can cause. If NTFS
discovers the bad sector during a read operation, it remaps the cluster the sector is in, as
shown in Figure 12-55. If the volume isn’t configured as a redundant volume, NTFS returns a
“data read” error to the calling program. Although the data that was in that cluster is lost, the
rest of the file—and the file system—remains intact; the calling program can respond appropri-
ately to the data loss, and the bad cluster won’t be reused in future allocations. If NTFS dis-
covers the bad cluster on a write operation rather than a read, NTFS remaps the cluster before
writing and thus loses no data and generates no error.

Standard
information

0 1 2

1355 1356 1357

Filename Data

Bad

3 4 5

1588 1589 1590

VCN

User
file

LCN

1355

1588

3

3

0

3

Starting
VCN

Starting
LCN

Number of
clusters

Chapter 12: File Systems 773
Figure 12-55 Bad-cluster remapping

The same recovery procedures are followed if file system data is stored in a sector that goes
bad. If the bad sector is on a redundant volume, NTFS replaces the cluster dynamically, using
the data recovered by the volume manager. If the volume isn’t redundant, the data can’t be
recovered and NTFS sets a bit in the volume file that indicates corruption on the volume. The
NTFS Chkdsk utility checks this bit when the system is next rebooted, and if the bit is set,
Chkdsk executes, fixing the file system corruption by reconstructing the NTFS metadata.

In rare instances, file system corruption can occur even on a fault-tolerant disk configuration. A
double error can destroy both file system data and the means to reconstruct it. If the system
crashes while NTFS is writing the mirror copy of an MFT file record—of a filename index or of
the log file, for example—the mirror copy of such file system data might not be fully updated. If
the system were rebooted and a bad-sector error occurred on the primary disk at exactly the
same location as the incomplete write on the disk mirror, NTFS would be unable to recover the
correct data from the disk mirror. NTFS implements a special scheme for detecting such corrup-
tions in file system data. If it ever finds an inconsistency, it sets the corruption bit in the volume
file, which causes Chkdsk to reconstruct the NTFS metadata when the system is next rebooted.
Because file system corruption is rare on a fault-tolerant disk configuration, Chkdsk is seldom
needed. It is supplied as a safety precaution rather than as a first-line data recovery strategy.

Standard
information

0

1357

Filename Data

Bad

VCN

Bad-
cluster

file

LCN

1357 10

Starting
VCN

Starting
LCN

Number of
clusters

Standard
information

0 1 2

1355 1356 1049

Filename Data

3 4 5

1588 1589 1590

VCN

User
file

LCN

1355

1588

2

3

0

1049 1

1588 33

2

Starting
VCN

Starting
LCN

Number of
clusters

774 Microsoft Windows Internals, Fourth Edition
The use of Chkdsk on NTFS is vastly different from its use on the FAT file system. Before writ-
ing anything to disk, FAT sets the volume’s dirty bit and then resets the bit after the modifica-
tion is complete. If any I/O operation is in progress when the system crashes, the dirty bit is
left set and Chkdsk runs when the system is rebooted. On NTFS, Chkdsk runs only when
unexpected or unreadable file system data is found and NTFS can’t recover the data from a
redundant volume or from redundant file system structures on a single volume. (The system
boot sector is duplicated, as are the parts of the MFT required for booting the system and run-
ning the NTFS recovery procedure. This redundancy ensures that NTFS will always be able to
boot and recover itself.)

Table 12-6 summarizes what happens when a sector goes bad on a disk volume formatted for
one of the Windows-supported file systems according to various conditions we’ve described
in this section.

If the volume on which the bad sector appears is a fault-tolerant volume (a mirrored or RAID-
5 volume) and if the hard disk is one that supports sector sparing (and that hasn’t run out of
spare sectors), it doesn’t matter which file system you’re using (FAT or NTFS). The volume
manager replaces the bad sector without the need for user or file system intervention.

If a bad sector is located on a hard disk that doesn’t support sector sparing, the file system is
responsible for replacing (remapping) the bad sector or—in the case of NTFS—the cluster in

Table 12-6 Summary of NTFS Data Recovery Scenarios

Scenario
With a SCSI disk that has spare
sectors

With a non-SCSI disk or a disk with
no spare sectors*

* In neither of these cases can a volume manager perform sector sparing: (1) hard disks that don’t use the SCSI
protocol have no standard interface for providing sector sparing; (2) some hard disks don’t provide hardware
support for sector sparing, and SCSI hard disks that do provide sector sparing can eventually run out of spare
sectors if a lot of sectors go bad.

Fault tolerant
volume†

† A fault-tolerant volume is one of the following: a mirror set or a RAID-5 set.

1. Volume manager recovers the
data.

2. Volume manager performs
sector sparing (replaces the bad
sector).

3. File system remains unaware of
the error.

1. Volume manager recovers the
data.

2. Volume manager sends the data
and a bad-sector error to the file
system.

3. NTFS performs cluster remapping.

Non-fault-tolerant
volume

1. Volume manager can’t recover
the data.

2. Volume manager sends a
bad-sector error to the file system.

3. NTFS performs cluster
remapping. Data is lost‡.

‡ In a write operation, no data is lost: NTFS remaps the cluster before the write.

1. Volume manager can’t recover the
data.

2. Volume manager sends a
bad-sector error to the file system.

3. NTFS performs cluster remapping.
Data is lost.‡

Chapter 12: File Systems 775
which the bad sector resides. The FAT file system doesn’t provide sector or cluster remapping.
The benefits of NTFS cluster remapping are that bad spots in a file can be fixed without harm
to the file (or harm to the file system, as the case may be) and that the bad cluster won’t be
reallocated to the same or another file.

Encrypting File System Security
EFS security relies on cryptography support. The first time a file is encrypted, EFS assigns the
account of the user performing the encryption a private/public key pair for use in file encryp-
tion. Users can encrypt files via Windows Explorer by opening a file’s Properties dialog box,
pressing Advanced, and selecting the Encrypt Contents To Secure Data option, as shown in
Figure 12-56. Users can also encrypt files via a command-line utility named cipher. Windows
automatically encrypts files that reside in directories that are designated as encrypted directo-
ries. When a file is encrypted, EFS generates a random number for the file that EFS calls the
file’s file encryption key (FEK). EFS uses the FEK to encrypt the file’s contents with a stronger
variant of the Data Encryption Standard (DES) algorithm—DESX on Windows 2000 and
DESX, Triple-DES (3DES) or Advanced Encryption Standard (AES) on Windows XP (Service
Pack 1 and later) and Windows Server 2003. EFS stores the file’s FEK with the file but
encrypts the FEK with the user’s EFS public key by using the RSA public key–based encryp-
tion algorithm. After EFS completes these steps, the file is secure: other users can’t decrypt the
data without the file’s decrypted FEK, and they can’t decrypt the FEK without the private key.

EFS FEK Key Strength
The default FEK encryption algorithm on Windows 2000 and Windows XP is DESX,
and on Windows XP with Service Pack 1 and higher and Windows Server 2003 it is AES.
On Windows versions approved for export outside the United States, the EFS driver
implements a 56-bit key DESX encryption. For the U.S.-only version of Windows and
export versions with the 128-bit encryption pack, the key is 128 bits long. The Windows
AES algorithm uses 256-bit keys. Use of 3DES allows access to larger sized keys, so if
you require greater key strength you can enable 3DES encryption in one of two ways:
either as the algorithm for all system cryptographic services or just for EFS.

To have 3DES be the encryption algorithm for all system cryptographic services, open
the Local Security Policy Editor by entering secpol.msc in the Run dialog box from the
Start menu and open the Security Options node under Local Policies. View the proper-
ties of System Cryptography: Use FIPS Compliant Algorithms For Encryption, Hashing
And Signing, and enable it.

To enable 3DES for EFS only, create the DWORD value
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\EF
S\AlgorithmID, set it to 0x6603, and reboot.

776 Microsoft Windows Internals, Fourth Edition
Figure 12-56 Encrypt files by using the Advanced Attributes dialog box

EFS uses a private/public key algorithm to encrypt FEKs. To encrypt file data, EFS uses DESX,
AES, or 3DES because all are symmetric encryption algorithms, which means that they use the
same key to encrypt and decrypt data. Symmetric encryption algorithms are typically very
fast, which makes them suitable for encrypting large amounts of data, such as file data. How-
ever, symmetric encryption algorithms have a weakness: you can bypass their security if you
obtain the key. If multiple users want to share one encrypted file protected only by DESX,
AES, or 3DES, each user would require access to the file’s FEK. Leaving the FEK unencrypted
would obviously be a security problem, but encrypting the FEK once would require all the
users to share the same FEK decryption key—another potential security problem.

Keeping the FEK secure is a difficult problem, which EFS addresses with the public key–based
half of its encryption architecture. Encrypting a file’s FEK for individual users who access the
file lets multiple users share an encrypted file. EFS can encrypt a file’s FEK with each user’s
public key and can store each user’s encrypted FEK with the file. Anyone can access a user’s
public key, but no one can use a public key to decrypt the data that the public key encrypted.
The only way users can decrypt a file is with their private key, which the operating system
must access. A user’s private key decrypts the user’s encrypted copy of a file’s FEK. Public
key–based algorithms are usually slow, but EFS uses these algorithms only to encrypt FEKs.
Splitting key management between a publicly available key and a private key makes key man-
agement a little easier than symmetric encryption algorithms do and solves the dilemma of
keeping the FEK secure.

Windows stores a user’s private keys in their user profile directory (typically under \Docu-
ments and Settings) within the Application Data\Microsoft\Crypto\RSA subdirectory. To
protect private keys, Windows encrypts all files within the RSA folder with a random symmet-
ric key called the user’s master key. The master key is 64-bytes in length and is generated by a
strong random number generator. The master key is also stored in the user’s profile under the
Application Data\Microsoft\Protect directory and is 3DES-encrypted with a key that’s in part
based on the user’s password. When a user changes his or her password, master keys are auto-
matically unencrypted and re-encrypted using the new password.

Chapter 12: File Systems 777
Several components work together to make EFS work, as the diagram of EFS architecture in
Figure 12-57 shows. On Windows 2000, EFS is implemented as a device driver that runs in
kernel mode and is tightly connected with the NTFS file system driver, but on Windows XP
and Windows Server 2003 EFS support is merged into the NTFS driver. Whenever NTFS
encounters an encrypted file, NTFS executes EFS functions that the EFS kernel-mode code
registered with NTFS when the EFS kernel-mode code initialized. The EFS functions encrypt
and decrypt file data as applications access encrypted files. Although EFS stores an FEK with
a file’s data, users’ public keys encrypt the FEK. To encrypt or decrypt file data, EFS must
decrypt the file’s FEK with the aid of cryptography services that reside in user mode.

Figure 12-57 EFS architecture

The Local Security Authority Subsystem (LSASS - \Windows\System32\LSASS.exe) manages
logon sessions but also handles EFS key management chores. For example, when the EFS
driver needs to decrypt an FEK to decrypt file data a user wants to access, the EFS driver
sends a request to LSASS. EFS sends the request via a local procedure call (LPC). The KSecDD
(\Windows\System32\Drivers\Ksecdd.sys) device driver exports functions for other drivers
that need to send LPC messages to LSASS. The Local Security Authority Server (Lsasrv - \Win-
dows\System32\Lsasrv.dll) component of LSASS that listens for remote procedure call (RPC)
requests passes requests to decrypt an FEK to the appropriate EFS-related decryption func-
tion, which also resides in Lsasrv. Lsasrv uses functions in Microsoft CryptoAPI (also referred
to as CAPI) to decrypt the FEK, which the EFS driver sent to LSASS in encrypted form.

Cryptographic
service

providers

Microsoft Base
Cryptographic
Provider 1.0Lsasrv

EFS functions

Lsass

…

LPC

KSecDD EFS

EFS
callouts

Encrypted
file access

Kernel mode

User mode

Application

NTFS

778 Microsoft Windows Internals, Fourth Edition
CryptoAPI comprises cryptographic service provider (CSP) DLLs that make various cryptog-
raphy services (such as encryption/decryption and hashing) available to applications. The
CSP DLLs manage retrieval of user private and public keys, for example, so that Lsasrv doesn’t
need to concern itself with the details of how keys are protected or even with the details of the
encryption algorithms. EFS uses the RSA encryption algorithms provided by the Microsoft
Enhanced Cryptographic provider (\Windows\System32\Rsaenh.dll). After Lsasrv decrypts
an FEK, Lsasrv returns the FEK to the EFS driver via an LPC reply message. After EFS receives
the decrypted FEK, EFS can use DESX to decrypt the file data for NTFS. Let’s look at the
details of how EFS integrates with NTFS and how Lsasrv uses CryptoAPI to manage keys.

Encrypting a File for the First Time

The NTFS driver calls EFS functions when it encounters an encrypted file. A file’s attributes
record that the file is encrypted in the same way that a file records that it is compressed (dis-
cussed earlier in this chapter). NTFS and EFS have specific interfaces for converting a file from
nonencrypted to encrypted form, but user-mode components primarily drive the process. As
described earlier, Windows lets you encrypt a file in two ways: by using the cipher command-
line utility or by checking the Encrypt Contents To Secure Data check box in the Advanced
Attributes dialog box for a file in Windows Explorer. Both Windows Explorer and the cipher
command rely on the EncryptFile Windows API that the Advapi32.dll (Advanced Windows
APIs DLL) exports. Advapi32 loads another DLL, Feclient.dll (File Encryption Client DLL), to
obtain APIs that Advapi32 can use to invoke EFS interfaces in Lsasrv via LPCs.

When Lsasrv receives an RPC message from Feclient to encrypt a file, Lsasrv uses the Win-
dows impersonation facility to impersonate the user that ran the application (either cipher or
Windows Explorer) that is encrypting the file. (Impersonation is described in Chapter 8.)
This procedure lets Windows treat the file operations that Lsasrv performs as if the user who
wants to encrypt the file is performing them. Lsasrv usually runs in the System account. (The
System account is described in Chapter 8.) In fact, if it doesn’t impersonate the user, Lsasrv
usually won’t have permission to access the file in question.

Lsasrv next creates a log file in the volume’s System Volume Information directory into which
Lsasrv records the progress of the encryption process. The log file usually has the name
Efs0.log, but if other files are undergoing encryption, increasing numbers replace the 0 until
a unique log file name for the current encryption is created.

CryptoAPI relies on information that a user’s registry profile stores, so if the profile is not
already loaded, Lsasrv next uses the LoadUserProfile API function of Userenv.dll (User Envi-
ronment DLL) to load the profile into the registry of the user it is impersonating. Typically, the
user profile is already loaded because Winlogon loads a user’s profile when a user logs on.
However, if a user uses the Windows RunAs command to log on to a different account, when
the user tries to access encrypted files from that account, the account’s profile might not load.

Lsasrv then generates an FEK for the file by using the RSA encryption facilities of the
Microsoft Base Cryptographic Provider 1.0 CSP.

Chapter 12: File Systems 779
Constructing Key Rings

At this point, Lsasrv has an FEK and can construct EFS information to store with the file,
including an encrypted version of the FEK. Lsasrv reads the HKEY_ CURRENT_USER\Soft-
ware\Microsoft\Windows NT\CurrentVersion\EFS\CurrentKeys\CertificateHash value of
the user performing the encryption to obtain the user’s public key signature. (Note that this
key doesn’t appear in the registry until a file or folder is encrypted.) Lsasrv uses the signature
to access the user’s public key and encrypt FEKs.

Lsasrv can now construct the information that EFS stores with the file. EFS stores only one
block of information in an encrypted file, and that block contains an entry for each user shar-
ing the file. These entries are called key entries, and EFS stores them in the Data Decryption
Field (DDF) portion of the file’s EFS data. A collection of multiple key entries is called a key
ring because, as mentioned earlier, EFS lets multiple users share encrypted files.

Figure 12-58 shows a file’s EFS information format and key entry format. EFS stores enough
information in the first part of a key entry to precisely describe a user’s public key. This data
includes the user’s security ID (SID) (note that the SID is not guaranteed to be present), the
container name in which the key is stored, the cryptographic provider name, and the private/
public key pair certificate hash. Only the private/public key pair certificate hash is used by the
description process. The second part of the key entry contains an encrypted version of the
FEK. Lsasrv uses the CryptoAPI to encrypt the FEK with the RSA algorithm and the user’s
public key.

Figure 12-58 Format of EFS information and key entries

Next, Lsasrv creates another key ring that contains recovery key entries. EFS stores informa-
tion about recovery key entries in a file’s Data Recovery Field (DRF). The format of DRF
entries is identical to the format of DDF entries. The DRF’s purpose is to let designated
accounts, or Recovery Agents, decrypt a user’s file when administrative authority must have
access to the user’s data. For example, suppose a company employee forgot his or her logon
password. An administrator can reset the user’s password, but without Recovery Agents, no
one can recover the user’s encrypted data.

EFS information

Header

Data
decryption

field

Data
recovery

field

Version

Checksum

Number of DDF key entries

DDF key entry 1

DDF key entry 2

Number of DRF key entries

DRF key entry 1

Key entry

User SID
(S-1-5-21-...)

Container name
(ee341-2144-55ba...)

Provider name
(Microsoft Base Cryptographic Provider 1.0)

EFS certificate hash
(cb3e4e...)

Encrypted FEK
(03fe4f3c...)

780 Microsoft Windows Internals, Fourth Edition
Recovery Agents are defined with the Encrypted Data Recovery Agents security policy of the
local computer or domain. This policy is available from the Group Policy MMC snap-in, as
shown in Figure 12-59. When you use the Recovery Agent Wizard (by right-clicking on
Encrypted Data Recovery Agents and selecting Encrypted Recovery Agent from the New
option), you can add Recovery Agents and specify which private/public key pairs (designated
by their certificates) the Recovery Agents use for EFS recovery. Lsasrv interprets the recovery
policy when it initializes and when it receives notification that the recovery policy has
changed. EFS creates a DRF key entry for each Recovery Agent by using the cryptographic
provider registered for EFS recovery. The default Recovery Agent provider is the RSA encryp-
tion facility of Base Cryptographic Provider 1.0—the same provider Lsasrv uses for user keys.

Figure 12-59 Encrypted Data Recovery Agents group policy

In the final step in creating EFS information for a file, Lsasrv calculates a checksum for the
DDF and DRF by using the MD5 hash facility of Base Cryptographic Provider 1.0. Lsasrv
stores the checksum’s result in the EFS information header. EFS references this checksum
during decryption to ensure that the contents of a file’s EFS information haven’t become cor-
rupted or been tampered with.

Encrypting File Data

Figure 12-60 illustrates the flow of the encryption process. After Lsasrv constructs the neces-
sary information for a file a user wants to encrypt, it can begin encrypting the file. Lsasrv cre-
ates a backup file, Efs0.tmp, for the file undergoing encryption. (Lsasrv uses higher numbers
in the backup filename if other backup files exist.) Lsasrv creates the backup file in the direc-
tory that contains the file undergoing encryption. Lsasrv applies a restrictive security descrip-
tor to the backup file so that only the System account can access the file’s contents. Lsasrv
next initializes the log file that it created in the first phase of the encryption process. Finally,
Lsasrv records in the log file that the backup file has been created. Lsasrv encrypts the original
file only after the file is completely backed up.

Chapter 12: File Systems 781
Lsasrv next sends the EFS kernel-mode code, through NTFS, a command to add to the original
file the EFS information that it just created. On Windows 2000, NTFS receives this command,
but because NTFS doesn’t understand EFS commands, NTFS calls the EFS driver. The EFS ker-
nel-mode code takes the EFS information that Lsasrv sent and uses exported NTFS functions to
apply the information to the file. The exported NTFS functions let EFS add the $EFS attribute to
NTFS files. Execution returns to Lsasrv, which copies the contents of the file undergoing
encryption to the backup file. When the backup copy is complete, including backups of all alter-
nate data streams, Lsasrv records in the log file that the backup file is up to date. Lsasrv then
sends another command to NTFS to tell NTFS to encrypt the contents of the original file.

Figure 12-60 Flow of EFS

When NTFS receives the EFS command to encrypt the file, NTFS deletes the contents of the
original file and copies the backup data to the file. After NTFS copies each section of the file,
NTFS flushes the section’s data from the file system cache, which prompts the cache manager
to tell NTFS to write the file’s data to disk. Because the file is marked as encrypted, at this
point in the file-writing process, NTFS calls EFS to encrypt the data before NTFS writes the
data to disk. EFS uses the unencrypted FEK that NTFS passes it to perform DESX, AES, or
3DES encryption of the file as appropriate, one sector (512 bytes) at a time.

After EFS encrypts the file, Lsasrv records in the log file that the encryption was successful
and deletes the file’s backup copy. Finally, Lsasrv deletes the log file and returns control to the
application that requested the file’s encryption.

Application

Application writes data
to an encrypted file.

NTFS asks EFS
driver to encrypt

file contents
headed to disk.

EFS driver
NTFS file
system
driver

Cache
manager

User mode

Kernel mode
NTFS places data in
file system cache.

2

Cache manager lazy
writes data to disk via NTFS.

3
4

1

NTFS writes encrypted
file contents to disk.

5

VolumeVolumeVolume

782 Microsoft Windows Internals, Fourth Edition
Encryption Process Summary

The following list summarizes the steps EFS performs to encrypt a file:

1. The user profile is loaded if necessary.

2. A log file is created in the System Volume Information directory with the name Efsx.log,
where x is a unique number (for example, Efs0.log). As subsequent steps are performed,
records are written to the log so that the file can be recovered in case the system fails
during the encryption process.

3. Base Cryptographic Provider 1.0 generates a random 128-bit FEK for the file.

4. A user EFS private/public key pair is generated or obtained.
HKEY_CURRENT_USER\Software\Microsoft\Windows NT\CurrentVer-
sion\EFS\CurrentKeys\CertificateHash identifies the user’s key pair.

5. A DDF key ring is created for the file that has an entry for the user. The entry contains a
copy of the FEK that has been encrypted with the user’s EFS public key.

6. A DRF key ring is created for the file. It has an entry for each Recovery Agent on the sys-
tem, with each entry containing a copy of the FEK encrypted with the agent’s EFS public
key.

7. A backup file with a name in the form Efs0.tmp is created in the same directory as the
file to be encrypted

8. The DDF and DRF key rings are added to a header and augment the file as its EFS
attribute.

9. The backup file is marked as encrypted, and the original file is copied to the backup.

10. The original file’s contents are destroyed, and the backup is copied to the original. This
copy operation results in the data in the original file being encrypted because the file is
now marked as encrypted.

11. The backup file is deleted.

12. The log file is deleted.

13. The user profile is unloaded (if it was loaded in step 1).

If the system crashes during the encryption process, either the original file remains intact or
the backup file contains a consistent copy. When Lsasrv initializes after a system crash, it
looks for log files under the System Volume Information subdirectory on each NTFS volume
on the system. If Lsasrv finds one or more log files, it examines their contents and determines
how recovery should take place. Lsasrv deletes the log file and the corresponding backup file
if the original file wasn’t modified at the time of the crash; otherwise, Lsasrv copies the
backup file over the original, partially encrypted file and then deletes the log and backup.
After Lsasrv processes log files, the file system will be in a consistent state with respect to
encryption, with no loss of user data.

Chapter 12: File Systems 783
The Decryption Process

The decryption process begins when a user opens an encrypted file. NTFS examines the file’s
attributes when opening the file and then executes a callback function in the EFS driver. The
EFS driver reads the $EFS attribute associated with the encrypted file. To read the attribute,
the driver calls EFS support functions that NTFS exports for EFS’s use. NTFS completes the
necessary steps to open the file. The EFS driver ensures that the user opening the file has
access privileges to the file’s encrypted data (that is, that an encrypted FEK in either the DDF
or DRF key rings corresponds to a private/public key pair associated with the user). As EFS
performs this validation, EFS obtains the file’s decrypted FEK to use in subsequent data oper-
ations the user might perform on the file.

EFS can’t decrypt an FEK and relies on Lsasrv (which can use CryptoAPI) to perform FEK
decryption. EFS sends an LPC message by way of the Ksecdd.sys driver to Lsasrv that asks
Lsasrv to obtain the decrypted form of the encrypted FEK in the $EFS attribute data (the EFS
data) that corresponds to the user who is opening the file.

When Lsasrv receives the LPC message, Lsasrv executes the Userenv.dll (User Environment
DLL) LoadUserProfile API function to bring the user’s profile into the registry, if the profile
isn’t already loaded. Lsasrv proceeds through each key field in the EFS data, using the user’s
private key to try to decrypt each FEK. For each key, Lsasrv attempts to decrypt a DDF or DRF
key entry’s FEK. If the certificate hash in a key field doesn’t refer to a key the user owns, Lsasrv
moves on to the next key field. If Lsasrv can’t decrypt any DDF or DRF key field’s FEK, the
user can’t obtain the file’s FEK. Consequently, EFS denies access to the application opening
the file. However, if Lsasrv identifies a hash as corresponding to a key the user owns, it
decrypts the FEK with the user’s private key using CryptoAPI.

Because Lsasrv processes both DDF and DRF key rings when decrypting an FEK, it automat-
ically performs file recovery operations. If a Recovery Agent that isn’t registered to access an
encrypted file (that is, it doesn’t have a corresponding field in the DDF key ring) tries to
access a file, EFS will let the Recovery Agent gain access because the agent has access to a key
pair for a key field in the DRF key ring.

Decrypted FEK Caching

Traveling the path from the EFS driver to Lsasrv and back can take a relatively long time—in
the process of decrypting an FEK, CryptoAPI uses results in more than 2000 registry API calls
and 400 file system accesses on a typical system. The EFS driver, with the aid of NTFS, uses a
cache to try to avoid this expense.

784 Microsoft Windows Internals, Fourth Edition
Decrypting File Data

After an application opens an encrypted file, the application can read from and write to the
file. NTFS calls the EFS driver to decrypt file data as NTFS reads the data from the disk and
before NTFS places the data in the file system cache. Similarly, when an application writes
data to a file, the data remains in unencrypted form in the file system cache until the applica-
tion or the cache manager uses NTFS to flush the data back to disk. When an encrypted file’s
data writes back from the cache to the disk, NTFS calls the EFS driver to encrypt the data.

As stated earlier, the EFS driver performs encryption and decryption in 512-byte units. The
512-byte size is the most convenient for the driver because disk reads and writes occur in mul-
tiples of the 512-byte sector.

Backing Up Encrypted Files

An important aspect of any file encryption facility’s design is that file data is never available in
unencrypted form except to applications that access the file via the encryption facility. This
restriction particularly affects backup utilities, in which archival media store files. EFS
addresses this problem by providing a facility for backup utilities so that the utilities can back
up and restore files in their encrypted states. Thus, backup utilities don’t have to be able to
decrypt file data, nor do they need to decrypt file data in their backup procedures.

Backup utilities use the EFS API functions OpenEncryptedFileRaw, ReadEncryptedFileRaw,
WriteEncryptedFileRaw, and CloseEncryptedFileRaw in Windows to access a file’s encrypted
contents. The Advapi32.dll library provides these API functions, which all use LPCs to invoke
corresponding functions in Lsasrv. For example, after a backup utility opens a file for raw
access during a backup operation, the utility calls ReadEncryptedFileRaw to obtain the file
data. The Lsasrv function EfsReadFileRaw issues control commands (which the EFS session
key encrypts with DESX, AES, or 3DES) to the NTFS driver to read the file’s EFS attribute first
and then the encrypted contents.

EfsReadFileRaw might have to perform multiple read operations to read a large file. As EfsRead-
FileRaw reads each portion of such a file, Lsasrv sends an RPC message to Advapi32.dll that
executes a callback function that the backup program specified when it issued the ReadEn-
cryptedFileRaw API function. EfsReadFileRaw hands the encrypted data it just read to the call-
back function, which can write the data to the backup media. Backup utilities restore
encrypted files in a similar manner. The utilities call the WriteEncryptedFileRaw API function,
which invokes a callback function in the backup program to obtain the unencrypted data
from the backup media while Lsasrv’s EfsWriteFileRaw function is restoring the file’s contents.

Chapter 12: File Systems 785
EXPERIMENT: Viewing EFS Information
EFS has a handful of other API functions that applications can use to manipulate
encrypted files. For example, applications use the AddUsersToEncryptedFile API function
to give additional users access to an encrypted file and RemoveUsersFromEncryptedFile to
revoke users’ access to an encrypted file. Applications use the QueryUsersOnEncrypted-
File function to obtain information about a file’s associated DDF and DRF key fields.
QueryUsersOnEncryptedFile returns the SID, certificate hash value, and display informa-
tion that each DDF and DRF key field contains. The following output is from the EFS-
Dump utility, from www.sysinternals.com, when an encrypted file is specified as a
command-line argument:

C:\>efsdump test.txt

EFS Information Dumper v1.02

Copyright (C) 1999 Mark Russinovich

Systems Internals – http://www.sysinternals.com

test.txt:

DDF Entry:

DARYL\Mark:

CN=Mark,L=EFS,OU=EFS File Encryption Certificate

DRF Entry:

DARYL\Administrator

OU=EFS File Encryption Certificate, L=EFS, CN=Administrator

You can see that the file test.txt has one DDF entry for user Mark and one DRF entry for
Administrator, which is the only Recovery Agent currently registered on the system.

You can use the Nfi utility from the OEM Support Tools to see the presence of the $EFS
attribute in an encrypted file:

C:\>nfi test.txt

NTFS File Sector Information Utility.Copyright (C) Microsoft Corporation 1999. All rig

hts reserved.

\Temp\README.TXT $STANDARD_INFORMATION (resident) $FILE_NAME (resident) $DATA

(nonresident) logical sectors 2728124-2728135 (0x29a0bc-

0x29a0c7) Attribute Type 0x100 $EFS (nonresident) logical sectors 2156984-

2156987 (0x20e9b8-0x20e9bb)

Conclusion
Windows support a wide variety of file system formats accessible to both the local system and
remote clients. The file system filter driver architecture provides a clean way to extend and
augment file system access. And NTFS provides a reliable, secure, scalable file system format
for local file system storage. In the next chapter, we’ll look at networking on Windows.

Chapter 13

Networking

Microsoft Windows was designed with networking in mind, and it includes broad networking
support that is integrated with the I/O system and the Windows API. The four basic types of
networking software are services, APIs, protocols, and network adapter device drivers, and
each is layered on the next to form a network stack. Windows has well-defined interfaces for
each layer, so in addition to using the wide variety of APIs, protocols, and adapter device driv-
ers that ship with Windows, third parties can extend the operating system’s networking capa-
bilities by developing their own.

In this chapter, we take you from the top of the Windows networking stack to the bottom.
First, we present the mapping between the Windows networking software components and
the Open Systems Interconnection (OSI) reference model. Then we briefly describe the net-
working APIs available on Windows and explain how they are implemented. You’ll learn how
multiple redirector support and name resolution works and how protocol drivers are imple-
mented. After looking at the implementation of network adapter device drivers, we examine
binding, which is the glue that connects services, protocol stacks, and network adapters.

Windows Networking Architecture
The goal of network software is to take a request (usually an I/O request) from an application
on one machine, pass it to another machine, execute the request on the remote machine, and
return the results to the first machine. In the course of this process, the request must be trans-
formed several times along the way. A high-level request, such as “read x number of bytes from
file y on machine z,” requires software that can determine how to get to machine z and what
communication software that machine understands. Then the request must be altered for
transmission across a network—for example, divided into short packets of information. When
the request reaches the other side, it must be checked for completeness, decoded, and sent to
the correct operating system component for execution. Finally, the reply must be encoded for
sending back across the network.

The OSI Reference Model

To help different computer manufacturers standardize and integrate their networking soft-
ware, in 1983 the International Organization for Standardization (ISO) defined a software
787

788 Microsoft Windows Internals, Fourth Edition
model for sending messages between machines. The result is the Open Systems Interconnection
(OSI) reference model. The model defines seven layers of software, as shown in Figure 13-1.

Figure 13-1 OSI reference model

The OSI reference model is an idealized scheme that few systems implement precisely, but it’s
often used to frame discussions of networking principles. Each layer on one machine assumes
that it is “talking to” the same layer on the other machine. Both machines “speak” the same
language, or protocol, at the same level. In reality, however, a network transmission must pass
down each layer on the client machine, be transmitted across the network, and then pass up
the layers on the destination machine until it reaches a layer that can understand and imple-
ment the request.

The purpose of each layer in the OSI model is to provide services to higher layers and to
abstract how the services are implemented at lower layers. Detailing the purpose of each layer
is beyond the scope of this book, but here are some brief descriptions of the various layers:

■ Application layer Handles information transfer between two network applications,
including functions such as security checks, identification of the participating machines,
and initiation of the data exchange.

■ Presentation layer Handles data formatting, including issues such as whether lines end
in carriage return/line feed (CR/LF) or just carriage return (CR), whether data is to be
compressed or encrypted, and so forth.

■ Session layer Manages the connection between cooperating applications, including
high-level synchronization and monitoring of which application is “talking” and which
is “listening.”

■ Transport layer On the client, this layer divides messages into packets and assigns them
sequence numbers to ensure that they are all received in the proper order. On the desti-
nation, it assembles packets that have been received. It also shields the session layer
from the effects of changes in hardware.

■ Network layer Creates packet headers and handles routing, congestion control, and
internetworking. It is the highest layer that understands the network’s topology—that is,
the physical configuration of the machines in the network, any limitations in band-
width, and so on.

Application

Presentation

Session

Transport

Network

Data-link

Physical

7

6

5

4

3

2

1

Application

Presentation

Session

Transport

Network

Data-link

Physical

7

6

5

4

3

2

1

Virtual communication

Transmission medium

Chapter 13: Networking 789
■ Data-link layer Transmits low-level data frames, waits for acknowledgment that they
were received, and retransmits frames that were lost over unreliable lines.

■ Physical layer Passes bits to the network cable or other physical transmission medium.

The dashed lines in Figure 13-1 represent protocols used in transmitting a request to a remote
machine. As stated earlier, each layer of the hierarchy assumes that it is speaking to the same
layer on another machine and uses a common protocol. The collection of protocols through
which a request passes on its way down and back up the layers of the network is called a pro-
tocol stack.

Windows Networking Components

Figure 13-2 provides an overview of the components of Windows networking, showing how
each component fits into the OSI reference model and which protocols are used between lay-
ers. The mapping between OSI layers and networking components isn’t precise, which is the
reason that some components cross layers. The various components include the following:

■ Networking APIs provide a protocol-independent way for applications to communicate
across a network. Networking APIs can be implemented in user mode or in both user
mode and kernel mode, and in some cases are wrappers around another networking
API that implements a specific programming model or provides additional services.
(Note that the term networking API also describes any programming interfaces provided
by networking-related software.)

■ Transport Driver Interface (TDI) clients are kernel-mode device drivers that usually imple-
ment the kernel-mode portion of a networking API’s implementation. TDI clients get
their name from the fact that the I/O request packets (IRPs) they send to protocol driv-
ers are formatted according to the Windows Transport Driver Interface standard (docu-
mented in the DDK). This standard specifies a common programming interface for
kernel-mode device drivers. (See Chapter 9 for more information about IRPs.)

■ TDI transports, also known as transports, Network Driver Interface Specification (NDIS)
protocol drivers, and protocol drivers, are kernel-mode protocol drivers. They accept IRPs
from TDI clients and process the requests these IRPs represent. This processing might
require network communications with a peer, prompting the TDI transport to add pro-
tocol-specific headers (such as TCP, UDP, or IP) to data passed in the IRP and to com-
municate with adapter drivers using NDIS functions (also documented in the DDK).
TDI transports generally facilitate application network communications by transpar-
ently performing message operations such as segmentation and reassembly, sequenc-
ing, acknowledgment, and retransmission.

■ The NDIS library (Ndis.sys) provides encapsulation for adapter drivers, hiding from
them specifics of the Windows kernel-mode environment. The NDIS library exports
functions for use by TDI transports as well as support functions for adapter drivers.

790 Microsoft Windows Internals, Fourth Edition
■ NDIS miniport drivers are kernel-mode drivers that are responsible for interfacing TDI
transports to particular network adapters. NDIS miniport drivers are written so that
they are wrapped by the Windows NDIS library. The encapsulation provides cross-plat-
form compatibility with Microsoft Consumer Windows. NDIS miniport drivers don’t
process IRPs; rather, they register a call-table interface to the NDIS library that contains
pointers to functions corresponding to ones that the NDIS library exports to TDI trans-
ports. NDIS miniport drivers communicate with network adapters by using NDIS
library functions that resolve to hardware abstraction layer (HAL) functions.

As the figure shows, the OSI layers don’t correspond to actual software. TDI transports, for
example, frequently cross several boundaries. In fact, the bottom four layers of software are
often referred to collectively as “the transport.” Software components residing in the upper
three layers are referred to as “users of the transport.”

Figure 13-2 OSI model and Windows networking components

Networking application

Networking API DLL

Networking API
driver—TDI client

Protocol driver—TDI transport
(TCP/IP, NetBEUI, IPX/SPX, ...)

NDIS library NDIS miniport

Ethernet, IrDA, ATM, ...

TD

NDIS

HAL
2

3

1

4

5

6

7

Chapter 13: Networking 791
In the remainder of this chapter, we’ll examine the networking components shown in Figure
13-2 (as well as others not shown in the figure), looking at how they fit together and how they
relate to Windows as a whole.

Networking APIs
Windows implements multiple networking APIs to provide support for legacy applications
and compatibility with industry standards. In this section, we’ll briefly look at the networking
APIs and describe how applications use them. It’s important to keep in mind that the decision
about which API an application uses depends on characteristics of the API, such as which pro-
tocols the API can layer over, whether the API supports reliable or bidirectional communica-
tion, and the API’s portability to other Windows platforms the application might run on. We’ll
discuss the following networking APIs:

■ Windows Sockets (Winsock)

■ Remote procedure call (RPC)

■ Web access APIs

■ Named pipes and mailslots

■ NetBIOS

■ Other networking APIs

Windows Sockets

The original Windows Sockets (Winsock) (version 1.0) was Microsoft’s implementation of
BSD (Berkeley Software Distribution) Sockets, a programming API that became the standard
by which UNIX systems have communicated over the Internet since the 1980s. Support for
sockets on Windows makes the task of porting UNIX networking applications to Windows
relatively straightforward. The modern versions of Winsock include most of the functionality
of BSD Sockets but also include Microsoft-specific enhancements, which continue to evolve.
Winsock supports reliable-connection-oriented communication as well as unreliable-connec-
tionless communication. Windows provides Winsock 2.2, which is also either included with
or available as an add-on for all current versions of Windows. Winsock 2.2 adds numerous
features beyond the BSD Sockets specification, such as adding functions that take advantage
of Windows asynchronous I/O that offer far better performance and scalability over straight
BSD Socket programming.

Winsock includes the following features:

■ Support for scatter-gather and asynchronous application I/O.

■ Quality of service (QoS) conventions so that applications can negotiate latency and
bandwidth requirements when the underlying network supports QoS.

792 Microsoft Windows Internals, Fourth Edition
■ Extensibility so that Winsock can be used with protocols other than those Windows
requires it to support.

■ Support for integrated namespaces other than those defined by a protocol an applica-
tion is using with Winsock. A server can publish its name in Active Directory, for exam-
ple, and using namespace extensions, a client can look up the server’s address in Active
Directory.

■ Support for multipoint messages where messages transmit from a single source to mul-
tiple receivers simultaneously.

We’ll examine typical Winsock operation and then describe ways that Winsock can be
extended.

Winsock Client Operation

The first step a Winsock application takes is to initialize the Winsock API with a call to an ini-
tialization function. On a Windows 2000 system, a Winsock application’s next step is to cre-
ate a socket that will represent a communications endpoint. The application obtains the
address of the server to which it wants to connect by calling gethostbyname. Winsock is a pro-
tocol-independent API, so an address can be specified for any protocol installed on the system
over which Winsock operates (TCP/IP, TCP/IP with IP version 6, IPX). After obtaining the
server address, a connection-oriented client attempts to connect to the server by using connect
and specifying the server address.

On Windows XP and Windows Server 2003, an application should use getaddrinfo to obtain
a server’s address instead of using gethostbyname. getaddrinfo returns the list of addresses
assigned to the server, and the client attempts to connect to each one in turn until it is able to
establish a connection with one of them. This ensures that a client that only supports IP ver-
sion 4 (IPv4), for instance, connects to the appropriate IPv4 address on a server that might
have both IPv4 and IP version 6 (IPv6) addresses assigned to it.

When a connection is established, the client can send and receive data over its socket using
recv and send, for example. A connectionless client specifies the remote address with connec-
tionless APIs, such as the connectionless equivalents of send and recv, and sendto and recvfrom.

Winsock Server Operation

The sequence of steps for a server application differs from that of a client. After initializing the
Winsock API, the server creates a socket and then binds it to a local address by using bind.
Again, the address type specified—whether TCP/IP, TCP/IP with IP version 6, or some other
address type—is up to the server application.

If the server is connection-oriented, it performs a listen operation on the socket, indicating the
number of connections that it can support for the socket. Then it performs an accept operation
to allow a client to connect to the socket. If there is a pending connection request, the accept

Chapter 13: Networking 793
call completes immediately; otherwise, it completes when a connection request arrives. When
a connection is made, the accept function returns a new socket that represents the server’s end
of the connection. The server can perform receive and send operations by using functions
such as recv and send. Figure 13-3 shows connection-oriented communication between a Win-
sock client and server.

Figure 13-3 Connection-oriented Winsock operation

After binding an address, a connectionless server is no different from a connectionless client:
it can send and receive data over the socket simply by specifying the remote address with each
operation. Most connectionless protocols are unreliable and in general will not know whether
the destination actually received the sent data packets, known as datagrams. Datagram proto-
cols are ideal for quick message passing, where the overhead of establishing a connection is
not too much and reliability is not required (although an application can build reliability on
top of the protocol).

Winsock Extensions

A powerful feature from a Windows programming point of view is that the Winsock API is
integrated with Windows messages. A Winsock application can take advantage of this feature
to perform asynchronous socket operations and receive notification of an operation’s comple-
tion via a standard Windows message or through the execution of a callback function. This
capability simplifies the design of a Windows application because the application doesn’t
need to be multithreaded or manage synchronization objects to both perform network I/O
and respond to user input or requests from the window manager to update the application
windows.

In addition to supporting functions that correspond directly to those implemented in BSD
Sockets, Microsoft has added a handful of functions that aren’t part of the Winsock standard.
Two of these functions, AcceptEx and TransmitFile, are worth describing because many Web
servers on Windows use them to achieve high performance. AcceptEx is a version of the accept
function that, in the process of establishing a connection with a client, returns the client’s
address and the client’s first message. AcceptEx allows the server application to prepost multi-
ple accept operations so that high volumes of incoming connection requests can be handled.
With this function, a Web server avoids executing multiple Winsock functions that would
otherwise be required.

Server
application

Client
application

listen

Listen socket

Server socket

Client socket

connect

send, recv
accept

794 Microsoft Windows Internals, Fourth Edition
After establishing a connection with a client, a Web server usually sends a file, such as a Web
page, to the client. The TransmitFile function’s implementation is integrated with the Win-
dows cache manager so that a client can send a file directly from the file system cache. Send-
ing data in this way is called zero-copy because the server doesn’t have to touch the file data to
send it; it simply specifies a handle to a file and the ranges of the file to send. In addition,
TransmitFile allows a server to prepend or append data to the file’s data so that the server can
send header information, which might include the name of the Web server and a field that
indicates to the client the size of the message the server is sending. Internet Information Ser-
vices (IIS), which is bundled with Windows, uses both AcceptEx and TransmitFile.

Windows XP and Windows Server 2003 add a handful of other, multifunction APIs, including
ConnectEx, DisconnectEx, and TransmitPackets. ConnectEx establishes a connection and sends
the first message on the connection. DisconnectEx closes a connection and allows the socket
handle representing the connection to be reused in a call to AcceptEx or ConnectEx. Finally,
TransmitPackets is similar to TransmitFile, except that it allows for the sending of in-memory
data in addition to or in lieu of file data.

Extending Winsock

Winsock is an extensible API on Windows because third parties can add a transport service pro-
vider that interfaces Winsock with other protocols or layers on top of existing protocols to
provide functionality such as proxying. Third parties can also add a namespace service provider
to augment Winsock’s name-resolution facilities. Service providers plug in to Winsock using
the Winsock service provider interface (SPI). When a transport service provider is registered
with Winsock, Winsock uses the transport service provider to implement socket functions,
such as connect and accept, for the address types that the provider indicates it implements.
There are no restrictions on how the transport service provider implements the functions, but
the implementation usually involves communicating with a transport driver in kernel mode.

A requirement of any Winsock client/server application is for the server to make its address
available to clients so that the clients can connect to the server. Standard services that execute
on the TCP/IP protocol use “well-known addresses” to make their addresses available. As long
as a browser knows the name of the computer a Web server is running on, it can connect to
the Web server by specifying the well-known Web server address (the IP address of the server
concatenated with :80, the port number used for HTTP). Namespace service providers make
it possible for servers to register their presence in other ways. For example, one namespace
service provider might on the server side register the server’s address in Active Directory, and
on the client side look up the server’s address in Active Directory. Namespace service provid-
ers supply this functionality to Winsock by implementing standard Winsock name-resolution
functions such as getaddrinfo (a replacement for gethostbyname) and getnameinfo.

Chapter 13: Networking 795
EXPERIMENT: Looking at Winsock Service Providers
The Windows Sockets Configuration utility (Sporder.exe) included with the Platform
SDK shows the registered Winsock transport and namespace providers and allows you
to change the order in which transport service providers are enumerated. For example,
if there are two TCP/IP transport service providers, the first one listed is the default pro-
vider for Winsock applications using the TCP/IP protocol. Here’s a screen shot from
Sporder showing the registered transport service providers:

Winsock Implementation

Winsock’s implementation is shown in Figure 13-4. Its application interface consists of an
API DLL, Ws2_32.dll (\Windows\System32\Ws2_32.dll), which provides applications
access to Winsock functions. Ws2_32.dll calls on the services of namespace and transport
service providers to carry out name and message operations. The Mswsock.dll library acts
as a transport service provider for the protocols Microsoft provides support for in Winsock,
and uses Winsock Helper libraries that are protocol specific to communicate with kernel-
mode protocol drivers. For example, Wshtcpip.dll is the TCP/IP helper. Mswsock.dll
(\Windows\System32\Mswsock.dll) implements the Microsoft Winsock extension func-
tions, such as TransmitFile, AcceptEx, and WSARecvEx. Windows ships with helper DLLs for
TCP/IP, TCP/IP with IPv6, AppleTalk, IPX/SPX, ATM, and IrDA (Infrared Data Association)
and namespace service providers for DNS (TCP/IP), Active Directory, and IPX/SPX.

796 Microsoft Windows Internals, Fourth Edition
Figure 13-4 Winsock implementation

Like the named pipe and mailslot APIs (described later in this chapter), Winsock integrates
with the Windows I/O model and uses file handles to represent sockets. This support
requires the aid of a kernel-mode file system driver, so Msafd.dll uses the services of the
Ancillary Function Driver (AFD - \Windows\System32\Drivers\Afd.sys) to implement
socket-based functions. AFD is a TDI client and executes network socket operations, such as
sending and receiving messages, by sending TDI IRPs to protocol drivers. AFD isn’t coded to
use particular protocol drivers; instead, Msafd.dll informs AFD of the name of the protocol
used for each socket so that AFD can open the device object representing the protocol.

Windows Sockets Direct

Windows Sockets Direct (WSD) is an interface that allows Winsock applications to take
advantage of System Area Networks (SANs), which are also known as Remote Direct Memory
Access (RDMA) fabric, without application modification. The high-performance characteris-
tics of SANs make them ideal for applications ranging from distributed computation to three-
tier e-commerce architectures like the one shown in Figure 13-5. In the system depicted, SANs
connect the front-end Web servers with business logic servers, and the business logic servers
with backend database servers to provide high-speed data movement through the data-pro-
cessing layers. WSD is available on Windows 2003 and Windows 2000 Data Center Server or
Windows 2000 Advanced Server with Service Pack (SP) 2 or higher.

NtReadFile, NtWriteFile,
NtCreateFile,
NtDeviceIoControlFile User mode

Kernel mode

Application Ws2_32.dll

TDI
TDI IRPs

Wshtcpip.dll, ...

Ntdll.dl

Service providers

SPI

\Device\AFD
AFD FSD

NetBEUI TCP/IPIPX/SPXProtocol drivers

Mswsock.dll, ...

Chapter 13: Networking 797
Figure 13-5 Use of a SAN in a three-tier e-commerce architecture

SAN Interconnect SANs usually achieve their high performance characteristics by relying
on specialized network interconnect and switching hardware. Common SAN interconnect
types include InfiniBand, Gigabit Ethernet, FiberChannel, and proprietary solutions. Physical
memory shared between two computers can also serve as a SAN interconnect.

SAN switching hardware implements a nonroutable protocol that provides TCP-like guarantees
such as reliable, in-order message delivery. They also support a SAN feature called Remote Direct
Memory Access (RDMA) that allows messages to be transmitted directly from the physical mem-
ory of a source computer to that of a destination computer without the intermediate memory
copy operation that normally takes place on the receive end of a message transmission. RDMA
thus frees both CPU and memory bus bandwidth that a copy operation consumes.

SAN implementations also permit applications to bypass kernel-mode components alto-
gether, sending and receiving data directly to or from user applications. This minimizes the
number of system calls applications make and further reduces time spent in operating system
networking code.

WSD Architecture Most SAN implementations require application changes for the applica-
tions to interface with SAN network protocols and take advantage of SAN hardware-imple-
mented network protocols and SAN features such as RDMA, but WSD allows any Winsock-
based application that uses the TCP protocol to take advantage of SANs without modification.
WSD gets its name from the fact that it gives applications direct access to SAN hardware, bypass-
ing the TCP/IP stack. This shortcut to the network hardware gives applications a performance
improvement of 2 to 2.5.

Data Center

Internet traffic via
standard WAN

Web tier front-end
(Web servers) Business logic

Database
backend

High speed SAN fabric

798 Microsoft Windows Internals, Fourth Edition
WSD achieves its shortcut to SAN hardware by using a software switch beneath the Winsock
DLL, as shown in Figure 13-6. The switch routes SAN network activity to a vendor-supplied
SAN Winsock service provider (WSP). The WSP acts as the user-mode equivalent of an NDIS
driver, with the capability to map SAN hardware registers into user-mode memory and then
manipulate the hardware without going through kernel-mode components. Some network
activity does require the aid of a kernel-mode component (for instance, to map hardware into
user-mode memory), which is also provided by the SAN vendor. Finally, the SAN vendor sup-
plies a NDIS miniport driver to interface the TCP/IP stack to SAN hardware for applications
that use Winsock networking features not supported natively by the SAN.

Figure 13-6 Traditional Winsock model vs. WSD model

Remote Procedure Call

Remote procedure call (RPC) is a network programming standard originally developed in the
early 1980s. The Open Software Foundation (now The Open Group) made RPC part of the
distributed computing environment (DCE) distributed computing standard. Although there
is a second RPC standard, SunRPC, the Microsoft RPC implementation is compatible with the
OSF/DCE standard. RPC builds on other networking APIs, such as named pipes or Winsock,
to provide an alternate programming model that in some sense hides the details of network-
ing programming from an application developer.

Socket app

Traditional model

WinSock

TCP/IP WinSock
provider

NDIS miniport

NIC

TCP/IP
transport driver

NDIS

User mode

Kernel mode

WinSock

SPI

WinSock

WSD model

WinSock switch

TCP/IP WinSock
provider

SAN NDIS
miniport

SAN hardware

TCP/IP
transport driver

Socket app

SAN WinSock
provider

SAN
proxy
driver

Private
interface

Chapter 13: Networking 799
RPC Operation

An RPC facility is one that allows a programmer to create an application consisting of any
number of procedures, some that execute locally and others that execute on remote comput-
ers via a network. It provides a procedural view of networked operations rather than a trans-
port-centered view, thus simplifying the development of distributed applications.

Networking software is traditionally structured around an I/O model of processing. In Win-
dows, for example, a network operation is initiated when an application issues a remote I/O
request. The operating system processes it accordingly by forwarding it to a redirector, which
acts as a remote file system by making the client interaction with the remote file system invis-
ible to the client. The redirector passes the operation to the remote file system, and after the
remote system fills the request and returns the results, the local network card interrupts. The
kernel handles the interrupt, and the original I/O operation completes, returning results to
the caller.

RPC takes a different approach altogether. RPC applications are like other structured applica-
tions, with a main program that calls procedures or procedure libraries to perform specific
tasks. The difference between RPC applications and regular applications, however, is that
some of the procedure libraries in an RPC application execute on remote computers, as
shown in Figure 13-7, whereas others execute locally.

Figure 13-7 RPC operation

To the RPC application, all the procedures appear to execute locally. In other words, instead of
making a programmer actively write code to transmit computational or I/O-related requests
across a network, handle network protocols, deal with network errors, wait for results, and so
forth, RPC software handles these tasks automatically. And the Windows RPC facility can
operate over any available transports loaded into the system.

To write an RPC application, the programmer decides which procedures will execute locally
and which will execute remotely. For example, suppose an ordinary workstation has a net-
work connection to a Cray supercomputer or to a machine designed specifically for high-
speed vector operations. If the programmer were writing an application that manipulated

RPC client application

ServerFunction()

RPC stub libraryRPC stub library

RPC server application

ServerFunction() {

}

Network

...

800 Microsoft Windows Internals, Fourth Edition
large matrices, it would make sense from a performance point of view to offload the mathe-
matical calculations to the remote computer by writing the program as an RPC application.

RPC applications work like this: As an application runs, it calls local procedures as well as pro-
cedures that aren’t present on the local machine. To handle the latter case, the application is
linked to a local static-link library or DLL that contains stub procedures, one for each remote
procedure. For simple applications, the stub procedures are statically linked with the applica-
tion, but for bigger components the stubs are included in separate DLLs. In DCOM, covered
later in the chapter, the latter method is typically used. The stub procedures have the same
name and use the same interface as the remote procedures, but instead of performing the
required operations, the stub takes the parameters passed to it and marshals them for trans-
mission across the network. Marshaling parameters means ordering and packaging them in a
particular way to suit a network link, such as resolving references and picking up a copy of any
data structures that a pointer refers to.

The stub then calls RPC run-time procedures that locate the computer where the remote pro-
cedure resides, determine which transport mechanisms that computer uses, and send the
request to it using local transport software. When the remote server receives the RPC request,
it unmarshals the parameters (the reverse of marshaling them), reconstructs the original pro-
cedure call, and calls the procedure. When the server finishes, it performs the reverse
sequence to return results to the caller.

In addition to the synchronous function-call-based interface described here, Windows RPC
also supports asynchronous RPC. Asynchronous RPC lets an RPC application execute a func-
tion but not wait until the function completes to continue processing. Instead, the application
can execute other code and later, when a response has arrived from the server, the RPC run
time notifies the client that the operation has completed. The RPC run time uses the notifica-
tion mechanism requested by the client. If the client uses an event synchronization object for
notification, it waits for the signaling of the event object by calling the WaitForSingleObject or
WaitForMultipleObject function. If the client provides an Asynchronous Procedure Call (APC),
the run time queues the execution of the APC to the thread that executed the RPC function. If
the client program uses I/O completion port as its notification mechanism, it must call Get-
QueuedCompletionStatus to learn of the function’s completion. Alternatively, a client can poll
for completion by calling RcpAsyncGetCallStatus.

In addition to the RPC run time, Microsoft’s RPC facility includes a compiler, called the
Microsoft Interface Definition Language (MIDL) compiler. The MIDL compiler simplifies the
creation of an RPC application. The programmer writes a series of ordinary function proto-
types (assuming a C or C++ application) that describe the remote routines and then places the
routines in a file. The programmer then adds some additional information to these proto-
types, such as a network-unique identifier for the package of routines and a version number,
plus attributes that specify whether the parameters are input, output, or both. The embel-
lished prototypes form the developer’s Interface Definition Language (IDL) file.

Chapter 13: Networking 801
Once the IDL file is created, the programmer compiles it with the MIDL compiler, which pro-
duces both client-side and server-side stub routines, mentioned previously, as well as header
files to be included in the application. When the client-side application is linked to the stub
routines file, all remote procedure references are resolved. The remote procedures are then
installed, using a similar process, on the server machine. A programmer who wants to call an
existing RPC application need only write the client side of the software and link the applica-
tion to the local RPC run-time facility.

The RPC run time uses a generic RPC transport provider interface to talk to a transport protocol.
The provider interface acts as a thin layer between the RPC facility and the transport, mapping
RPC operations onto the functions provided by the transport. The Windows RPC facility
implements transport provider DLLs for named pipes, NetBIOS, SPX, TCP/IP, and UDP. Win-
dows Server 2003 removes the NetBIOS transport provider and adds a provider for HTTP.. In
a similar fashion, the RPC facility is designed to work with different network security facilities.

Note In Windows 2000, you can write new provider DLLs to support additional transports,
but support for add-on provider DLLs was removed as of Windows XP.

Most of the Windows networking services are RPC applications, which means that both local
processes and processes on remote computers can call them. Thus, a remote client computer
can call the server service to list shares, open files, write to print queues, or activate users on
your server, or it can call the messenger service to direct messages to you (all subject to secu-
rity constraints, of course).

Server name publishing, which is the ability of a server to register its name in a location accessi-
ble for client lookup, is in RPC and is integrated with Active Directory. If Active Directory isn’t
installed, the RPC name locator services fall back on NetBIOS broadcast. This behavior
ensures interoperability with Windows NT 4 systems and allows RPC to function on stand-
alone servers and workstations.

RPC Security

Windows RPC includes integration with security support providers (SSPs) so that RPC clients
and servers can use authenticated or encrypted communications. When an RPC server wants
secure communication, it tells the RPC run time what authentication service to add to the list
of available authentication services. When a client wants to use secure communication, it binds
to the server. At that time, it must tell the RPC run time the authentication service and authen-
tication level it wants. Various authentication levels exist to ensure that only authorized clients
connect to a server, verify that each message a server receives originates at an authorized cli-
ent, check the integrity of RPC messages to detect manipulation, and even encrypt RPC mes-
sage data. Obviously, higher authentication levels require more processing. The client can also
optionally specify the server principal name. A principal is an entity that the RPC security sys-
tem recognizes. The server must register its SSP-specific principal name with an SSP.

802 Microsoft Windows Internals, Fourth Edition
An SSP handles the details of performing network communication authentication and encryp-
tion, not only for RPC but also for Winsock. Windows includes a number of built-in SSPs, includ-
ing a Kerberos SSP to implement Kerberos version 5 authentication, Secure Channel (SChannel),
which implements Secure Sockets Layer (SSL) and the Transport Layer Security (TLS) protocols.
In the absence of a specified SSP, RPC software uses the built-in security of the underlying trans-
port. Some transports, such as named pipes or Local RPC, have built-in security. Others, like TCP
do not, and in this case RPC makes insecure calls in the absence of a specified SSP.

Another feature of RPC security is the ability of a server to impersonate the security identity of
a client with the RpcImpersonateClient function. After a server has finished performing imper-
sonated operations on behalf of a client, it returns to its own security identity by calling RpcRe-
vertToSelf or RpcRevertToSelfEx. (See Chapter 8 for more information on impersonation.)

RPC Implementation

RPC implementation is depicted in Figure 13-8, which shows that an RPC-based application
links with the RPC run-time DLL (\Windows\System32\Rpcrt4.dll). The RPC run-time DLL
provides marshaling and unmarshaling functions for use by an application’s RPC function
stubs as well as functions for sending and receiving marshaled data. The RPC run-time DLL
includes support routines to handle RPC over a network as well as a form of RPC called local
RPC. Local RPC can be used for communication between two processes located on the same
system, and the RPC run-time DLL uses the local procedure call (LPC) facilities in kernel
mode as the local networking API. (See Chapter 3 for more information on LPCs.) When RPC
is based on nonlocal communication mechanisms, the RPC run-time DLL uses the Winsock,
named pipe, or Message Queuing (described shortly) APIs.

Note Message Queuing is not supported as a transport mechanism in Windows Server 2003.

Figure 13-8 RPC implementation

User mode

Kernel mode

Application

Active
Directory

Client
stubs

Rpcrt4.dll
Winsock Named pipes LPC

Svchost.exe Rpcss.dll

Ntdll.dll

Ws2_32.dll

Winsock service
providers

Named pipe FSD AFD FSD
Local procedure

call facility

Chapter 13: Networking 803
The RPC Subsystem (RPCSS - \Windows\System32\Rpcss.dll) is implemented as a Windows
service. RPCSS is itself an RPC application that communicates with instances of itself on other
systems to perform name lookup, registration, and dynamic endpoint mapping. (For clarity,
Figure 13-8 doesn’t show RPCSS linked with the RPC run-time DLL.)

Web Access APIs

To ease the development of Internet applications, Windows provides both client and server
Internet APIs. By using the APIs, applications can provide and use Gopher, FTP, and HTTP
services without knowledge of the intricacies of the corresponding protocols. The client APIs
include Windows Internet, also known as WinInet—which enables applications to interact
with the Gopher, FTP, and HTTP protocols—and WinHTTP, which enables applications to
interact with the HTTP protocol and is more suitable than WinInet in certain situations.
HTTP is a server-side API that was introduced in Windows Server 2003 to enable the develop-
ment of Web server applications.

WinInet

WinInet supports the Gopher, FTP, and HTTP 1.0 and 1.1 protocols. The APIs break down
into sub-API sets specific to each protocol. Using the FTP-related APIs—such as InternetCon-
nect to connect to an FTP server, FtpFindFirstFile and FtpFindNextFile to enumerate the con-
tents of an FTP directory, and FtpGetFile and FtpPutFile to receive and send files—an
application developer avoids the details of establishing a connection and formatting TCP/IP
messages to the FTP protocol. The Gopher-related and HTTP-related APIs provide similar lev-
els of abstraction with the HTTP APIs providing cookie persistence, automatic dialup services,
client-side file caching, and automatic credential dialog handling. WinInet is used by core
Windows components such as Explorer and Internet Explorer.

WinHTTP

The current version of the WinHTTP API, 5.1, is available on Windows 2000 with Service
Pack 3 installed, Windows XP, and Windows Server 2003. It provides an abstraction of the
HTTP/1.1 protocol for HTTP client applications similar to what the WinInet HTTP-related
APIs provide. However, whereas the WinInet HTTP APIs are intended for user-interactive cli-
ent-side applications, the WinHTTP API is designed for server applications that communicate
with HTTP servers. Server applications are often implemented as Windows services that do
not provide a user interface and so do not desire the dialog boxes that WinInet APIs display.
In addition, the WinHTTP APIs are more scalable and offer security functionality, such as
thread impersonation, not available from the WinInet API.

HTTP

Using the HTTP API, which Windows Server 2003 implements, server applications can regis-
ter to receive HTTP requests for particular URLs, receive HTTP requests, and send HTTP
responses. The HTTP API includes Secure Sockets Layer (SSL) support so that applications

804 Microsoft Windows Internals, Fourth Edition
can exchange data over secure HTTP connections. The API includes server-side caching capa-
bilities, synchronous and asynchronous I/O models, and both IPv4 and IPv6 addressing.
Internet Information Services (IIS) version 6, the version that ships with Windows Server
2003, uses the HTTP API.

The HTTP API, which applications access through the Httpapi.dll library, relies on the kernel-
mode Http.sys driver. Http.sys starts on demand the first time any application on the system
calls HttpInitialize. Applications use HttpCreateHttpHandle to create a private request queue
and specify the URLs that it wants to handle requests for with HttpAddUrl. Using the request
queues and their registered URLs, Http.sys allows more than one application to service HTTP
requests on a given port (port 80 for example), with each servicing HTTP requests to different
parts of the URL namespace.

HttpReceiveHttpRequest receives incoming requests directed at registered URLs, and
HttpSendHttpResponse sends HTTP responses. Both functions offer asynchronous operation
so that an application can use GetOverlappedResult or I/O completion ports to determine
when an operation is completed.

Applications can use Http.sys to cache data in nonpaged physical memory by calling
HttpAddToFragmentCache and associating a fragment name with the cached data. Http.sys
invokes the Memory Manager function MmAllocatePagesForMdl to allocate unmapped physi-
cal pages. When Http.sys requires a virtual address mapping for the physical memory
described by an entry in the cache, for instance when it copies data to the cache or sends data
from the cache, it uses MmMapLockedPagesSpecifyCache and then MmUnmapLockedPages after
it completes its access. Http.sys maintains cached data until an application invalidates it or an
optional application-specified timeout associated with the data expires. Http.sys also trims
cached data in a worker thread that wakes up when the low memory notification event is sig-
naled. (See Chapter 7 for information on the low memory notification event.) When an appli-
cation specifies one or more fragment names in a call to HttpSendHttpResponse, Http.sys
passes a pointer to the cached data in physical memory to the TCP/IP driver and avoids a copy
operation.

Named Pipes and Mailslots

Named pipes and mailslots are programming APIs that Microsoft originally developed for
OS/2 LAN Manager and then ported to Windows NT. Named pipes provide for reliable
bidirectional communications, whereas mailslots provide unreliable unidirectional data trans-
mission. An advantage of mailslots is that they support broadcast capability. In Windows,
both APIs take advantage of Windows security, which allows a server to control precisely
which clients can connect to it.

The names servers assign to named pipes and clients conform to the Windows Universal
Naming Convention (UNC), which is a protocol-independent way to identify resources on a
Windows network. The implementation of UNC names is described later in the chapter.

Chapter 13: Networking 805
Named Pipe Operation

Named pipe communication consists of a named pipe server and a named pipe client. A
named pipe server is an application that creates a named pipe to which clients can connect. A
named pipe’s name has the format \\Server\Pipe\PipeName. The Server component of the
name specifies the computer on which the named pipe server is executing. (A named pipe
server can’t create a named pipe on a remote system.) The name can be a DNS name (for
example, mspress.microsoft.com), a NetBIOS name (mspress), or an IP address (131.107.0.1).
The Pipe component of the name must be the string “Pipe”, and PipeName is the unique name
assigned to a named pipe. The unique portion of the named pipe’s name can include subdi-
rectories; an example of a named pipe name with a subdirectory is \\MyComputer\Pipe\
MyServerApp\ConnectionPipe.

A named pipe server uses the CreateNamedPipe Windows function to create a named pipe.
One of the function’s input parameters is a pointer to the named pipe name, in the
form\\.\Pipe\PipeName. The “\\.\” is a Windows-defined alias for “this computer.” Other
parameters the function accepts include an optional security descriptor that protects access to
the named pipe, a flag that specifies whether the pipe should be bidirectional or unidirec-
tional, a value indicating the maximum number of simultaneous connections the pipe sup-
ports, and a flag specifying whether the pipe should operate in byte mode or message mode.

Most networking APIs operate only in byte mode, which means that a message sent with one
send function might require the receiver to perform multiple receives, building up the com-
plete message from fragments. Named pipes operating in message mode simplify the imple-
mentation of a receiver because there is a one-to-one correspondence between sends and
receives. A receiver therefore obtains an entire message each time it completes a receive and
doesn’t have to concern itself with keeping track of message fragments.

The first call to CreateNamedPipe for a particular name creates the first instance of that name
and establishes the behavior of all named pipe instances having that name. A server creates
additional instances, up to the maximum specified in the first call, with additional calls to Cre-
ateNamedPipe. After creating at least one named pipe instance, a server executes the Connect-
NamedPipe Windows function, which enables the named pipe the server created to establish
connections with clients. ConnectNamedPipe can be executed synchronously or asynchro-
nously, and it doesn’t complete until a client establishes a connection with the instance (or an
error occurs).

A named pipe client uses the Windows CreateFile or CallNamedPipe function, specifying the
name of the pipe a server has created, to connect to a server. If the server has performed a Con-
nectNamedPipe call, the client’s security profile and the access it requests to the pipe (read,
write) are validated against the named pipe’s security descriptor. (See Chapter 8 for more
information on the security-check algorithms Windows uses.) If the client is granted access to
a named pipe, it receives a handle representing the client side of a named pipe connection and
the server’s call to ConnectNamedPipe completes.

806 Microsoft Windows Internals, Fourth Edition
After a named pipe connection is established, the client and server can use the ReadFile and
WriteFile Windows functions to read from and write to the pipe. Named pipes support both
synchronous and asynchronous operation for message transmittal. Figure 13-9 shows a server
and client communicating through a named pipe instance.

Figure 13-9 Named pipe communications

A unique characteristic of the named pipe networking API is that it allows a server to imper-
sonate a client by using the ImpersonateNamedPipeClient function. See the “Impersonation”
section in Chapter 8 for a discussion of how impersonation is used in client/server applica-
tions.

Mailslot Operation

Mailslots provide an unreliable unidirectional broadcast mechanism. One example of an
application that can use this type of communication is a time-synchronization service, which
might broadcast a source time across the domain every few seconds. Receiving the source-
time message isn’t crucial for every computer on the network and is therefore a good candi-
date for the use of mailslots.

Like named pipes, mailslots are integrated with the Windows API. A mailslot server creates a
mailslot by using the CreateMailslot function. CreateMailslot accepts a name of the form
“\\.\Mailslot\MailslotName” as an input parameter. Again, like named pipes, a mailslot server
can create mailslots only on the machine it’s executing on, and the name it assigns to a
mailslot can include subdirectories. CreateMailslot also takes a security descriptor that con-
trols client access to the mailslot. The handles returned by CreateMailslot are overlapped,
which means that operations performed on the handles, such as sending and receiving mes-
sages, are asynchronous.

Because mailslots are unidirectional and unreliable, CreateMailslot doesn’t take many of the
parameters that CreateNamedPipe does. After it creates a mailslot, a server simply listens for
incoming client messages by executing the ReadFile function on the handle representing the
mailslot.

Mailslot clients use a naming format similar to that used by named pipe clients but with vari-
ations that make it possible to broadcast messages to all the mailslots of a given name within
the client’s domain or a specified domain. To send a message to a particular instance of a
mailslot, the client calls CreateFile, specifying the computer-specific name. An example of such
a name is “\\Server\Mailslot\MailslotName”. (The client can specify “\\.\” to represent the
local computer.) If the client wants to obtain a handle representing all the mailslots of a given

Server
application

Client
application\\Server\Pipe\AppPipe

Named pipe
instances

Client named pipe
endpoint

Chapter 13: Networking 807
name on the domain it’s a member of, it specifies the name in the format “*\Mailslot\
MailslotName”, and if the client wants to broadcast to all the mailslots of a given name within a
different domain, the format it uses is “\\DomainName\Mailslot\MailslotName”.

After obtaining a handle representing the client side of a mailslot, the client sends messages by
calling WriteFile. Because of the way mailslots are implemented, only messages smaller than
425 bytes can be broadcast. If a message is larger than 425 bytes, the mailslot implementation
uses a reliable communications mechanism that requires a one-to-one client/server connec-
tion, which precludes broadcast capability. Also, a quirk of the mailslot implementation
causes any messages of 425 or 426 bytes to be truncated to 424 bytes. These limitations make
mailslots generally unsuitable for messages larger than 424 bytes. Figure 13-10 shows an
example of a client broadcasting to multiple mailslot servers within a domain.

Figure 13-10 Mailslot broadcast

Named Pipe and Mailslot Implementation

As evidence of their tight integration with Windows, named pipe and mailslot functions are
all implemented in the Kernel32.dll Windows client-side DLL. ReadFile and WriteFile, which
are the functions applications use to send and receive messages using named pipes and
mailslots, are the primary Windows I/O routines. The CreateFile function, which a client uses
to open either a named pipe or a mailslot, is also a standard Windows I/O routine. However,
the names specified by named pipe and mailslot applications specify file system namespaces
managed by the named pipe file system driver (\Windows\System32\Drivers\Npfs.sys) and
the mailslot file system driver (\Windows\System32\Drivers\Msfs.sys), as shown in Figure
13-11. The named pipe file system driver creates a device object named \Device\NamedPipe
and a symbolic link to that object named \Global??\Pipe (\??\Pipe on Windows 2000), and
the mailslot file system driver creates a device object named \Device\Mailslot and a symbolic
link named \Global??\Mailslot that points to that object. (See Chapter 3 for an explanation of
the \Global?? object manager directory.) Names passed to CreateFile of the form \\.\Pipe\…
and \\.\Mailslot\… have their prefix of \\.\ translated to \Global??\ so that the names resolve
through a symbolic link to a device object. The special functions CreateNamedPipe and Create-
Mailslot use the corresponding native functions NtCreateNamedPipeFile and NtCreateMailslotFile.

Server
application

Client
application

Client mailslot
endpointServer

application \\Server2\Mailslot\AppSlot

\\Server1\Mailslot\AppSlot

*\Mailslot\AppSlot

808 Microsoft Windows Internals, Fourth Edition
Figure 13-11 Named pipe and mailslot implementation

Later in the chapter, we’ll discuss how the redirector file system driver is involved when a
name that specifies a remote named pipe or mailslot resolves to a remote system. However,
when a named pipe or mailslot is created by a server or opened by a client, the appropriate file
system driver (FSD) on the machine where the named pipe or mailslot is located is eventually
invoked. There are several reasons why FSDs in kernel mode implement named pipes and
mailslots, the main one being that they integrate with the object manager namespace and can
use file objects to represent opened named pipes and mailslots. This integration results in sev-
eral benefits:

■ The FSDs use kernel-mode security functions to implement standard Windows security
for named pipes and mailslots.

■ Applications can use CreateFile to open a named pipe or mailslot because FSDs integrate
with the object manager namespace.

■ Applications can use Windows functions such as ReadFile and WriteFile to interact with
named pipes and mailslots.

■ The FSDs rely on the object manager to track handle and reference counts for file objects
representing named pipes and mailslots.

■ The FSDs can implement their own named pipe and mailslot namespaces, complete
with subdirectories.

Because named pipes and mailslot name resolution uses the redirector FSD to communicate
across the network, they indirectly rely on the Common Internet File System (CIFS) protocol.
CIFS works by using the TCP/IP, TCP/IP with IPv6, and IPX protocols, so applications run-
ning on systems that have at least one of these in common can use named pipes and mailslots.
For more information about CIFS, see Chapter 12.

NtReadFile, NtWriteFile,
NtCreateFile, NtCreateNamedPipeFile,
NtCreateMailslotFile

User mode

Kernel mode

Application

\Device\NamedPipe
Named pipe FSD

Kernel32.dll

Ntdll.dll

\Device\Mailslot
Mailslot FSD

Chapter 13: Networking 809
EXPERIMENT: Listing the Named Pipe Namespace and Watching
Named Pipe Activity
It’s not possible to use the Windows API to open the root of the named pipe FSD and
perform a directory listing, but you can do this by using native API services. The PipeList
tool from www.sysinternals.com shows you the names of the named pipes defined on a
computer as well as the number of instances that have been created for a name and the
maximum number of instances as defined by a server’s call to CreateNamedPipe. Here’s
an example of PipeList output:

C:\>pipelist

PipeList v1.01

by Mark Russinovich

http://www.sysinternals.com

Pipe Name Instances Max Instances

--------- --------- -------------

TerminalServer\AutoReconnect 1 1

InitShutdown 2 -1

lsass 4 -1

protected_storage 2 -1

ntsvcs 58 -1

scerpc 2 -1

net\NtControlPipe1 1 1

net\NtControlPipe2 1 1

ExtEventPipe_Service 1 30

net\NtControlPipe3 1 1

Winsock2\CatalogChangeListener-37c-0 1 1

net\NtControlPipe4 1 1

net\NtControlPipe0 1 1

DhcpClient 1 -1

ProfMapApi 2 -1

winlogonrpc 2 -1

net\NtControlPipe5 1 1

SfcApi 2 -1

net\NtControlPipe6 1 1

Winsock2\CatalogChangeListener-4c4-0 1 1

atsvc 2 -1

epmapper 2 -1

net\NtControlPipe7 1 1

spoolss 2 -1

wkssvc 3 -1

DAV RPC SERVICE 2 -1

net\NtControlPipe8 1 1

keysvc 2 -1

net\NtControlPipe9 1 1

810 Microsoft Windows Internals, Fourth Edition
PCHHangRepExecPipe 1 8

PCHFaultRepExecPipe 1 8

net\NtControlPipe10 1 1

000000ac.000 2 -1

Winsock2\CatalogChangeListener-ac-0 1 1

net\NtControlPipe11 1 1

net\NtControlPipe12 1 1

winreg 2 -1

SECLOGON 2 -1

srvsvc 3 -1

ipsec 2 -1

trkwks 2 -1

Winsock2\CatalogChangeListener-ac-1 1 1

net\NtControlPipe13 1 1

vmware-authdpipe 1 -1

W32TIME 2 -1

net\NtControlPipe14 1 1

net\NtControlPipe15 1 1

Winsock2\CatalogChangeListener-e8-0 1 1

INETINFO 2 -1

SMTPSVC 2 -1

browser 3 -1

net\NtControlPipe16 1 1

Ctx_WinStation_API_service 2 -1

ExtEventPipe_s0 1 30

ExtEventPipe_s0_poller 1 30

net\NtControlPipe17 1 1

interbas\server\gds_db 1 -1

ROUTER 8 -1

PIPE_EVENTROOT\CIMV2SCM EVENT PROVIDER 2 -1

net\NtControlPipe20 1 1

It’s clear from this output that several system components use named pipes as their com-
munications mechanism. For example, the InitShutdown pipe is created by Winlogon to
accept remote shutdown commands, and the SecLogon pipe is created by the SecLogon
service to perform logon operations on behalf of the Runas utility. You can determine
what process has each of these pipes open by using the object search facility in Process
Explorer from www.sysinternals.com. Note that a Max Instances value of -1 means that
there is no upper limit on the number of instances for the given name.

The Filemon file system filter driver from www.sysinternals.com (see Chapter 12 for more
information on Filemon) is able to attach to either the Npfs.sys or Msfs.sys file system
drivers and to therefore see all named pipe or mailslot activity occurring on a system.
Select the Named Pipes or Mail Slots menu entries from Filemon’s Drives menu to have
Filemon attach to the corresponding driver. The following screen shot shows Filemon
capturing the named pipe activity generated when the My Network Places icon on the
desktop was opened. Notice the messages transmitted through the LSASS and worksta-
tion service named pipes.

Chapter 13: Networking 811
NetBIOS

Until the 1990s, the Network Basic Input/Output System (NetBIOS) programming API had
been the most widely used programming API on PCs. NetBIOS allows for both reliable-con-
nection-oriented and unreliable-connectionless communication. Windows supports NetBIOS
for its legacy applications. Microsoft discourages application developers from using NetBIOS
because other APIs, such as named pipes and Winsock, are much more flexible and portable.
NetBIOS is supported by the TCP/IP and IPX/SPX protocols on Windows.

NetBIOS Names

NetBIOS relies on a naming convention whereby computers and network services are
assigned a 16-byte name called a NetBIOS name. The 16th byte of a NetBIOS name is treated
as a modifier that can specify a name as unique or as part of a group. Only one instance of a
unique NetBIOS name can be assigned to a network, but multiple applications can assign the
same group name. A client can broadcast messages by sending them to a group name.

To support interoperability with Windows NT 4 systems as well as Consumer Windows, Win-
dows automatically defines a NetBIOS name for a domain that is up to the first 15 bytes of the
left-most Domain Name System (DNS) name that an administrator assigns to the domain. For
example, if a domain were named mspress.microsoft.com, the NetBIOS name of the domain
would be mspress. Similarly, Windows requires an administrator to assign each computer a
NetBIOS name at the time of installation.

Another concept used by NetBIOS is that of LAN adapter (LANA) numbers. A LANA number is
assigned to every NetBIOS-compatible protocol that layers above a network adapter. For exam-
ple, if a computer has two network adapters and TCP/IP and NWLink can use either adapter,

812 Microsoft Windows Internals, Fourth Edition
there would be four LANA numbers. LANA numbers are important because a NetBIOS applica-
tion must explicitly assign its service name to each LANA through which it’s willing to accept cli-
ent connections. If the application listens for client connections on a particular name, clients can
access the name only via protocols on the network adapters for which the name is registered.

The “Windows Internet Name Service” section later in this chapter describes the resolution of
NetBIOS names to TCP/IP addresses.

NetBIOS Operation

A NetBIOS server application uses the NetBIOS API to enumerate the LANAs present on a sys-
tem and assign a NetBIOS name representing the application’s service to each LANA. If the
server is connection oriented, it performs a NetBIOS listen command to wait for client connec-
tion attempts. After a client is connected, the server executes NetBIOS functions to send and
receive data. Connectionless communication is similar, but the server simply reads messages
without establishing connections.

A connection-oriented client uses NetBIOS functions to establish a connection with a NetBIOS
server and then executes further NetBIOS functions to send and receive data. An established
NetBIOS connection is also known as a session. If the client wants to send connectionless mes-
sages, it simply specifies the NetBIOS name of the server with the send function.

NetBIOS consists of a number of functions, but they all route through the same interface: Net-
bios. This routing scheme is the result of a legacy left over from the time when NetBIOS was
implemented on MS-DOS as an MS-DOS interrupt service. A NetBIOS application would exe-
cute an MS-DOS interrupt and pass a data structure to the NetBIOS implementation that
specified every aspect of the command being executed. As a result, the Netbios function in
Windows takes a single parameter, which is a data structure that contains the parameters spe-
cific to the service the application requests.

EXPERIMENT: Using Nbtstat to See NetBIOS Names
You can use the Nbtstat command, which is included with Windows, to list the active
sessions on a system, the NetBIOS-to-TCP/IP name mappings cached on a computer,
and the NetBIOS names defined on a computer. Here’s an example of the Nbtstat com-
mand with the –n option, which lists the NetBIOS names defined on the computer:

C:\>nbtstat -n

Local Area Connection:

Node IpAddress: [10.1.23.147] Scope Id: [] NetBIOS Local Name Table

Name Type Status --

MARKLAP <00> UNIQUE Registered WORKGROUP <00> GROUP R

egistered MARKLAP <20> UNIQUE Registered WORKGROUP <1E> GRO

UP Registered WORKGROUP <1D> UNIQUE Registered ..__MSBROWSE__

.<01> GROUP Registered

Wireless Network Connection:

Node IpAddress: [0.0.0.0] Scope Id: [] No names in cache

Chapter 13: Networking 813
NetBIOS API Implementation

The components that implement the NetBIOS API are shown in Figure 13-12. The Netbios
function is exported to applications by \Windows\System32\Netapi32.dll. Netapi32.dll
opens a handle to the kernel-mode driver named the NetBIOS emulator (\Windows\System32\
Drivers\Netbios.sys) and issues Windows DeviceIoControl file commands on behalf of an appli-
cation. The NetBIOS emulator translates NetBIOS commands issued by an application into
TDI commands that it sends to protocol drivers.

Figure 13-12 NetBIOS API implementation

If an application wants to use NetBIOS over the TCP/IP protocol, the NetBIOS emulator
requires the presence of the NetBT driver (\Windows\System32\Drivers\Netbt.sys). NetBT
is known as the NetBIOS over TCP/IP driver and is responsible for supporting NetBIOS
semantics that are inherent to the NetBIOS Extended User Interface (NetBEUI) protocol
(included in previous versions of Windows), but not the TCP/IP protocol. For example, Net-
BIOS relies on NetBEUI’s message-mode transmission and NetBIOS name resolution facili-
ties, so the NetBT driver implements them on top of the TCP/IP protocol. Similarly, the
NwLinkNB driver implements NetBIOS semantics over the IPX/SPX protocol.

Other Networking APIs

Windows includes other networking APIs that are used less frequently or are layered on the
APIs already described (and outside the scope of this book). Four of these, however, Real-Time

User mode

Kernel mode

Application

\Device\Netbios
NetBIOS

emulation driver

Netapi32.dll
Netbios

Ntdll.dll

NtDeviceIoControlFile

TDI

\Device\Netbt_XXX
NetBT

NetBEUI TCP/IPIPX

TDI IRPs
\Device\Nwlinknb

NwLinkNB

814 Microsoft Windows Internals, Fourth Edition
Communications (RTC), Distributed Component Object Model (DCOM), Message Queuing,
and Universal Plug and Play (UPnP), are important enough to the operation of a Windows sys-
tem and many applications to merit brief descriptions.

Real-Time Communications (RTC)

The RTC Client API, available on Windows XP and Windows Server 2003, enables developers
to create applications to establish integrated multimodal communications. Applications can
be developed to enable the PC to become the center for home or business communications.
Audio and video calls as well as Instant Messaging (IM) and collaboration are all integrated
into one communications session on the PC. In addition to PC-PC sessions, the API can estab-
lish PC-phone calls, phone-phone calls, or text-only IM sessions. Application sharing and
whiteboard are also available on PC-PC sessions.

RTC supports presence information to allow clients to call contacts (or buddies) through a
registrar server that maintains current location information on contacts. A contact’s location
can be a PC or a telephone and, in the future, a cell phone, pager, or handheld device. For
example, if the application attempts to connect to a contact at his work location and the pres-
ence information indicates the contact is available on a PC at home, RTC will automatically
redirect the connection to that location. The RTC API also allows users to maintain privacy by
blocking specific callers from their presence information.

DCOM

Microsoft’s COM API lets applications consist of different components, each component
being a replaceable self-contained module. A COM object exports an object-oriented interface
to methods for manipulating the data within the object. Because COM objects present well-
defined interfaces, developers can implement new objects to extend existing interfaces and
dynamically update applications with the new support.

DCOM extends COM by letting an application’s components reside on different computers,
which means that applications don’t need to be concerned that one COM object might be on
the local computer and another might be across the LAN. DCOM thus provides location
transparency, which simplifies developing distributed applications. DCOM isn’t a self-con-
tained API but relies on RPC to carry out its work.

Message Queuing

Message Queuing is a general-purpose platform for developing distributed applications that
take advantage of loosely coupled messaging. Message Queuing is therefore an API and a mes-
saging infrastructure. Its flexibility comes from the fact that its queues serve as message repos-
itories in which senders can queue messages for receivers, and receivers can de-queue the
messages at their discretion. Senders and receivers do not need to establish connections to
use Message Queuing, nor do they even need to be executing at the same time, which allows
for disconnected asynchronous message exchange.

Chapter 13: Networking 815
A notable feature of Message Queuing is that it is integrated with Microsoft Transaction Server
(MTS) and SQL Server, so it can participate in Microsoft Distributed Transaction Coordinator
(MS DTC) coordinated transactions. Using MS DTC with Message Queuing allows you to
develop reliable transaction functionality to three-tier applications.

UPnP

Universal Plug and Play is an architecture for peer-to-peer network connectivity of intelligent
appliances, devices, and control points. It is designed to bring easy-to-use, flexible, standards-
based connectivity to ad-hoc, managed, or unmanaged networks, whether these networks are
in the home, in small businesses, or attached directly to the Internet. Universal Plug and Play
is a distributed, open networking architecture that uses existing TCP/IP and Web technolo-
gies to enable seamless proximity networking in addition to control and data transfer among
networked devices.

Universal Plug and Play supports zero-configuration, invisible networking, and automatic dis-
covery for a range of device categories from a wide range of vendors. This enables a device to
dynamically join a network, obtain an IP address, and convey its capabilities upon request.
Then other control points can use the Control Point API with UPnP technology to learn about
the presence and capabilities of other devices. A device can leave a network smoothly and
automatically when it is no longer in use.

Multiple Redirector Support
Applications can examine or access resources on remote systems in two ways. One way is by
using the UNC standard with Windows functions to directly address a remote resource; a sec-
ond way is by using the Windows Networking (WNet) API to enumerate computers and
resources that those computers export for sharing. Both these approaches use the capabilities
of a redirector to find their way to the network. (CIFS is described in Chapter 12.) As we stated
earlier, to access CIFS servers from a client, Microsoft supplies a CIFS redirector, which has a
kernel-mode component called the redirector FSD and a user-mode component called the
Workstation service. Microsoft also makes available a redirector that can access resources
shared by Novell NetWare servers, and third parties can add their own redirectors to Win-
dows. In this section, we’ll examine the software that decides which redirector to invoke when
remote I/O requests are issued. Here are the responsible components:

■ Multiple provider router (MPR) is a DLL (\Windows\System32\Mpr.dll) that determines
which network to access when an application uses the Windows WNet API for browsing
remote file systems.

■ Multiple UNC Provider (MUP) is a driver (\Windows\System32\Drivers\Mup.sys) that
determines which network to access when an application uses the Windows I/O API to
open remote files.

816 Microsoft Windows Internals, Fourth Edition
Multiple Provider Router

The Windows WNet functions allow applications (including the Windows Explorer My Net-
work Places) to connect to network resources, such as file servers and printers, and to browse
the contents of any type of remote file system. Because the WNet API can be called to work
across different networks using different transport protocols, software must be present to
send the request correctly over the network and to understand the results that the remote
server returns. Figure 13-13 shows the redirector software responsible for these tasks.

Figure 13-13 MPR components

A provider is software that establishes Windows as a client of a remote network server. Some of
the operations a WNet provider performs include making and breaking network connections,
printing remotely, and transferring data. The built-in WNet provider includes a DLL, the
Workstation service, and the redirector. Other network vendors need to supply only a DLL
and a redirector.

When an application calls a WNet routine, the call passes directly to the MPR DLL. MPR
takes the call and determines which WNet provider recognizes the resource being accessed.
Each provider DLL beneath MPR supplies a set of standard functions collectively called the
provider interface. This interface allows MPR to determine which network the application is try-
ing to access and to direct the request to the appropriate WNet provider software. The Worksta-
tion service’s provider is \Windows\System32\Ntlanman.dll, as directed by the ProviderPath
value under the HKLM\SYSTEM\CurrentControlSet\Services\lanmanworkstation\
NetworkProvider registry key.

User mode

Kernel mode

Application Mpr.dll
WNet API

Ntlanman.dll
Other redirector

provider

Workstation
service

RPC

Ntdll.dll

Other redirectorRedirector FSD

...

Chapter 13: Networking 817
When called by the WNetAddConnection API function to connect to a remote network resource,
MPR checks the HKLM\SYSTEM\CurrentControlSet\Control\NetworkProvider\HwOrder\
ProviderOrder registry value to determine which network providers are loaded. It polls them
one at a time in the order in which they’re listed in the registry until a redirector recognizes the
resource or until all available providers have been polled. You can change the ProviderOrder
by using the Advanced Settings dialog box, shown in Figure 13-14. (Only one provider is
installed on the system from which the screen shot was taken.) If you have Windows 2000 or
a Start menu configured in its Classic setting, this dialog box is accessible from the Advanced
menu of the Network Connections folder. You can access the Network Connections folder by
right-clicking the My Network Places icon on the desktop and selecting Properties from the
pop-up menu or by selecting it from the Settings option from the Start menu. Another way to
access the dialog box is to open Network Connections in the Control Panel, click the connec-
tion you want to view, and then click Advanced Settings on the Advanced menu.

Figure 13-14 The provider order editor

The WNetAddConnection function can also assign a drive letter or device name to a remote
resource. When called to do so, WNetAddConnection routes the call to the appropriate network
provider. The provider, in turn, creates a symbolic-link object in the object manager
namespace that maps the drive letter being defined to the redirector (that is, the remote FSD)
for that network.

Figure 13-15 shows the \?? directory on a Windows 2000 system (see Chapter 3 for informa-
tion on the \?? directory), where you can see several driver letters representing connections to
remote file shares. The figure shows that the redirector creates a device object named

818 Microsoft Windows Internals, Fourth Edition
\Device\LanmanRedirector and that the additional text included in the symbolic link’s value
indicates to the redirector which remote resource the drive letter corresponds to. When a user
opens X:\Book\Chap13.doc, the redirector is passed the unparsed portion of the path that
resolves through the symbolic link, which is “;X:0\dual\e\Book\Chap13.doc”. The redirector
notes that the resource being accessed is located on the E share of server dual.

Figure 13-15 Resolving a network resource name

Like the built-in redirector, other redirectors create a device object in the object manager
namespace when they are loaded into the system and initialized. Then, when the WNet or
other API calls the object manager to open a resource on a different network, the object man-
ager uses the device object as a jumping-off point into the remote file system. It calls an I/O
manager parse method associated with the device object to locate the redirector FSD that can
handle the request. (See Chapter 12 for more information on file system drivers.)

Multiple UNC Provider

The Multiple UNC Provider (MUP) is a networking component similar to MPR. It fields I/O
requests destined for a file or a device that has a UNC name (names beginning with the char-
acters \\, indicating that the resource exists on the network). MUP takes such requests and,
like MPR, determines which local redirector recognizes the remote resource. Unlike MPR,
MUP is a device driver (loaded at system boot time) that issues I/O requests to lower-layer
drivers, in this case to redirectors, as shown in Figure 13-16. Mup.sys also contains the Distrib-
uted File System (DFS is described later in this chapter) client implementation. The DFS cli-
ent is enabled by default and can be disabled by setting the HKEY_LOCAL_MACHINE\
System\CurrentControlSet\Services\Mup\DisableDfs DWORD registry value to 1.

When MUP loads during the boot it creates a device object named \Device\Mup. When a net-
work redirector, like CIFS, loads the redirector it creates a named device object (for example
\Device\LanmanRedirector) and registers itself with MUP as an UNC provider by calling the

Chapter 13: Networking 819
function FsRtlRegisterUncProvider. If the redirector is the first one to register and MUP’s DFS
client support is disabled then FsRtlRegisterUncProvider creates a symbolic link name
\??\UNC that points to the redirector’s device object; otherwise MUP sets up the symbolic
link name \Global??\UNC (\??\UNC on Windows 2000) to point to its own device object,
\Device\MUP.

Figure 13-16 Multiple UNC Provider (MUP)

The MUP driver is activated when an application first attempts to open a remote file or device
by specifying a UNC name (instead of a redirected drive letter, as described earlier). When the
Windows client-side DLL Kernel32.dll (which is the DLL that exports file-I/O-related APIs)
receives a file I/O request with UNC paths, the subsystem appends the UNC path to the
string \Global??\UNC and then calls the NtCreateFile system service to open the file.

If there is one registered network provider \Global??\UNC resolves to the device object rep-
resenting the driver and that driver handles the request. If there are multiple registered pro-
viders \Global??\UNC resolves to \Device\MUP and MUP must determine which provider
should process the request.

When the MUP driver receives an I/O request and the DFS client is enabled MUP first deter-
mines if the path references a DFS path (DFS paths are also UNC formatted) and, if so, pro-
cesses the I/O request itself. If the DFS client is disabled or the path is not a DFS path then MUP
uses the HKLM\SYSTEM\CurrentControlSet\Control\NetworkProvider\Order\Provider-
Order registry value to determine priority order of the network providers that registered with
it using FsRtlRegisterUncProvider. It polls them one at a time in the order in which they’re
listed in the value until one of them indicates that it recognizes the path or until all available
providers have been polled. MUP ignores those redirectors that are listed in the registry key

User mode

Kernel mode

Application Kernel32.dll
File I/O API

Ntdll.dll

TDI

Redirector
FSD

Other
redirector

Protocol driver
(TDI transport)

\Device\MUP
MUP

UNC mapping
cache

820 Microsoft Windows Internals, Fourth Edition
but not registered. When a redirector recognizes a path the redirector indicates how much of
the path is unique to it. For example, if the path is \\WIN2K3SERVER\PUBLIC\Windowsin-
ternals\Chap13.doc, the redirector might recognize it and claim the prefix
\\WIN2K3SERVER\PUBLIC as its own. The MUP driver caches this information and there-
after sends requests beginning with that prefix directly to the redirector, skipping the polling
operation. The MUP driver’s cache has a timeout feature, so after a period, a prefix’s associa-
tion with a particular redirector expires.

Name Resolution
Name Resolution is the process by a character-based name, such as Mycomputer or
www.microsoft.com, is translated into a numeric address, such as 192.168.1.1, that the proto-
col stack can recognize. This section describes the two TCP/IP-related name resolution proto-
cols provided by Windows, Domain Name System (DNS) and Windows Internet Name
Service (WINS).

Domain Name System

Domain Name System (DNS) is a standard by which Internet names (such as www.microsoft.com)
are translated to their corresponding IP addresses. A network application that wants to resolve a
DNS name to an IP address sends a DNS lookup request using the TCP/IP protocol to a DNS
server. DNS servers implement a distributed database of name/IP address pairs that are used
to perform translations, and each server maintains the translations for a particular zone.
Describing the details of DNS is outside the scope of this book, but DNS is the foundation of
naming in Windows and so it is the primary Windows name resolution protocol.

The Windows DNS server is implemented as a Windows service (\Windows\System32\
Dns.exe) that is included in server versions of Windows. Standard DNS server implementa-
tion relies on a text file as the translation database, but the Windows DNS server can be con-
figured to store zone information in Active Directory.

Windows Internet Name Service

A networking service called Windows Internet Name Service (WINS) maintains the mapping
between NetBIOS names and IP addresses used for NetBIOS-based TCP/IP applications. If
WINS isn’t installed, NetBIOS uses local broadcast messages for name operations on a subnet.
Note that NetBIOS names are secondary to DNS names for Windows Sockets applications;
computer names are registered and resolved first through DNS, with Windows falling back on
NetBIOS names only if DNS name resolution fails.

Chapter 13: Networking 821
Protocol Drivers
Networking API drivers must take API requests and translate them into low-level network pro-
tocol requests for transmission across the network. The API drivers rely on transport protocol
drivers in kernel mode to do the actual translation. Separating APIs from underlying protocols
gives the networking architecture the flexibility of letting each API use a number of different
protocols. The protocol drivers that Windows includes are TCP/IP, TCP/IP with IP version 6
(IPv6), NWLink, and the AppleTalk protocol. Here’s a brief description of each protocol:

■ The Internet’s explosive growth and reliance on the TCP/IP protocol has made TCP/IP
the preeminent protocol in Windows. The Defense Advanced Research Projects Agency
(DARPA) developed TCP/IP in 1969 specifically as the foundation for the Internet;
therefore, TCP/IP has WAN-friendly characteristics such as routability and good WAN
performance. TCP/IP is the preferred Windows protocol. It is installed by default and
cannot be removed.

■ The 4-byte network addresses used by the IPv4 protocol used by the standard TCP/IP
stack limits the number of public IP addresses to roughly 4 billion, which is a limit that
will be pressed as more and more devices, such as cell phones and PDAs, acquire an
Internet presence. For that reason, the IPv6 protocol, which has 16-byte addresses, is
gaining adoption. Windows XP (Service Pack 1 and later) and Windows Server 2003
include a TCP/IP stack, \Windows\System32\Drivers\Tcpip6.sys, that implements
IPv6. The Windows IPv6 stack also supports coexistence with IPv4 networks, through
the use of tunneling.

■ NWLink consists of Novell’s IPX and SPX protocols. Windows includes NWLink for
interoperability with Novell NetWare servers.

■ The AppleTalk protocol is used by Apple McIntosh networks, and Windows support for
the protocol allows Windows to interoperate with file and print services hosted on
AppleTalk-based networks.

TDI transports in Windows generally implement all the protocols associated with their primary
protocol. For example, the IPv4 TCP/IP driver (\Windows\System32\Drivers\Tcpip.sys)
implements TCP, UDP, IP, ARP, ICMP, and IGMP. A TDI transport generally creates device
objects that represent particular protocols so that clients can obtain a file object representing a
protocol and issue network I/O to the protocol by using IRPs. The TCP/IP driver creates
several device objects that represent various TDI-client accessible protocols: \Device\Tcp,
\Device\Udp, \Device\Ip, and on Windows XP and Windows Server 2003, \Device\Rawip
and \Device\Ipmulticast.

822 Microsoft Windows Internals, Fourth Edition
EXPERIMENT: Looking at TCP/IP’s Device Objects
Using the kernel debugger to look at a live system, you can examine TCP/IP’s device
objects. After performing the !drvobj command to see the addresses of each of the
driver’s device objects, execute !devobj to view the name and other details about the
device object.

lkd> !drvobj tcpip

Driver object (8a01ada0) is for:

\Driver\Tcpip

Driver Extension List: (id , addr)

Device Object list:

8a0dbc88 8a0dc958 8a0dcd80 8a0eff18

8a0f32a0

lkd> !devobj 8a0dbc88

Device object (8a0dbc88) is for:

RawIp \Driver\Tcpip DriverObject 8a01ada0

Current Irp 00000000 RefCount 3 Type 00000012 Flags 00000050

Dacl e100d19c DevExt 00000000 DevObjExt 8a0dbd40

ExtensionFlags (0000000000)

Device queue is not busy.

lkd> !devobj 8a0dc958

Device object (8a0dc958) is for:

Udp \Driver\Tcpip DriverObject 8a01ada0

Current Irp 00000000 RefCount 41 Type 00000012 Flags 00000050

Dacl e100d19c DevExt 00000000 DevObjExt 8a0dca10

ExtensionFlags (0000000000)

Device queue is not busy.

lkd> !devobj 8a0dcd80

Device object (8a0dcd80) is for:

Tcp \Driver\Tcpip DriverObject 8a01ada0

Current Irp 00000000 RefCount 302 Type 00000012 Flags 00000050

Dacl e1c3a1ac DevExt 00000000 DevObjExt 8a0dce38

ExtensionFlags (0000000000)

Device queue is not busy.

lkd> !devobj 8a0eff18

Device object (8a0eff18) is for:

IPMULTICAST \Driver\Tcpip DriverObject 8a01ada0

Current Irp 00000000 RefCount 0 Type 00000012 Flags 00000040

Dacl e100d19c DevExt 00000000 DevObjExt 8a0effd0

ExtensionFlags (0000000000)

Device queue is not busy.

lkd> !devobj 8a0f32a0

Device object (8a0f32a0) is for:

Ip \Driver\Tcpip DriverObject 8a01ada0

Current Irp 00000000 RefCount 48 Type 00000012 Flags 00000050

Dacl e1c3a1ac DevExt 00000000 DevObjExt 8a0f3358

ExtensionFlags (0000000000) Device queue is not busy.

Chapter 13: Networking 823
So that networking API drivers don’t need to employ various interfaces for each transport pro-
tocol they might want to use, Microsoft established the Transport Driver Interface (TDI) stan-
dard. As mentioned earlier in this chapter, a TDI interface is essentially a convention for the
way network requests format into IRPs and for the way network addresses and communica-
tions are allocated. Transport protocols that adhere to the TDI standard export the TDI inter-
face to their clients, which include networking API drivers such as AFD and the redirector. A
transport protocol implemented as a Windows device driver is known as a TDI transport.
Because TDI transports are device drivers, they format requests they receive from clients as IRPs.

Support functions in the \Windows\System32\Drivers\Tdi.sys library, along with defini-
tions developers include in their drivers, make up the TDI interface. The TDI programming
model is very similar to that of Winsock. A TDI client executes the following steps to establish
a connection with a remote server:

1. The client allocates and formats an address open TDI IRP to allocate an address. The TDI
transport returns a file object, which is known as an address object, that represents the
address. This step is the equivalent of using the bind Winsock function.

2. The client then allocates and formats a connection open TDI IRP, and the TDI transport
returns a file object, which is known as a connection object, that represents the connec-
tion. This step is the equivalent of the use of the Winsock socket function.

3. The client associates the connection object to the address object with an associate
address TDI IRP. (There’s no equivalent to this step in Winsock.)

4. A TDI client that accepts remote connections issues a listen TDI IRP specifying the num-
ber of connections supported for a connection object and then issues an accept TDI IRP,
which completes when a remote system establishes a connection (or an error occurs).
These operations are equivalent to the use of the Winsock listen and accept functions.

5. A TDI client that wants to establish a connection with a remote server issues a connect
TDI IRP, specifying the connection object, that the TDI transport completes when a con-
nection is established (or an error occurs). Issuing a connect TDI IRP is the equivalent of
using the connect Winsock function.

TDI also supports connectionless communications for connectionless protocols such as UDP.
In addition, TDI provides a means whereby a TDI client can register event callbacks (that is,
functions that are directly invoked) with TDI transports. When it receives data from across the
network, a TDI transport can invoke a registered client receive callback, for example. This
event-based callback feature of TDI allows the TDI transport to notify its clients of network
events, and clients that rely on event callbacks don’t need to preallocate resources such as
buffers when receiving network data because they can view the contents of the buffers sup-
plied by a TDI protocol driver.

824 Microsoft Windows Internals, Fourth Edition
EXPERIMENT: Watching TDI Activity
TDImon, a utility from www.sysinternals.com, is a form of filter driver that attaches to the
\Device\Tcp and \Device\Udp device objects that the TCP/IP driver creates. After
attaching, TDImon sees every IRP that TDI clients issue to these protocols. By intercept-
ing TDI client event callback registration, it also monitors event callbacks. The TDImon
driver sends information about the TDI activity for display in its GUI, where you can see
the time of an operation, the type of TDI activity that took place, the local and remote
addresses of a TCP connection or the local address of a UDP endpoint, the resulting sta-
tus code of the IRP or event callback, and additional information such as the number of
bytes sent or received. Here’s a screen shot of TDImon watching the TDI activity that is
generated when Microsoft Internet Explorer browses a Web page:

As evidence that TDI operations are inherently asynchronous, the PENDING codes in
the Result column indicate that an operation initiated but that the IRP defining the oper-
ation hasn’t yet completed. To accurately show the order of completions with respect to
the start of other operations, the issuing of each IRP or event callback is tagged with a
sequence number. If other IRPs are issued or completed before an IRP completes, the
IRP’s completion is also tagged with a sequence number that is shown in the Result col-
umn. For example, the IRP that was tagged with sequence number 1278 in the screen
shot completed after the one tagged with 1279 was issued, so you see 1280 in the Result
column for IRP 1278.

TCP/IP Extensions

Other Windows networking services extend basic networking features of the TCP/IP proto-
col driver by relying on add-on drivers that integrate with the TCP/IP protocol driver using
private interfaces. These include network address translation (NAT), IP filtering, IP

Chapter 13: Networking 825
hooking, and Internet Protocol security (IPSec). Figure 13-17 shows how these extensions
interface with the TCP/IP driver.

Figure 13-17 TCP/IP extension architecture

Network Address Translation

Network address translation (NAT) is a routing service that allows multiple private IP
addresses to map to a single public IP address. Without NAT, each computer of a LAN must
be assigned a public IP address to communicate across the Internet. NAT allows one com-
puter of the LAN to be assigned an IP address and the other computers to use private IP
address and be connected to the Internet through that computer. NAT translates between pri-
vate IP addresses and the public IP address as necessary, routing packets between LAN com-
puters and the Internet.

NAT components on Windows consist of a NAT device driver, \Windows\System32\Drivers\
Ipnat.sys, that interfaces with the TCP/IP stack as well as editors that can perform additional
packet processing beyond address and port translation. NAT can be installed as a routing proto-
col component with the Routing And Remote Access MMC snap-in or by configuring Internet
Connection Sharing (ICS) using the Network Connections folder (although NAT is much more
configurable when installed using the Routing And Remote Access MMC snap-in).

IP Filtering

Windows 2000, Windows XP, and Windows Server 2003 all include a very basic IP filtering
capability where a user can choose to allow only certain ports or IP protocols. While this capa-
bility can serve to protect a computer from unauthorized network accesses, its drawback is
that it is static and does not automatically create new filters for traffic initiated by applications
running on the computer.

TDI

ICF/ICS
service

LSASS

IPSEC policy
agent service

Packet filtering
management
application

IPNat

IPSec

TCP/IP

UDP TCP Raw

IPv4 IP filter Filter hook

NDIS

Network applications
Packet filtering API

IPSec
policy

NAT/Firewall
configuration

Firewall hook drivers

826 Microsoft Windows Internals, Fourth Edition
Windows XP introduces a personal firewall capability called Internet Connection Firewall
(ICF) that goes beyond the basic filtering just described. ICF implements a stateful firewall,
which is one that keeps track of traffic flow so that it distinguishes between TCP/IP traffic that
originates on the local LAN and unsolicited traffic that originates on the Internet. When ICF
is enabled on an interface, by default all unsolicited incoming traffic received by the computer
is discarded. A user or application can define exceptions so that services running on the com-
puter, such as file and printer sharing or a Web site, can be accessed from other computers.

The ICF/ICS service, which executes in a Svchost process, passes exception rules defined in
the ICF user interface to the IPNat driver. In kernel mode, ICF is implemented in the same
driver, \Windows\System32\Drivers\Ipnat.Sys, that implements Network Address Transla-
tion. The NAT driver registers with the TCP/IP driver as a firewall hook driver. The TCP/IP
driver executes the callback functions of each registered firewall hook as it processes both
inbound and outbound IP packets. A callback function can provide NAT functionality by
modifying source and destination addresses in a packet, or as a firewall by returning a status
code to TCP/IP that requests that TCP/IP drop the packet and cease processing for it.

Although Ipnat implements ICF using the TCP/IP firewall hook interface, Microsoft recom-
mends that third parties implement packet filtering as an NDIS Intermediate Driver
(described later in this chapter).

IP Filter and Filter Hook

Windows XP and Windows Server 2003 include a user-mode packet filtering API and an IP fil-
ter driver, \Windows\System32\Drivers\Ipfltrdrv.sys, that together allow applications to
manage packet flow into and out of a system. The IP filter driver also allows at most one driver
to register as a filter hook driver. In a manner similar to the way it interacts with firewall hook
drivers, TCP/IP executes a function that the IP filter driver specifies, which allows the IP filter
to drop or modify packets. The IP filter in turn invokes a callback specified by the filter hook
driver, propagating modifications or a request to drop the packet to the TCP/IP driver.

The filter hook functionality provided by the system allows third-parties to add translation,
firewall, logging, or other functionality to the system.

Internet Protocol Security

Internet Protocol security (IPSec), which is integrated with the Windows TCP/IP stack, helps
protect unicast IP data against attacks such as eavesdropping, sniffer attacks, data modifica-
tion, IP address spoofing, and man-in-the-middle attacks. You can use IPSec to provide
defense-in-depth against network-based attacks from untrusted computers, attacks which can
result in the denial-of-service of applications, services, or the network; data corruption, data
theft, user-credential theft; and the administrative control over servers, other computers, and
the network. IPSec helps defend against network-based attacks through cryptography-based
security services, security protocols, and dynamic key management.

Chapter 13: Networking 827
IPSec provides the following properties for unicast IP packets sent between trusted hosts:

■ Data origin authentication, which verifies the origin of an IP packet and ensures that
unauthenticated parties cannot access data.

■ Data integrity, which protects an IP packet from being modified in transit without being
detected.

■ Data confidentiality, which encrypts the payload of IP packets before transmission. Data
confidentiality ensures that only the IPSec peer with which a computer is communicat-
ing can read and interpret the contents of the packets.

■ Anti-replay (or replay protection), which ensures that each IP packet is unique and can’t
be reused. This property prevents an attacker from intercepting IP packets and inserting
modified packets into a data stream between a source computer and a destination com-
puter. When anti-replay is used, attackers cannot reply to captured messages to establish
a session or gain unauthorized access to data.

You can use IPSec to help defend against network-based attacks by configuring host-based IPSec
packet filtering and enforcing trusted communications. When you use IPSec for host-based
IPSec packet filtering, IPSec can permit or block specific types of unicast IP traffic based on
source and destination address combinations and specific protocols and specific ports. Because
IPSec is integrated at the IP layer (layer 3) of the TCP/IP stack and it is applied to all applica-
tions, you do not need to configure separate security for each application that uses TCP/IP.

In an Active Directory environment, Group Policy can be used to configure domains, sites, and
organizational units (OUs), and IPSec policies can then be assigned as required to Group Pol-
icy Objects (GPOs). Alternatively, you can configure and assign local IPSec policies. Active
Directory-based IPSec policies are stored in Active Directory, and a copy of the current policy
is maintained in a cache in the local Registry. Local IPSec policies are stored in the local sys-
tem registry.

To establish trusted communications, IPSec uses mutual authentication, and it supports the
following authentication methods: Kerberos version 5, a computer X.509 version 3 public key
certificate, or a preshared key.

The Windows implementation of IPSec is based on IPSec Requests for Comments (RFCs).
The Windows IPSec architecture includes the IPSec Policy Agent, the Internet Key Exchange
(IKE) protocol, and an IPSec driver:

■ IPSec Policy Agent The IPSec Policy Agent runs as a service in the Local Security Author-
ity Subsystem process. (See Chapter 8 for information on LSASS.) In the Services snap-in
in the Microsoft Management Console (MMC), the IPSec Policy Agent appears in the list of
computer services under the name IPSEC services. The IPSec Policy Agent obtains IPSec
policy from an Active Directory domain or the local registry, and then passes IP address fil-
ters to the IPSec driver and authentication and security settings to IKE.

828 Microsoft Windows Internals, Fourth Edition
■ IKE IKE waits for requests to negotiate security associations (SAs) from the IPSec
driver, negotiates the SAs, and then sends the SA settings back to the IPSec driver. SAs
are a combination of mutually agreeable IPSec policy settings and keys that defines the
security services, mechanisms, and keys that are used to help secure communications
between IPSec peers. Each SA is a one-way or simplex connection that secures the traffic
it carries. IKE negotiates main mode SAs and quick mode SAs when requested by the
IPSec driver. The IKE main mode (or ISAKMP) SA protects the IKE negotiation. The
quick mode (or IPSec) SAs protect application traffic.

■ IPSec driver The IPSec driver is a device driver (\Windows\System32\Driv-
ers\Ipsec.sys) that is bound to the TCP/IP driver and that processes packets that pass
through the TCP/IP driver. The IPSec driver monitors and secures outbound unicast IP
traffic, and it monitors, decrypts, and validates inbound unicast IP packets. The driver
receives filters from the IPSec Policy Agent, and then permits, blocks, or secures packets
as required. To secure traffic, the IPSec driver uses active SA settings, or it requests that
new SAs be created.

You can use the IP Security Policy Management snap-in that is available in MMC to create and
manage IPSec policy. This snap-in can be used to create, modify, and store local IPSec policies
or Active Directory–based IPSec policies, and to modify IPSec policy on remote computers. In
Windows XP and Windows Server 2003, after IPSec-secured communication is established,
you can monitor IPSec information for local computers and for remote computers by using
the IP Security Monitor snap-in that is available in MMC.

NDIS Drivers
When a protocol driver wants to read or write messages formatted in its protocol’s format
from or to the network, the driver must do so using a network adapter. Because expecting pro-
tocol drivers to understand the nuances of every network adapter on the market (proprietary
network adapters number in the thousands) isn’t feasible, network adapter vendors provide
device drivers that can take network messages and transmit them via the vendors’ proprietary
hardware. In 1989, Microsoft and 3Com jointly developed the Network Driver Interface Spec-
ification (NDIS), which lets protocol drivers communicate with network adapter drivers in a
device-independent manner. Network adapter drivers that conform to NDIS are called NDIS
drivers or NDIS miniport drivers. The version of NDIS that ships with Windows 2000 is NDIS
5, and the version that ships with Windows XP and Windows Server 2003 is NDIS 5.1.

The NDIS library (\Windows\System32\Drivers\Ndis.sys) implements the NDIS boundary
that exists between TDI transports (typically) and NDIS drivers. As is Tdi.sys, the NDIS
library is a helper library that NDIS driver clients use to format commands they send to NDIS
drivers. NDIS drivers interface with the library to receive requests and send back responses.
Figure 13-18 shows the relationship between various NDIS-related components.

Chapter 13: Networking 829
Figure 13-18 NDIS components

One of Microsoft’s goals for its network architecture was to let network adapter vendors easily
develop NDIS drivers and take driver code and move it between Consumer Windows and
Windows 2000. Thus, instead of merely providing the NDIS boundary helper routines, the
NDIS library provides NDIS drivers an entire execution environment. NDIS drivers aren’t
genuine Windows drivers because they can’t function without the encapsulation the NDIS
library gives them. This insulation layer wraps NDIS drivers so thoroughly that NDIS drivers
don’t accept and process IRPs. Rather, TDI protocol drivers call a function in the NDIS
library, NdisAllocatePacket, and pass the packets to an NDIS miniport by calling an NDIS
library function (NdisSend, for example). By default, NDIS drivers also don’t have to worry
about reentrancy, in which the NDIS library invokes an NDIS driver with a new request before
the driver has finished servicing a previous request. Exemption from reentrancy means that
NDIS driver writers don’t need to worry about complex synchronization, which is made even
more tricky because of the parallel execution possible on a multiprocessor.

Note The NDIS library uses NDIS packets to represent I/O requests instead of IRPs. TDI
transports allocate an NDIS packet by calling NdisAllocatePacket and then pass the packet to
an NDIS miniport by calling an NDIS library function (NdisSend, for example).

Although the NDIS library’s serialization of NDIS drivers simplifies development, serializa-
tion can hamper multiprocessor scalability. Standard NDIS 4 drivers (the Windows NT 4 ver-
sion of the NDIS library) don’t scale well for certain operations on multiprocessors. Microsoft
gave developers a deserialized operation option in NDIS 5. NDIS 5 drivers can indicate to the
NDIS library that they don’t want to be serialized; the NDIS library will then forward requests

TDI transport

NDIS

HAL

NDIS IRPs

NDIS 5 library

NDIS intermediate driver

NDIS miniport driver

NDIS protocol interface

NDIS miniport interface

NDIS protocol interface

NDIS miniport interface

830 Microsoft Windows Internals, Fourth Edition
to the driver as fast as it receives the IRPs that describe the requests. Responsibility for
queuing and managing multiple simultaneous requests falls on the NDIS driver, but deserial-
ization confers the benefit of higher multiprocessor performance.

NDIS 5 also includes the following features:

■ NDIS drivers can report whether or not their network medium is active, which allows
Windows to display a network connected/disconnected icon on the taskbar. This fea-
ture also allows protocols and other applications to be aware of this state and react
accordingly. The TCP/IP transport, for example, will use this information to determine
when it should reevaluate addressing information it receives from DHCP.

■ TCP/IP task offloading allows a miniport to use advanced features of a network adapter
to perform operations such as packet checksums and Internet Protocol security (IPSec).
This task offloading can improve system performance by relieving the CPU from these
operations.

■ Wake-on-LAN allows a wake-on-LAN-capable network adapter to bring Windows out of
a suspend power state. Events that can trigger the network adapter to signal the system
include media connections (such as plugging a network cable into the adapter), the
receipt of protocol-specific patterns registered by a protocol (the TCP/IP transport asks
to be woken for Address Resolution Protocol [ARP] requests), and, for Ethernet adapt-
ers, the receipt of a magic packet (a network packet that contains 16 contiguous copies
of the adapter’s Ethernet address).

■ Connection-oriented NDIS allows NDIS drivers to manage connection-oriented media
such as Asynchronous Transfer Mode (ATM) devices. (Connection-oriented NDIS is
described in more detail shortly.)

The interfaces that the NDIS library provides for NDIS drivers to interface with network adapter
hardware are available via functions that translate directly to corresponding functions in the HAL.

EXPERIMENT: Listing the Loaded NDIS Miniports
The Ndiskd kernel debugger extension library includes the !miniports and !miniport
commands, which let you list the loaded miniports using a kernel debugger and, given
the address of a miniport block (a data structure Windows uses to track miniports), see
detailed information about the miniport driver. The following example shows the
!miniports and !miniport commands being used to list all the miniports and then specif-
ics about the miniport responsible for interfacing the system to a PCI Ethernet adapter.
(Note that WAN miniport drivers work with dial-up connections.)

kd> .load ndiskd

Loaded ndiskd extension DLL

kd> !miniports

Driver verifier level: 0

Failed allocations: 0

Miniport Driver Block: 817aa610

Chapter 13: Networking 831
Miniport: 817b1130 RAS Async Adapter

Miniport Driver Block: 81a1ef30

Miniport: 81a1ea70 Direct Parallel

Miniport Driver Block: 81a21cd0

Miniport: 81a217f0 WAN Miniport (PPTP)

Miniport Driver Block: 81a23290

Miniport: 81a22130 WAN Miniport (L2TP)

Miniport Driver Block: 81a275f0

Miniport: 81a25130 Intel 8255x-based PCI Ethernet Adapter (10/100)

kd> !miniport 81a25130

Miniport 81a25130 : Intel 8255x-based PCI Ethernet Adapter (10/100)

Flags : 20413208

BUS_MASTER, INDICATES_PACKETS, IGNORE_REQUEST_QUEUE

IGNORE_TOKEN_RING_ERRORS, NDIS_5_0,

RESOURCES_AVAILABLE, DESERIALIZED, MEDIA_CONNECTED,

NOT_SUPPORTS_MEDIA_SENSE,

PnPFlags : 00010021

PM_SUPPORTED, DEVICE_POWER_ENABLED, RECEIVED_START

CheckforHang interval: 2 seconds

CurrentTick : 0001

IntervalTicks : 0001

InternalResetCount : 0000

MiniportResetCount : 0000

References: 3

UserModeOpenReferences: 0

PnPDeviceState : PNP_DEVICE_STARTED

CurrentDevicePowerState : PowerDeviceD0

Bus PM capabilities

DeviceD1:1

DeviceD2:1

WakeFromD0:0

WakeFromD1:1

WakeFromD2:0

WakeFromD3:0

SystemStateDeviceState

PowerSystemUnspecifiedPowerDeviceUnspecified

S0D0

S1D1

S2PowerDeviceUnspecified

S3PowerDeviceUnspecified

S4D3

S5D3

SystemWake: S1

DeviceWake: D1

WakeupMethodes Enabled 6:

WAKE_UP_PATTERN_MATCH WAKE_UP_LINK_CHANGE

WakeUpCapabilities of the miniport

MinMagicPacketWakeUp: 4

MinPatternWakeUp: 4

MinLinkChangeWakeUp: 4

832 Microsoft Windows Internals, Fourth Edition
Current PnP and PM Settings: : 00000030

DISABLE_WAKE_UP, DISABLE_WAKE_ON_RECONNECT,

Allocated Resources:

Memory: f4100000, Length: 1000

IO Port: 1440, Length: 40

Memory: f4000000, Length: 100000

Interrupt Level: 9, Vector: 9

Translated Allocated Resources:

Memory: f4100000, Length: 1000

IO Port: 1440, Length: 40

Memory: f4000000, Length: 100000

Interrupt Level: 12, Vector: 39

MediaType : 802.3

DeviceObject : 81a25030, PhysDO : 81a93cd0 Next DO: 81a63030

MapRegisters : 819fc000

FirstPendingPkt: 0

SingleWorkItems:

[0]: 81a254e8 [1]: 81a254f4 [2]: 81a25500 [3]: 81a2550c

[4]: 81a25518 [5]: 81a25524

DriverVerifyFlags : 00000000

Miniport Open Block Queue:

8164b888: Protocol 816524a8 = NBF, ProtocolContext 81649030

8191f628: Protocol 81928d88 = TCPIP, ProtocolContext 8191f728

Miniport Interrupt 81a00970

The Flags field for the miniport that was examined indicates that the miniport supports
deserialized operation (DESERIALIZED), that the media is currently active
(MEDIA_CONNECTED), and that it is an NDIS 5 miniport driver (NDIS_5_0). Also
listed are the adapter’s system-to-device power-state mappings and the bus resources
that the Plug and Play manager assigned to the adapter. (See the section “The Power
Manager” in Chapter 9 for more information on power-state mappings.)

Variations on the NDIS Miniport

The NDIS model also supports hybrid TDI transport-NDIS drivers, called NDIS intermediate
drivers. These drivers lie between TDI transports and NDIS drivers. To an NDIS driver, an
NDIS intermediate driver looks like a TDI transport; to a TDI transport, an NDIS intermediate
driver looks like an NDIS driver. NDIS intermediate drivers can see all network traffic taking
place on a system because the drivers lie between protocol drivers and network drivers. Soft-
ware that provides fault tolerant and load balancing options for network adapters, such as
Microsoft’s Network Load Balancing Provider, are based on NDIS intermediate drivers.

Connection-Oriented NDIS

Support for connection-oriented network hardware (for example, ATM) is native in Windows,
which makes connection management and establishment standard in the Windows network
architecture. Connection-oriented NDIS drivers use many of the same APIs that standard

Chapter 13: Networking 833
NDIS drivers use; however, connection-oriented NDIS drivers send packets through estab-
lished network connections rather than place them on the network medium.

In addition to miniport support for connection-oriented media, NDIS 5 includes definitions
for drivers that work to support a connection-oriented miniport driver:

■ Call managers are NDIS drivers that provide call setup and teardown services for con-
nection-oriented clients (described shortly). A call manager uses a connection-oriented
miniport to exchange signaling messages with other network entities such as network
switches or other call managers. A call manager supports one or more signaling proto-
cols, such as ATM User-Network Interface (UNI) 3.1.

■ An integrated miniport call manager (MCM) is a connection-oriented miniport driver
that also provides call manager services to connection-oriented clients. An MCM is
essentially an NDIS miniport driver with a built-in call manager.

■ A connection-oriented client uses the call setup and teardown services of a call manager
or MCM and the send and receive services of a connection-oriented NDIS miniport
driver. A connection-oriented client can provide its own protocol services to higher lev-
els in the network stack, or it can implement an emulation layer that interfaces connec-
tionless legacy protocols and connection-oriented media. An example of an emulation
layer fulfilled by a connection-oriented client is a LAN emulation (LANE), which hides
the connected-oriented characteristics of ATM and presents a connectionless media
(such as Ethernet) to protocols above it.

Figure 13-19 shows the relationships between these components.

Figure 13-19 Connection-oriented NDIS drivers

NDIS

NDIS 5 library

MCM driver

NDIS 5 library

Connection-oriented
NDIS miniport driver

NDIS 5 library

Call manager

Connection-oriented
client

Connection management Data
transmission
and receipt

Data
transmission
and receipt

Connection
management

834 Microsoft Windows Internals, Fourth Edition
EXPERIMENT: Using Network Monitor to Capture Network
Packets
Windows Server comes with a tool named Network Monitor that lets you capture pack-
ets that flow through one or more NDIS miniport drivers on your system by installing an
NDIS intermediate driver. Before you can use Network Monitor, you need to have the
Windows Network Monitor Tools installed on your system. To install these tools, open
Add/Remove Programs in Control Panel, and select Add/Remove Windows Compo-
nents. Select Management And Monitoring Tools, click Details, select Network Monitor
Tools, and click OK. After Network Monitor has been installed, you can launch Network
Monitor by selecting it from the Administrative Tools folder.

Network Monitor might ask you which network connection you want to monitor. After
selecting one, begin monitoring by pressing the Start Capture button in the toolbar. Per-
form operations that generate network activity on the connection you’re monitoring,
and after you see that Network Monitor has captured packets, stop monitoring by click-
ing the Stop And View Capture button (the stop button that has glasses next to it). Net-
work Monitor will present a view of the capture data like the following:

The screen shot shows the SMB (CIFS) packets that Network Monitor captured as
remote files were accessed from the system. If you double-click on a line, Network Mon-
itor will switch to a view of the packet that breaks it apart to show various layered appli-
cation and protocol headers as shown in the following screen shot:

Chapter 13: Networking 835
Network Monitor also includes a number of other features, such as capture triggers and
filters, that make it a powerful tool for troubleshooting network problems.

Remote NDIS

Prior to the development of Remote NDIS, a vendor that developed a USB network device, for
example, had to provide a driver that interfaced with NDIS as a miniport driver as well as
interfacing with a USB WDM bus driver, as shown in Figure 13-20. If the vendor’s hardware
supported other busses, such as IEEE 1394, they were required to implement drivers that
interfaced with each specific bus type.

Figure 13-20 NDIS miniport driver for a USB network device

TCP/IP

PCI bus

NDIS

NDIS
miniport

USB bus driver

USB controller

USB controller
driver

USB network
device

Device
firmware

USB cable

836 Microsoft Windows Internals, Fourth Edition
Remote NDIS is a specification for network devices on dynamic Plug and Play I/O buses such
as USB, IEEE 1394, and Infiniband. The specification eliminates the need for a hardware ven-
dor to write an NDIS miniport driver at all by defining bus-independent messages and the
mechanism by which the messages are transmitted over various buses. Remote NDIS mes-
sages mirror the NDIS interface and include messages for initializing and resetting a device,
transmitting and receiving packets, setting and querying device parameters, and indicating
media link status.

The Remote NDIS architecture, in Figure 13-21, relies on a Microsoft-supplied NDIS miniport
driver, \Windows\System32\Drivers\Rndismp.sys, that translates NDIS commands and for-
wards them to a bus transport driver for the bus on which a device is located. The architecture
allows for a single NDIS miniport driver to be used for all Remote NDIS drivers and a single
bus transport driver for each supported bus.

Currently, Remote NDIS for USB devices is included on Windows XP and Windows Server
2003 and available as a download from Microsoft for Windows 2000. While Remote NDIS on
IEEE 1394 is fully specified, Windows does not yet support it.

Figure 13-21 Remote NDIS architecture for USB network devices

QOS

If no special measures are taken, IP traffic is delivered over a network on a first-come, first-
serve basis. Applications have no control over the priority of their messages, and they can
experience bursty network behavior, where they occasionally obtain high throughput and low
latencies, but otherwise receive poor network performance. While this level of service is
acceptable in most situations, an increasing number of network applications demand more
consistent service levels, or quality of service (QOS) guarantees. Video conferencing, media
streaming, and enterprise resource planning (ERP) are examples of applications that require
good network performance. QOS allows an application to specify minimum bandwidth and
maximum latencies, which can be satisfied only if every networking software and hardware

TCP/IP

PCI bus

NDIS

Remote NDIS
miniport

USB bus driver

USB controller

Remote NDIS
USB miniport

USB controller
driver

USB network
device

Device
firmware

USB cable

Chapter 13: Networking 837
component between a sender and receiver supports QOS standards such as IEEE 802.1P, an
industry standard that specifies the format of QOS packets and how OSI layer 2 devices
(switches and network adapters) respond to them.

Windows QOS support is based on a handful of Microsoft-defined Winsock APIs that allow
an application to request QOS for traffic over their Winsock sockets. For example, an applica-
tion uses WSCInstallQOSTemplate to install a QOS template that specifies desired bandwidth
and latency. A second API, the Traffic Control (TC) API, lets an administrative application
more precisely control the traffic flow over a networks attached to the computer.

The heart of the Windows QOS implementation is the Resource Reservation Protocol (RSVP)
Win32 service (\Windows\System32\Rsvp.exe), as shown in Figure 13-22 The RSVP Winsock
service provider (\Windows\System32\Rsvpsp.dll) communicates application QOS requests
via RPC to the RSVP service. The RSVP service in turn uses the TC API to control traffic flow. The
TC API, which is implemented in \Windows\System32\Traffic.dll, sends I/O control com-
mands to the Generic Packet Classifier (GPC) driver (\Windows\System32\Msgpc.sys). The
GPC driver communicates closely with the QOS packet scheduler NDIS intermediate driver
(\Windows\System32\Psched.sys) to control the flow of packets to the network from the com-
puter so that the QOS levels promised to particular applications can be met, and so that appro-
priate QOS headers can be placed on packets for which QOS is desired.

Note RSVP signaling functionality is removed in Windows XP and Windows Server 2003.
While the RSVP service still executes, it serves only as a conduit between applications and
traffic control components.

Figure 13-22 QOS architecture

Rsvp.dll Ws2_32.dll

QoS application

Generic Packet
Classifier

AFD

TCP/IP
protocol driver

Packet scheduler

NDIS miniportNDIS

RPC
QoS APIs

Communication APIs

User mode

Kernel mode

RSVP service

Traffic.dll

838 Microsoft Windows Internals, Fourth Edition
Binding
The final piece in the Windows networking architecture puzzle is the way in which the com-
ponents at the various layers—networking API layer, TDI transport driver layer, NDIS driver
layer—locate one another. The name of the process that connects the layers is binding. You’ve
witnessed binding taking place if you’ve changed your network configuration by adding or
removing a component using the Network Connections folder.

When you install a networking component, you must supply an INF file for the component.
(INF files are described in Chapter 9.) This file includes directions that setup API routines
must follow to install and configure the component, including binding dependencies or bind-
ing relationships. A developer can specify binding dependencies for a proprietary component
so that the Service Control Manager (the Service Control Manager described in Chapter 4)
will not only load the component in the correct order but will also load the component only
if other components the proprietary component depends on are present on the system. Bind-
ing relationships, which the bind engine determines with the aid of additional information in
a component’s INF file, establish connections between components at the various layers. The
connections specify which components a network component on one layer can use on the
layer beneath it.

For example, the Workstation service (redirector) will automatically bind to the TCP/IP and
NWLink protocols. The order of the binding, which you can examine on the Adapters And
Bindings tab in the Advanced Settings dialog box, shown in Figure 13-23, determines the pri-
ority of the binding. (See the section “Multiple Redirector Support” in this chapter for instruc-
tions on how to launch the Advanced Settings dialog box.) When the redirector receives a
request to access a remote file, it submits the request to both protocol drivers simultaneously.
When the response comes, the redirector waits until it has also received responses from any
higher-priority protocol drivers. Only then will the redirector return the result to the caller.
Thus, it can be advantageous to reorder bindings so that bindings of high priority are also the
most performance efficient or applicable to most of the computers in your network. You can
also manually remove bindings with the Advanced Settings dialog box.

Chapter 13: Networking 839
Figure 13-23 Editing bindings with the Advanced Settings dialog box

The Bind value, in the Linkage subkey of a network component’s registry configuration key,
stores binding information for that component. For example, if you examine HKLM\SYS-
TEM\CurrentControlSet\Services\LanmanWorkstation\Linkage\Bind, you’ll see the bind-
ing information for the Workstation service.

Layered Network Services
Windows includes network services that build on the APIs and components we’ve presented
in this chapter. Describing the capabilities and detailed internal implementation of these ser-
vices is outside the scope of this book, but this section provides a brief overview of remote
access, Active Directory, Network Load Balancing, File Replication service (FRS), and Distrib-
uted File System (DFS).

Remote Access

Remote access, which is available with Windows Server with the Routing and Remote Access
service, allows remote access clients to connect to remote access servers and access network
resources such as files, printers, and network services as if the client were physically con-
nected to the remote access server’s network. Windows provides two types of remote access:

■ Dial-up remote access is used by clients that connect to a remote access server via a tele-
phone or other telecommunications infrastructure. The telecommunications medium is
used to create a temporary physical or virtual connection between the client and the
server.

840 Microsoft Windows Internals, Fourth Edition
■ Virtual private network (VPN) remote access lets a VPN client establish a virtual point-
to-point connection to the server over an IP network such as the Internet.

Remote access differs from remote control solutions because remote access acts as a proxy
connection to a Windows network, whereas remote control software executes applications on
a server, presenting a user interface to the client.

Active Directory

Active Directory is the Windows implementation of Lightweight Directory Access Protocol
(LDAP) directory services. Active Directory is based on a database that stores objects repre-
senting resources defined by applications in a Windows network. For example, the structure
and membership of a Windows domain, including the user account and password informa-
tion, are stored in Active Directory.

Object classes and the attributes that define properties of objects are specified by a schema.
The objects in the Active Directory are hierarchically arranged, much like the registry’s logical
organization, where container objects can store other objects, including other container
objects. (See Chapter 8 for more information on container objects.)

Active Directory supports a number of APIs that clients can use to access objects within an
Active Directory database:

■ The LDAP C API is a C language API that uses the LDAP networking protocol. Applica-
tions written in C or C++ can use this API directly, and applications written in other lan-
guages can access the APIs through translation layers.

■ Active Directory Service Interfaces (ADSI) is a COM interface to Active Directory imple-
mented on top of LDAP that abstracts the details of LDAP programming. ADSI supports
multiple languages, including Microsoft Visual Basic, C, and Microsoft Visual C++. ADSI
can also be used by Microsoft Windows Script Host (WSH) applications.

■ Messaging API (MAPI) is supported for compatibility with Microsoft Exchange client
and Outlook Address Book client applications.

■ Security Account Manager (SAM) APIs are built on top of Active Directory to provide an
interface to logon authentication packages such as MSV1_0 (\Windows\System32\
Msv1_0.dll, which is used for legacy NT LAN Manager authentication) and Kerberos
(\Windows\System32\Kdcsvc.dll).

■ Windows NT 4 networking APIs (Net APIs) are used by Windows NT 4 clients to gain
access to Active Directory through SAM.

■ NTDS API is used to lookup SIDs and GUIDs in an active directory (via DsCrack-
Names() mostly) as well as its main purpose of active directory management, and repli-
cation. Several third parties have written applications that monitor AD from these APIs.

Chapter 13: Networking 841
Active Directory is implemented as a database file that by default is named \Windows\Ntds\
Ntds.dit, and that is replicated across the domain controllers in a domain. The Active Directory
directory service, which is a Windows service that executes in the Local Security Authority Sub-
system (LSASS) process, manages the database, using DLLs that implement the on-disk struc-
ture of the database as well as provide transaction-based updates to protect the integrity of the
database. On Windows 2000, the Active Directory database store is based on a version of the
Extensible Storage Engine (ESE) database that is used by Microsoft Exchange Server version 5.5
client/server messaging and groupware and on Windows 2003 Server the store is based on a
version of the ESE database used by Microsoft Exchange Server 2000. Figure 13-24 shows the
Active Directory architecture.

Figure 13-24 Active Directory architecture

Network Load Balancing

As we stated earlier in the chapter, Network Load Balancing, which is included with Windows
Advanced Server, is based on NDIS intermediate-driver technology. Network Load Balancing
allows for the creation of a cluster containing up to 32 computers, which are called cluster hosts

Lsass

Net Logon service
(Netlogon.dll)

NT LAN Manager
(Msv1_0.dll)

SAM server
(Samsrv.dll)

Active Directory
directory service

(Ntdsa.dll)

Ese.dll

Remote Net Logon service
(for legacy support only)

Kerberos client
authentication DLL

(Kerberos.dll)

Kerberos Key
Distribution Center

(Kdcsvc.dll)

Active
Directory
(Ntds.dit)

MAPI

LDAP/ADSI

Net API

SAM
API

Winsock

SAM
API

842 Microsoft Windows Internals, Fourth Edition
in Network Load Balancing. The cluster maintains a single virtual IP address that is published
for access by clients, and client requests go to all the computers in the cluster. However, only
one cluster host responds to the request. The Network Load Balancing NDIS drivers effec-
tively partition the client space among available cluster hosts in a distributed manner. This
way, each host handles its portion of incoming client requests and every client request always
gets handled by one and only one host. The cluster host that determines it should handle a cli-
ent request allows the request to propagate up to the TCP/IP protocol driver and eventually a
server application; the other cluster hosts don’t. If a cluster host fails, the rest of the cluster
realizes that the cluster host is no longer a candidate for processing requests and redistributes
the incoming client requests to the remaining cluster hosts. No new client requests are sent to
the downed cluster host. Another cluster host can be added to the cluster as a replacement,
and it will then seamlessly start handling client requests.

Network Load Balancing isn’t a general-purpose clustering solution because the server appli-
cation that clients communicate with must have certain characteristics: the first is that it must
be TCP/IP-based, and the second is that it must be able to handle client requests on any sys-
tem in a Network Load Balancing cluster. This second requirement typically means that an
application that must have access to shared state in order to service client requests must man-
age the shared state itself—Network Load Balancing doesn’t include services for automatically
distributing shared state across cluster hosts. Applications that are ideally suited for Network
Load Balancing include a Web server that serves static content, Windows Media Server, and
Terminal Services. Figure 13-25 shows an example of a Network Load Balancing operation.

Figure 13-25 Network Load Balancing operation

User mode

Kernel mode

Web server

Computer 1

TCP/IP driver

NDIS library

Network Load
Balancing NDIS

intermediate driver

NDIS miniport driver

User mode

Kernel mode

Web server

Computer 2

TCP/IP driver

NDIS library

Network Load
Balancing NDIS

intermediate driver

NDIS miniport driver

Network Load
Balancing

Distributed view

Clients

...

Chapter 13: Networking 843
File Replication Service

File Replication service (FRS) is included with Windows Server systems. Its primary purpose
is to replicate the contents of a domain controller’s \SYSVOL directory, which is where Win-
dows domain controllers store logon scripts and group policies. (Group policies permit
administrators to define usage and security policies for the computers that belong to a
domain.) In addition, FRS can be used to replicate Distributed File System (DFS) shares
between systems. FRS allows for distributed multimaster replication, which enables any
server to perform replication activity. When a replicated directory or file is changed, the
changes are propagated to the other domain controllers.

The fundamental concept in FRS is a replica set, which consists of two or more systems that
replicate between themselves the contents of a directory tree according to an administratively
defined schedule and topology. Only directories on NTFS volumes can be replicated because
FRS relies on the NTFS change journal to detect changes to files in directories in a replica set.
Because FRS is based on multimaster replication, it can theoretically support hundreds or
even thousands of systems as part of a replica set, and the computers of a replica set can be
connected with arbitrary network topologies (such as ring, star, or mesh). Computers can also
be members of multiple replica sets.

FRS is implemented as a Windows service (\Windows\System32\Ntfrs.exe) that uses
authenticated RPC with encryption to communicate between instances of itself running on
different computers. In addition, because Active Directory contains its own replication capa-
bilities, FRS uses Active Directory APIs to retrieve FRS configuration information from a
domain’s Active Directory.

Distributed File System

Distributed File System (DFS) is a service that layers on top of the Workstation service to
connect together file shares into a single namespace. The file shares can reside on the same
computer or on different computers, and DFS provides client access to the resources in a
location-transparent manner. The root of a DFS namespace must be a file share defined on
a Windows server.

In addition to delivering a unified network-resource namespace, DFS provides other benefits
through DFS replica sets. An administrator can a create DFS replica set from two or more
shares and use a replication mechanism such as FRS to copy data between the shares of a rep-
lica set to keep their contents synchronized. DFS provides several forms of load balancing by
ordering and/or selecting members of a replica set to fulfill a client request for data on the rep-
lica set. In addition, DFS achieves high availability by routing requests to the working member
or members of a replica set when a member becomes unavailable.

 The components that make up the DFS architecture are shown in Figure 13-26. The server-
side implementation of DFS consists of a Windows service (\Windows\System32\
Dfssvc.exe) and a device driver (\Windows\System32\Drivers\Dfs.sys). The DFS service is

844 Microsoft Windows Internals, Fourth Edition
responsible for exporting DFS topology management interfaces and maintaining the DFS
topology in either the registry (on non–Active Directory systems) or Active Directory. The DFS
driver performs topology lookups when it receives a client request so that it can direct the cli-
ent to the system where the file it is requesting resides.

Figure 13-26 DFS components

On the client side, DFS support is implemented in the MUP driver, described earlier, and uses
the CIFS redirector for its internal communication with DFS servers. The DFS client provider
is implemented in \Windows\System32\Ntlanman.dll. When a client issues a file I/O
request that specifies a file in the DFS namespace, the MUP driver on the client communicates
with target file server by using the appropriate redirector.

Conclusion
The Windows network architecture provides a flexible infrastructure for networking APIs, net-
work protocol drivers, and network adapter drivers. The Windows networking architecture
takes advantage of I/O layering to give networking support the extensibility to evolve as com-
puter networking evolves. When new protocols appear, developers can write a TDI transport
to implement the protocol on Windows. Similarly, new APIs can interface to existing Win-
dows protocol drivers. Finally, the range of networking APIs implemented on Windows
affords network application developers a range of possible implementations, each with differ-
ent programming models and protocol support.

User mode

Kernel mode

Application

Active
Directory

Kernel32.dll
File I/O API

User mode

Kernel mode

Ntdll.dll

MUP Dfs.sys

Registry

DFS client DFS server

Redirector
FSD

Dfssvc.exe

DFS topology

Chapter 14

Crash Dump Analysis

Almost every Windows user has heard of, if not experienced, the infamous “blue screen of
death.” This ominous term refers to the blue screen that is displayed when Microsoft Win-
dows crashes, or stops executing, because of a catastrophic fault or an internal condition that
prevents the system from continuing to run.

In this chapter, we’ll cover the basic problems that cause Windows to crash, describe the infor-
mation presented on the blue screen, and explain the various configuration options available
to create a crash dump, a record of system memory at the time of a crash that can help you fig-
ure out which component caused the crash. This section is not intended to provide detailed
troubleshooting information on how to analyze a Windows system crash. This section will
also show you how to analyze a crash dump to identify a faulty driver or component. The
effort required to perform basic crash dump analysis is minimal and takes a few minutes. Even
if an analysis ascertains the problematic driver for only one out of every five or ten crash
dumps, it’s still worth doing: one successful analysis can avoid future data loss, system down-
time, and frustration.

Why Does Windows Crash?
Windows crashes (stops execution and displays the blue screen) for the following reasons:

■ A device driver or an operating system function running in kernel mode incurs an
unhandled exception, such as a memory access violation (which is caused either by
attempting to write to a read-only page or attempting to read an address that isn’t cur-
rently mapped and therefore is not a valid memory location).

■ A call to a kernel support routine results in a reschedule, such as waiting for an unsig-
naled dispatcher object when the interrupt request level (IRQL) is DPC/dispatch level
or higher. (See Chapter 3 for details on IRQLs.)

■ A page fault on memory backed by data in a paging file or a memory mapped file occurs
at an IRQL of DPC/dispatch level or above (which would require the memory manager
to have to wait for an I/O operation to occur—and, as just stated, waits can’t occur at
DPC/dispatch level or higher because that would require a reschedule).
845

846 Microsoft Windows Internals, Fourth Edition
■ A device driver or operating system function explicitly crashes the system (by calling the
system function KeBugCheckEx) because it detects an internal condition that indicates
either a corruption or some other situation that indicates the system can’t continue exe-
cution without risking data corruption.

■ A hardware error, such as a machine check or a nonmaskable interrupt (NMI), occurs.

Microsoft’s analysis of the crash dumps that Windows XP users have submitted to the
Microsoft Online Crash Analysis (OCA, which is described later in this chapter) Web site
reveals the breakdown of crash causes as shown in Figure 14-1. (The data shown was gener-
ated in April 2004.)

Figure 14-1 Causes of OCA-submitted crashes

When a kernel-mode device driver or subsystem causes an illegal exception, Windows faces a
difficult dilemma. It has detected that a part of the operating system with the ability to access
any hardware device and any valid memory has done something it wasn’t supposed to do.

But why does that mean Windows has to crash? Couldn’t it just ignore the exception and let
the device driver or subsystem continue as if nothing had happened? The possibility exists
that the error was isolated and that the component will somehow recover. But what’s more
likely is that the detected exception resulted from deeper problems—for example, from a gen-
eral corruption of memory or from a hardware device that’s not functioning properly. Permit-
ting the system to continue operating would probably result in more exceptions, and data
stored on disk or other peripherals could become corrupt—a risk that’s too high to take.

The Blue Screen
Regardless of the reason for a system crash, the function that actually performs the crash is
KeBugCheckEx (documented in the Windows DDK). This function takes a stop code (sometimes
called a bug check code) and four parameters that are interpreted on a per–stop code basis. After

Third-party
device driver

70%

5%

10%

15%

Microsoft code
Hardware error

(memory, disk, etc.)

Unknown (crash is too
corrupt for analysis)

Chapter 14: Crash Dump Analysis 847
KeBugCheckEx masks out all interrupts on all processors of the system, it switches the display
into a low-resolution VGA graphics mode (one implemented by all Windows-supported video
cards), paints a blue background, and then displays the stop code, followed by some text sug-
gesting what the user can do. Finally, KeBugCheckEx calls any registered device driver bug check
callbacks (registered by calling the KeRegisterBugCheckCallback function), allowing drivers an
opportunity to stop their devices. (It’s possible that system data structures have been so seri-
ously corrupted that the blue screen isn’t displayed.) Figure 4-1 shows a sample Windows XP
blue screen.

Note Windows XP Service Pack 1 and higher, as well as Windows Server 2003, introduce the
KeRegisterBugCheckReasonCallback function to enable device drivers to either append data to
a crash dump or write crash dump information to alternate devices.

Figure 14-2 Example of a blue screen

KeBugCheckEx displays the textual representation of the stop code near the top of the blue
screen and the numeric stop code and four parameters at the top of the Windows 2000 blue
screen, but it displays these at the bottom of the Windows XP and Windows Server 2003
blue screens.

The first line lists the stop code and the four additional parameters passed to KeBugCheckEx.
A text line near the top of the screen provides the text equivalent of the stop code’s numeric
identifier. According to the example in Figure 14-2, the stop code 0x000000D1 is a
DRIVER_IRQL_NOT_LESS_OR_EQUAL crash. When a parameter contains an address of a
piece of operating system or device driver code (as in Figure 14-2), Windows displays the base
address of the module the address falls in, the date stamp, and the file name of the device
driver. This information alone might help you pinpoint the faulty component.

Although there are more than a hundred unique stop codes, most are rarely, if ever, seen on pro-
duction systems. Instead, just a few common stop codes represent the majority of Windows

848 Microsoft Windows Internals, Fourth Edition
system crashes. Also, the meaning of the four additional parameters depends on the stop code
(and not all stop codes have extended parameter information). Nevertheless, looking up the
stop code and the meaning of the parameters (if applicable) might at least assist you in diagnos-
ing the component that is failing (or the hardware device that is causing the crash).

You can find stop-code information in the section “Bug Checks (Blue Screens)” in the Windows
Debugging Tools help file. (For information on the Windows Debugging Tools, see Chapter 1.)
You can also search Microsoft’s online Knowledge Base (http://support.microsoft.com) for the
stop code and the name of the suspect hardware or application. You might find information
about a workaround, an update, or a service pack that fixes the problem you’re having. The
Bugcodes.h file in the Windows DDK contains a complete list of the 150 or so stop codes,
with some additional details on the reasons for some of them.

You often begin seeing blue screens after you install a new software product or piece of hard-
ware. If you’ve just added a driver, rebooted, and gotten a blue screen early in system initial-
ization, you can reset the machine, press the F8 key when instructed, and then select Last
Known Good Configuration. Enabling last known good causes Windows to revert to a copy of
the registry’s device driver registration key (HKLM\SYSTEM\CurrentControlSet\Services)
from the last successful boot (before you installed the driver). From the perspective of last
known good, a successful boot is one in which all services and drivers have finished loading
and at least one logon has succeeded. (Last known good is further described in Chapter 5.)

If you keep getting blue screens, an obvious approach is to uninstall the components you
added just before the first blue screen appeared. If some time has passed since you added
something new or you added several things at about the same time, you need to note the
names of the device drivers referenced in any of the parameters. If you recognize any of the
names as being related to something you just added (such as Scsiport.sys if you put on a new
SCSI drive), you’ve possibly found your culprit.

Many device drivers have cryptic names, but one approach you can take to figure out which
application or hardware device is associated with a name is to find out the name of the service
in the registry associated with a device driver by searching for the name of the device driver
under the HKLM\SYSTEM\CurrentControlSet\Services key. This branch of the registry is
where Windows stores registration information for every device driver in the system. If you
find a match, look for values named DisplayName and Description. Some drivers fill in these
values to describe the device driver’s purpose. For example, you might find the string “Virus
Scanner” in the DisplayName value, which can implicate the antivirus software you have run-
ning. The list of drivers can be displayed in the Computer Management tool (from the Start
menu, select Programs/Administrative Tools/Computer Management). In Computer Manage-
ment, expand System Tools, System Information, and Software Environment, and then select
Drivers.

More often than not, however, the stop code and the four associated parameters aren’t enough
information to troubleshoot a system crash. For example, you might need to examine the ker-

Chapter 14: Crash Dump Analysis 849
nel-mode call stack to pinpoint the driver or system component that triggered the crash. Also,
because the default behavior on Windows systems is to automatically reboot after a system
crash, it’s unlikely that you would have time to record the information displayed on the blue
screen. That is why, by default, Windows attempts to record information about the system
crash to the disk for later analysis, which takes us to our next topic, crash dump files.

Crash Dump Files
By default, all Windows systems are configured to attempt to record information about the
state of the system when the system crashes. You can see these settings by opening the System
tool in Control Panel, and then in the System Properties dialog box, click the Advanced tab
and then click the Startup And Recovery button. The default settings for a Windows XP Pro-
fessional system are shown in Figure 14-3.

Figure 14-3 Crash dump settings

Three levels of information can be recorded on a system crash:

■ Complete memory dump A complete memory dump contains all of physical memory
at the time of the crash. This type of dump requires that a page file be at least the size of
physical memory plus 1 MB (for a header). Because it can require an inordinately large
page file on large memory systems, this type of dump file is the least common setting.
Windows NT 4 supported only this type of crash dump file. This is the default setting
for Windows Server systems.

■ Kernel memory dump A kernel memory dump contains only the kernel-mode read/
write pages present in physical memory at the time of the crash. This type of dump
doesn’t contain pages belonging to user processes. Because only kernel-mode code can
directly cause Windows to crash, however, it’s unlikely that user process pages are nec-
essary to debug a crash. In addition, all data structures relevant for crash dump analy-

850 Microsoft Windows Internals, Fourth Edition
sis—including the list of running processes, stack of the current thread, and list of
loaded drivers—are stored in nonpaged memory that saves in a kernel memory dump.
There is no way to predict the size of a kernel memory dump because its size depends
on the amount of kernel-mode memory allocated by the operating system and drivers
present on the machine.

■ Small memory dump A small memory dump (the default on Windows Professional),
which is 64 KB in size (128 KB on 64-bit systems) and is also called a minidump or triage
dump, contains the stop code and parameters, the list of loaded device drivers, the data
structures that describe the current process and thread (called the EPROCESS and ETH-
READ—described in Chapter 6), and the kernel stack for the thread that caused the crash.

While a complete memory dump is a superset of the other options, it has the drawback that
its size tracks the amount of physical memory on a system and can therefore become
unwieldy. It’s not unusual for large server systems to have several gigabytes of memory, result-
ing in crash dump files that are too large to be uploaded to an FTP server or burned onto a CD.
Because user mode code and data are not used during the analysis of most crashes (because
crashes originate as a result of problems in kernel memory, and system data structures reside
in kernel memory) much of the data stored in a complete memory dump is not relevant to
analysis and therefore contributes wastefully to the size of a dump file. A final disadvantage is
that the paging file on the boot volume (the volume with the \Windows directory) must be at
least as large as the amount of physical memory on the system plus 1 MB. Because the size of
paging files required, in general, inversely tracks the amount of physical memory present, this
requirement can force the paging file to be unnecessarily large. You should therefore consider
the advantages offered by the small and kernel memory dump options.

An advantage of a minidump is its small size, which makes it convenient for exchange via e-
mail, for example. In addition, each crash generates a file in the directory \Windows\Mini-
dump with a unique file name consisting of the string “Mini” plus the date plus a sequence
number (for example, Mini082604-01.dmp). A disadvantage of minidumps is that to analyze
them, you must have access to the exact images used on the system that generated the dump
at the time you analyze the dump. (At a minimum, a copy of the matching Ntoskrnl.exe is
needed to perform the most basic analysis.) This can be problematic if you want to analyze a
dump on a system different from the system that generated the dump. However, the Microsoft
symbol server contains images (and symbols) for Windows XP systems and later, so you can
set the image path in the debugger to point to the symbol server and the debugger will auto-
matically download the needed images. (Of course, the Microsoft image server won’t have
images for third-party drivers you have installed.)

A more significant disadvantage is that the limited amount of data stored in the dump can
hamper effective analysis. You can also get the advantages of minidumps even when you con-
figure a system to generate kernel or complete crash dumps by opening the larger crash with
Windbg and using the .dump /m command to extract a minidump. Note that on Windows
XP and Windows Server 2003, a minidump is automatically created even if the system is set
for full or kernel dumps.

Chapter 14: Crash Dump Analysis 851
Note You can use the .dump command from within Livekd to generate a memory image of
a live system that you can analyze offline without stopping the system. This approach is useful
when a system is exhibiting a problem, but is still delivering services, and you want to trouble-
shoot the problem without interrupting service. The resultant crash image isn’t necessarily fully
consistent because the contents of different regions of memory reflect different points in time,
but it might contain information useful for an analysis.

The kernel memory dump option offers a practical middle ground. Because it contains all of
kernel-mode–owned physical memory it has the same level of analysis-related data as a com-
plete memory dump, but it omits the usually irrelevant user-mode data and code, and there-
fore can be significantly smaller. As examples, on a system running Windows XP with 256 MB
of RAM, a kernel memory dump was 34 MB in size; and on another Windows XP system with
1.5 GB of RAM, a kernel memory dump took up 72 MB.

When you configure kernel memory dumps, the system checks whether the paging file is
large enough (as outlined in Table 14-1), but these are only estimated sizes because there is no
way to predict the size of a kernel memory dump. The reason you can’t predict the size of a
kernel memory dump is because its size depends on the amount of kernel-mode memory in
use by the operating system and drivers present on the machine at the time of the crash.

Therefore, it is possible that at the time of the crash, the paging file is too small to hold a ker-
nel dump. If you want to see the size of a kernel dump on your system, force a manual crash
either by configuring the option to allow you to initiate a manual system crash from the con-
sole or by using the Notmyfault tool described later in this chapter. (Both these approaches
are described later in the chapter.) When you reboot, you can check to make sure a kernel
dump was generated and check its size to gauge how large to make your boot volume paging
file. To be conservative, on 32-bit systems you can choose a page file size of 2 GB plus 1 MB,
because 2 GB is the maximum kernel mode address space available.

Finally, even if the system successfully records the crash dump in the paging file at the time of
the crash, there must be enough free disk space to extract the dump file. If there is not enough
disk space, the crash dump is lost because the space used in the paging file to hold the dump
is released and will be overwritten as the system begins to use the paging file. If you do not
have enough space on the boot volume for saving the memory.dmp file, you can choose a loca-
tion on any other local hard disk through the dialog box shown in Figure 14-3.

Table 14-1 Default Minimum Paging File Sizes for Kernel Dumps

System Memory Size Minimum Page File Size for Kernel Dumps

< 128 MB 50 MB

< 4 GB 200 MB

< 8 GB 400 MB

>= 8 GB 800 MB

852 Microsoft Windows Internals, Fourth Edition
Crash Dump Generation

When the system boots, it checks the crash dump options configured by reading the registry
value HKLM\System\CurrentControlSet\Control\CrashControl. If a dump is configured, it
makes a copy of the disk miniport driver used to write to the boot volume in memory and
gives it the same name as the miniport with the word “dump_” prefixed. It also checksums the
components involved with writing a crash dump—including the copied disk miniport driver,
the I/O Manager functions that write the dump, and the map of where the boot volume’s pag-
ing file is on disk—and saves the checksum. When KeBugCheckEx executes, it checksums the
components again and compares the new checksum with that obtained at the boot. If there’s
not a match, it does not write a crash dump, because doing so would likely fail or corrupt the
disk. Upon a successful checksum match, KeBugCheckEx writes the dump information
directly to the sectors on disk occupied by the paging file, bypassing the file system driver
(which might be corrupted or even have caused the crash).

When SMSS enables paging during the boot process, the system looks in the boot volume’s
paging file to see whether a crash dump is present and protects the part of the paging file
occupied by a dump. This makes part or all of the boot volume paging file unusable for the
early part of the boot, which can cause notifications to display that the system is running low
on virtual memory, a condition that is only temporary. Later in the boot, Winlogon deter-
mines whether or not a crash dump is in the paging file by calling the undocumented NtQue-
rySystemInformation API, and if a crash dump is there, it launches the Savedump process
(\Windows\System32\Savedump.exe) to extract the crash dump from the paging file and
copy it to its final location. These steps are shown in Figure 14-4.

Figure 14-4 Crash dump file generation

User mode

Kernel mode

Session
Manager

SaveDump

NtCreatePagingFile

Memory.dmp

Paging file

2

3

1 4

WinLogon

Chapter 14: Crash Dump Analysis 853
Windows Error Reporting
As mentioned in Chapter 3, Windows XP and Windows Server 2003 include a facility called
Windows Error Reporting, which facilitates the automatic submission of process and system
crashes to Microsoft (or an internal error reporting server) for analysis. This feature is enabled
by default, but it can be modified by changing Savedump's behavior, which takes the addi-
tional step of determining whether the system is configured to send a crash dump to
Microsoft (or a private server, explained further in the “Online Crash Analysis” section later in
the chapter) for analysis on a reboot following a crash. The Error Reporting dialog box, which
you access from the Advanced tab of the Control Panel’s System applet, is shown in Figure 14-5.
This dialog box allows you to configure the system’s error reporting settings, which are stored in
the registry under HKLM\Software\Microsoft\PCHealth\ErrorReporting.

Figure 14-5 Error Reporting configuration dialog box

After rebooting from a crash, Savedump checks several values under the ErrorReporting key,
including Showui, DoReport, and IncludeKernelFaults. If all three values are true, Savedump
takes the following steps for preparing to send a crash dump report to the Microsoft Online
Crash Analysis (OCA) site (or, if configured, an internal error reporting server):

1. If the type of dump it generated was not a minidump, it extracts a minidump from the
dump file and stores it in the default location of \Windows\Minidumps.

2. It writes the name of the minidump file to HKLM\Software\Microsoft\PCHealth\Error-
Reporting\KernelFaults.

3. It adds a command to execute Dumprep (\Windows\System32\Dumprep.exe) to
HKLM\Software\Microsoft\Windows\CurrentVersion\Run so that Dumprep is exe-
cuted during the first user’s logon to the system.

854 Microsoft Windows Internals, Fourth Edition
Online Crash Analysis
When the Dumprep utility executes, as a result of Savedump having configured it to start, it
checks the same three values referenced by Savedump to see whether the system is configured
to send an error report to Microsoft after rebooting from a crash. If it is, Dumprep generates an
XML-formatted file containing a basic description of the system, including the operating sys-
tem version, a list of drivers installed on the machine, and the list of Plug and Play drivers
loaded on the system at the time of the crash. It then presents the dialog box shown in Figure
14-6 that asks the user whether he or she wants to send an error report to Microsoft. If the
user chooses to send the error report, and unless overridden by group policies, Dumprep
sends the XML file and minidump to http://Watson.Microsoft.Com, which forwards the data to
a server farm for automated analysis, described in the next section. Administrators can config-
ure their systems using group policy to send the error data to an internal error-reporting net-
work share to be later processed using the Microsoft Corporate Error Reporting (CER)
Toolkit, which is available only to eligible Microsoft Software Assurance customers. (For more
information, see http://www.microsoft.com/resources/satech/cer.)

Figure 14-6 Crash dump error reporting dialog box

The server farm’s automated analysis uses the same analysis engine that the Microsoft kernel
debuggers use when you load a crash dump file into them (described shortly). The analysis
generates a bucket ID, which is a signature that identifies a particular crash type. The server
farm queries a database using the bucket ID to see whether a resolution has been found for
the crash, and it sends a URL back to Dumprep that refers it to the OCA Web site (http://
oca.microsoft.com). Dumprep launches the Internet browser to open the page on the OCA Web
site that reports the preliminary crash analysis. If a resolution is available, the page instructs
the user where to obtain a hotfix, service pack, or third-party driver update; otherwise, the
user is given the option of following the progress of the crash analysis via e-mail.

Chapter 14: Crash Dump Analysis 855
Sites that are not connected to the Internet or do not want crash dumps to be sent automati-
cally to Microsoft can configure, using group policy, the error data to be stored on an internal
error-reporting network share to be later processed using the Microsoft CER Toolkit men-
tioned earlier.

Basic Crash Dump Analysis
If OCA fails to identify a resolution or you are unable to submit the crash to OCA (if, for exam-
ple, you have a crash dump file generated by Windows 2000, which doesn’t support OCA), an
alternative is analyzing crashes yourself. As mentioned earlier, Windbg and Kd both execute
the same analysis engine used by OCA when you load a crash dump file and the basic analysis
can sometimes pinpoint the problem. So you might be fortunate and have the crash dump
solved by the automatic analysis. But if not, there are some straightforward techniques to try
to solve the crash.

This section explains how to perform basic crash analysis steps, followed by tips on leveraging
the Driver Verifier (which is introduced in Chapter 7) to catch buggy drivers when they corrupt
the system so that a crash dump analysis pinpoints them.

Notmyfault

You can use the Notmyfault utility from www.sysinternals.com/windowsinternals to generate the
crashes described here. Notmyfault consists of an executable named Notmyfault.exe and a
driver named Myfault.sys. When you run the Notmyfault executable, it loads the driver and
presents the dialog box shown in Figure 14-7, which allows you to crash the system in various
ways or to cause the driver to leak paged pool. The crash types offered represent the ones
most commonly seen by Microsoft Product Support Services. Selecting an option and clicking
the Do Bug button causes the executable to tell the driver, by using the DeviceIoControl Win-
dows API, which type of bug to trigger. Note that you should execute Notmyfault crashes on
a test system or in a virtual machine because there is a small risk that memory it corrupts will
be written to disk and result in file or disk corruption.

856 Microsoft Windows Internals, Fourth Edition
Figure 14-7 Notmyfault

Note The names of the Notmyfault executable and driver highlight the fact that user-mode
cannot directly cause the system to crash. The Notmyfault executable can cause a crash only by
loading a driver to perform an illegal operation for it in kernel-mode.

Basic Crash Dump Analysis

The most straightforward Notmyfault crash to debug is the one caused by selecting the High
IRQL Fault (Kernelmode) option and clicking the Do Bug button. This causes the driver to
allocate a page of paged pool, free the pool, raise the IRQL to above DPC/dispatch level, and
then to touch the page it has freed. (See Chapter 3 for more information on IRQLs.) If that
doesn’t cause a crash, the process continues by reading memory past the end of the page until
it causes a crash by accessing invalid pages. The driver performs several illegal operations as a
result:

1. It references memory that doesn’t belong to it.

2. It references paged pool at an IRQL that’s DPC/dispatch level or higher, which is illegal
because page faults are not permitted when the processor IRQL is DPC/dispatch level or
higher.

User mode

Kernel mode

IOCTL Interface

MyFault.sys

Chapter 14: Crash Dump Analysis 857
3. When it goes past the end of the memory that it had allocated, it tries to reference mem-
ory that is potentially invalid.

The reason the first page reference might not cause a crash is that it won’t generate a page fault
if the page that the driver frees remains in the system working set. (See Chapter 7 for informa-
tion on the system working set.)

When you load a crash generated with this bug into Kd, its analysis displays something like this:

Microsoft (R) Windows Debugger Version 6.3.0011.2

Copyright (c) Microsoft Corporation. All rights reserved.

Loading Dump File [c:\windows\memory.dmp]

Kernel Summary Dump File: Only kernel address space is available

Symbol search path is: srv*c:\symbols*http://msdl.microsoft.com/download/symbols

Executable search path is:

Windows 2000 Kernel Version 2195 UP Free x86 compatible

Product: LanManNt, suite: Enterprise TerminalServer

Kernel base = 0x80400000 PsLoadedModuleList = 0x8046a4c0

Debug session time: Mon Apr 05 18:28:44 2004

System Uptime: 0 days 0:09:20.105

Loading Kernel Symbols

..

...............

Loading unloaded module list

No unloaded module list present

Loading User Symbols

..........

* *

* Bugcheck Analysis *

* *

Use !analyze -v to get detailed debugging information.

BugCheck D1, {bead1800, 1c, 0, ec1fb357}

*** ERROR: Module load completed but symbols could not be loaded for myfault.sys

*** WARNING: Unable to verify checksum for NotMyfault.exe

*** ERROR: Module load completed but symbols could not be loaded for NotMyfault.exe

Probably caused by : myfault.sys (myfault+357)

Followup: MachineOwner

kd>

858 Microsoft Windows Internals, Fourth Edition
The first thing to note is that Kd reports errors trying to load symbols for Myfault.sys and Not-
myfault.exe. These are expected because the symbol files for them are not on the symbol-file
path (which is configured to point at the Microsoft symbol server). You’ll see similar errors for
third-party drivers and executables that do not ship with the operating system.

The analysis text itself is terse, showing the numeric stop code and bug check parameters fol-
lowed by a “probably caused by” line that shows the analysis engine’s best guess at the offend-
ing driver. In this case it’s on the mark and points directly at Myfault.sys, so there’s no need for
manual analysis.

The “Followup” line is not generally useful except within Microsoft, where the debugger looks
for the module name in the Triage.ini file that’s located within the Triage directory of the
Debugging Tools for Windows installation directory. The Microsoft-internal version of that
file lists the developer or group responsible for handling crashes in a specific driver, and the
debugger displays their name in the Followup line when appropriate.

Verbose Analysis

Even though the basic analysis of the Notmyfault crash identifies the faulty driver, you should
always have the debugger execute a verbose analysis by entering the command:

!analyze –v

The first obvious difference between the verbose and default analysis is the description of the
stop code and its parameters. Following is the output of the command when executed on the
same dump:

DRIVER_IRQL_NOT_LESS_OR_EQUAL (d1)

An attempt was made to access a pageable (or completely invalid) address at an

interrupt request level (IRQL) that is too high. This is usually

caused by drivers using improper addresses.

If kernel debugger is available get stack backtrace.

Arguments:

Arg1: bead1800, memory referenced

Arg2: 0000001c, IRQL

Arg3: 00000000, value 0 = read operation, 1 = write operation

Arg4: ec1fb357, address which referenced memory

This saves you the trouble of opening the help file to find the same information, and the text
sometimes suggests troubleshooting steps, an example of which you’ll see in the next section
on advanced crash dump analysis.

The other potentially useful information in a verbose analysis is the stack trace of the thread
that was executing on the processor that crashed at the time of the crash. Here’s what it looks
like for the same dump:

STACK_TEXT:

WARNING: Stack unwind information not available. Following frames may be wrong.

Chapter 14: Crash Dump Analysis 859
b7e6dc34 804ac5de ff7c4040 beb4bf68 ff80a9c8 myfault+0x357

b7e6dd00 804a8f1e 00000070 00000000 00000000 nt!IopXxxControlFile+0x5e4

b7e6dd34 80461691 00000070 00000000 00000000 nt!NtDeviceIoControlFile+0x28

b7e6dd34 77f96be2 00000070 00000000 00000000 nt!KiSystemService+0xc4

0012f4a0 77e84c9b 00000070 00000000 00000000 ntdll!ZwDeviceIoControlFile+0xb

0012f504 004017c3 00000070 83360018 00000000 KERNEL32!DeviceIoControl+0x100

000200ac 00000000 00000000 00000000 00000000 NotMyfault+0x17c3

The preceding stack shows that the Notmyfault executable image, shown at the bottom,
invoked the DeviceIoControl function in Kernel32.dll, which in turn invoked ZwDeviceIoCon-
trolFile in Ntdll.dll, and so on, until finally, the system crashed with the execution of an
instruction in the Myfault image. A stack trace like this can be useful because crashes some-
times occur as the result of one driver passing another one improperly formatted, corrupt, or
that has illegal parameters. The driver that’s passed the invalid data might cause a crash and
get the blame in an analysis, when the stack reveals that another driver was involved. In this
sample trace, no driver other than myfault is listed. (The module “nt” is Ntoskrnl.)

If the driver singled out by an analysis is unfamiliar to you, use the lm (list modules) com-
mand to look at the driver’s version information. Add the k (kernel modules) and v (verbose)
options along with the m (match) option followed by the name of the driver and a wildcard:

kd> lm kv m myfault*

start end module name

f224d000 f224dbe0 myfault (deferred)

Image path: \??\C:\WINNT\system32\drivers\myfault.sys

Timestamp: Thu Apr 29 14:53:12 2004 (40915D28) Checksum: 00010090

ImageSize : 00000BE0

File version: 2.0.0.0

Product version: 2.0.0.0

File flags: 0 (Mask 3F)

File OS: 40004 NT Win32

File type: 3.7 Driver

File date: 00000000.00000000

Translations: 0409.04b0

CompanyName: Sysinternals

ProductName: Sysinternals Myfault

InternalName: myfault.sys

OriginalFilename: myfault.sys

ProductVersion: 2.0

FileVersion: 2.0

FileDescription: Crash Test Driver

LegalCopyright: Copyright (C) M. Russinovich 2002-2004

In addition to using the description to identify the purpose of a driver, you can also use the file
and product version numbers to see whether the version installed is the most up-to-date ver-
sion available. (You can do this by checking the vendor Web site, for instance.) If version infor-
mation isn’t present (because it might have been paged out of physical memory at the time of
the crash), look at the driver image file’s properties in Explorer on the system that crashed.

860 Microsoft Windows Internals, Fourth Edition
Using Crash Troubleshooting Tools
The crash generated in the preceding section with Notmyfault’s High IRQL Fault (Kernel-
mode) option poses no challenge for the debugger’s automated analysis. Unfortunately, most
crashes are not so easy and often are impossible to debug. There are several levels of increas-
ing severity in terms of system performance degradation that might help make a system that’s
producing crashes that cannot be analyzed into ones that can be. If the crashes generated after
you configure a level and reboot aren’t revealing the cause, try the next level.

1. If there are one or more drivers you consider likely sources of the crashes—because they
were introduced into the system relatively recently, they were recently updated, or the
circumstances of the crash implicate them—enable them for verification using the Driver
Verifier and check all the verification options except for low resources simulation.

2. Enable the same level of verification as in level 1 on all unsigned drivers in the system.
Or, if you are running Windows 2000 where the Driver Verifier doesn’t distinguish
between signed and unsigned drivers, enable it on all non-Microsoft drivers.

3. Enable the same verification as in level 1 on all drivers in the system. To maintain rea-
sonable performance, you may want to divide the drivers into groups, enabling the
Driver Verifier on one group at a time between reboots

Obviously, before you spend time and energy making system configuration changes and ana-
lyzing crashes, you should ensure that your system’s kernel and drivers are the most recent
available by using the services of Windows Update and third-party driver support sites.

Note If your system becomes unbootable because the Driver Verifier detects a driver error
and crashes the system, then start in safe mode (where verification is disabled), run the Driver
Verifier, and delete verification settings.

The following sections demonstrate how the Driver Verifier can make impossible-to-debug
crashes into ones that you can solve. You should also refer to the Debugging Tools help file,
which has tutorials on advanced debugging techniques.

Chapter 14: Crash Dump Analysis 861
Buffer Overrun and Special Pool

By far the most common source of crashes on Windows is pool corruption. Pool corruption
usually occurs when a driver suffers from a buffer overrun or buffer underrun bug that causes
it to overwrite data past either the end or start of a buffer it has allocated from paged or non-
paged pool. The Executive’s pool-tracking structures reside on either side of a pool buffer and
separate buffers from each other. These bugs, therefore, cause corruption to the pool tracking
structures, to buffers owned by other drivers, or to both. The crashes caused by pool corrup-
tion are virtually impossible to debug because the system crashes when corrupted data is ref-
erenced, not when the corruption occurs.

Note To assist in catching these difficult corruptions, Windows XP Service Pack 2 and later
performs pool-block tail checking at all times. Thus, buffer overruns are likely to cause an
immediate BAD_POOL_HEADER crash.

You can generate a pool corruption crash by running Notmyfault and selecting the Buffer
Overflow bug. This causes Myfault to allocate a buffer and then overwrite the 40 bytes follow-
ing the buffer. There can be a significant delay between the time you click the Do Bug button
and a crash occurs, and you might even have to generate pool usage by exercising applications
before a crash occurs, which highlights the distance between a corruption and its effect on
system stability. An analysis of the resultant crash almost always reports Ntoskrnl or another
driver as being the likely cause, which demonstrates the usefulness of a verbose analysis with
its description of the stop code:

DRIVER_CORRUPTED_EXPOOL (c5)

An attempt was made to access a pageable (or completely invalid) address at an

interrupt request level (IRQL) that is too high. This is

caused by drivers that have corrupted the system pool. Run the driver

verifier against any new (or suspect) drivers, and if that doesn’t turn up

the culprit, then use gflags to enable special pool.

Arguments:

Arg1: 4f4f4f53, memory referenced

Arg2: 00000002, IRQL

Arg3: 00000001, value 0 = read operation, 1 = write operation

Arg4: 80467139, address which referenced memory

The advice in the description is to run the Driver Verifier against any new or suspect drivers or
to use Gflags to enable special pool. Both accomplish the same thing: to have the system
detect a potential corruption when it occurs and crash the system in a way that makes the
automated analysis point at the driver causing the corruption.

If the Driver Verifier’s special pool option is enabled, verified drivers use special pool, rather
than paged or nonpaged pool, for any allocations they make for buffers slightly less than a
page in size. A buffer allocated from special pool is sandwiched between two invalid pages and
by default is aligned against the top of the page. The special pool routines also fill the unused

862 Microsoft Windows Internals, Fourth Edition
portions of the page in which the buffer resides with a random pattern. Figure 14-8 depicts a
special pool allocation.

Figure 14-8 Special pool buffer allocation

The system detects any buffer overruns of under a page in size at the time of the overrun
because they cause a page fault on the invalid page following the buffer. The signature serves
to catch buffer underruns at the time the driver frees a buffer because the integrity of the pat-
tern placed there at the time of allocation will have been compromised.

To see how the use of special pool causes a crash that the analysis engine easily diagnoses, run
the Driver Verifier Manager. On Windows 2000 systems, go to the Settings tab, type
myfault.sys in the edit box at the bottom of the page where it allows you to specify additional
drivers, select the special pool check box, apply the changes, exit the Driver Verifier Manager,
and reboot. On Windows XP and Windows Server 2003, choose the Create Custom Settings
(For Code Developers) option on the first page of the wizard, choose Select Individual Set-
tings From A Full List on the second, and select Special Pool. Choose the Select Drivers From
A List option on the subsequent page, and on the page that lists drivers type myfault.sys into
the File Find dialog box after pressing the button to add unloaded drivers. (You do not have
to find myfault.sys in the File Find dialog box; just enter its name.) Then check the myfault.sys
driver, exit the wizard, and reboot.

When you run Notmyfault and cause a buffer overflow, the system will immediately crash and
the analysis of the dump reports this:

Probably caused by : myfault.sys (myfault+3f1)

A verbose analysis describes the stop code like this:

DRIVER_PAGE_FAULT_BEYOND_END_OF_ALLOCATION (d6)

N bytes of memory was allocated and more than N bytes are being referenced.

This cannot be protected by try-except.

When possible, the guilty driver’s name (Unicode string) is printed on

the bugcheck screen and saved in KiBugCheckDriver.

Arguments:

Page n+2 Invalid

Invalid

Buffer

Signature

Page n+1

Page n

Higher
addresses

Chapter 14: Crash Dump Analysis 863
Arg1: beb50000, memory referenced

Arg2: 00000001, value 0 = read operation, 1 = write operation

Arg3: ec3473f1, if non-zero, the address which referenced memory.

Arg4: 00000000, (reserved)

Special pool made an elusive bug into one that instantly reveals itself and makes the analysis
trivial.

Code Overwrite and System Code Write Protection

A driver with a bug that causes corruption or misinterpretation of its own data structures can
reference memory the driver doesn’t own when it interprets corrupted data as a memory
pointer value. The target of the pointer can be anything in the virtual address space, including
data belonging to other drivers, invalid memory, or the code of other drivers or the kernel. As
with buffer overruns, by the time that corruption is detected and the system crashes it’s usu-
ally impossible to identify the driver that caused the corruption. Enabling special pool
increases the chance of catching wild-pointer bugs, but it does not catch code corruption.

When you run Notmyfault and select the Code Overwrite option, the Myfault driver corrupts
the entry point to the NtReadFile kernel function. One of two things will happen at this point:
if your system is running Windows XP and has 127 MB or less of physical memory or is run-
ning Windows Server 2003 and has 255 MB or less of physical memory, you’ll get a crash for
which an analysis points at Myfault.sys. The stop code description that a verbose analysis
prints tells you that Myfault attempted to write to read-only memory:

ATTEMPTED_WRITE_TO_READONLY_MEMORY (be)

An attempt was made to write to readonly memory. The guilty driver is on the

stack trace (and is typically the current instruction pointer).

When possible, the guilty driver’s name (Unicode string) is printed on

the bugcheck screen and saved in KiBugCheckDriver.

Arguments:

Arg1: 804bb7fd, Virtual address for the attempted write.

Arg2: 004bb121, PTE contents.

Arg3: b804db60, (reserved)

Arg4: 0000000b, (reserved)

However, if you have Windows 2000 with more than 127 MB of memory or Windows XP
Windows Server 2003 with more than 255 MB of memory, you’ll get a different type of crash
because the attempt to corrupt the memory isn’t caught. Because NtReadFile is a commonly
executed system service that is used by the Win32 subsystem to read keyboard and mouse
input, the system will almost immediately crash as a thread attempts to execute the corrupted
code and generates an illegal instruction fault. The analysis of crashes generated with this bug
is always wrong, but it might vary, with Windows.sys and Ntoskrnl.exe commonly being the
analyzer’s best guess as to what’s responsible. The bug check description for these crashes is:

KMODE_EXCEPTION_NOT_HANDLED (1e)

This is a very common bugcheck. Usually the exception address pinpoints

the driver/function that caused the problem. Always note this address

864 Microsoft Windows Internals, Fourth Edition
as well as the link date of the driver/image that contains this address.

Arguments:

Arg1: c0000005, The exception code that was not handled

Arg2: 80461885, The address that the exception occurred at

Arg3: 00000000, Parameter 0 of the exception

Arg4: 00000000, Parameter 1 of the exception

The reason for the different behaviors on different configurations relates to a mechanism
introduced into Windows 2000 called system code write protection. Table 14-2 shows on which
configurations system code write protection is enabled by default.

If system code write protection is enabled, the memory manager maps Ntoskrnl.exe, the HAL,
and boot drivers using standard physical pages (4 KB on x86 and x64, and 8 KB on IA64).
Because the granularity of protection in an image is the standard page size, the memory man-
ager can write-protect code pages so that an attempt to modify them generates an access fault (as
seen in the first crash). However, when system code write protection is disabled, the memory
manager uses large pages (4 MB on x86, and 16 MB on IA64 and x86-64) to map Ntoskrnl.exe,
which includes Windows 2000 with more than 127 MB of RAM and Windows XP or Windows
Server 2003 with more than 255 MB of RAM. It cannot protect code because code and data
might reside on the same page.

If system code-write protection is off and crash analysis reports unlikely causes for a crash or
you suspect code corruption, you should enable it. Verifying at least one driver with the Driver
Verifier is the easiest way to enable it. You can also enable it manually by adding two registry
values under HKLM\System\CurrentControlSet\Control\Session Manager\Memory Man-
agement. First, specify the amount of RAM at which the memory manager uses large pages
instead of standard pages to map Ntoskrnl.exe to an effectively infinite value. You do this by
creating a DWORD value called LargePageMinimum and setting it to 0xFFFFFFFF. Then add
another DWORD value named EnforceWriteProtection and set it to 1. You must reboot for the
changes to take effect.

Note When the debugger has access to the image files included in a crash dump, the anal-
ysis internally executes the !chkimg debugger command to verify that a copy of an image in a
crash dump matches the on-disk image and reports any differences. Note that chkimg will
always report discrepancies in Ntoskrnl.exe if you’ve enabled the Driver Verifier.

Advanced Crash Dump Analysis
The preceding section leverages the Driver Verifier to create crashes that the debugger’s auto-
mated analysis engine can resolve. You might still encounter cases where you cannot get a sys-

Table 14-2 System Code Write Protection Configurations

Windows 2000
Windows XP and Windows
Server 2003

System Code Write Protection Disabled RAM > 127 MB RAM > 255 MB

Chapter 14: Crash Dump Analysis 865
tem to produce easily analyzable crashes and, if so, you will need to execute manual analysis
to try and determine what the problem is.

■ Use the !process 0 0 debugger command to look at the processes running and make sure
that you understand the purpose of each one. Try disabling or uninstalling unnecessary
applications and services.

■ Use the lm command with the kv option to list the loaded kernel-mode drivers. Make
sure that you understand the purpose of any third-party drivers and that you have the
most recent versions.

■ Use the !vm command to see whether the system has exhausted virtual memory, paged
pool, or nonpaged pool. If virtual memory is exhausted, the committed pages will be
close to the commit limit, so try to identify a potential memory leak by examining the
list of processes to see which one reports high commit usage. If nonpaged pool or paged
pool is exhausted (that is, the usage is close to the maximum) see the “Troubleshooting
Pool a Leak” experiment in Chapter 7.

There are other debugging commands that can prove useful, but more advanced knowledge is
required to apply them. The !irp command is one of them. The next section shows the use of
this command to identify a suspect driver.

Stack Trashes

Stack overrun or stack trashing results from buffer overrun or underrun bugs. However,
instead of residing in pool, as you saw with Notmyfault’s buffer overrun bug, the target buffer
is on the stack of the thread that executes the bug. This type of bug is another one that’s dif-
ficult to debug because the stack is the foundation for any crash dump analysis.

When you run Notmyfault and select Stack Trash, the Myfault driver overruns a buffer it allo-
cates on the kernel stack of the thread that executes it. When Myfault tries to return control to
the Ntoskrnl function that invoked, it reads the return address, which is the address at which
it should continue executing, from the stack. The address was corrupted by the stack-buffer
overrun, so the thread continues execution at some different address in memory—an address
that might not even contain code. An illegal exception and crash occurs when the thread exe-
cutes an illegal CPU instruction or it references invalid memory.

The driver that the crash dump analysis of a stack overrun points the blame at will vary from
crash to crash, but the stop code will almost always be
KMODE_EXCEPTION_NOT_HANDLED. If you execute a verbose analysis, the stack trace
looks like this:

STACK_TEXT:

b7b0ebd4 00000000 00000000 00000000 00000000 0x0

This is consistent with the stack having been overwritten with zeros. Unfortunately, mecha-
nisms like special pool and system code write protection can’t catch this type of bug. Instead,

866 Microsoft Windows Internals, Fourth Edition
you must take some manual analysis steps to determine indirectly which driver was operating
at the time of the corruption. One way is to examine the IRPs that are in progress for the
thread that was executing at the time of the stack trash. When a thread issues an I/O request,
the I/O manager stores a pointer to the outstanding IRP on the Irp list of the ETHREAD struc-
ture for the thread. The !thread debugger command dumps the thread list of the target IRP. (If
you don’t specify a thread object address,!thread dumps the processor’s current thread.) Then
you can look at the IRP with the !irp command:

kd> !thread

THREAD ff740020 Cid 8f8.420 Teb: 7ffde000 Win32Thread: a20cdbe8 RUNNING

IRP List:

bc5a7f68: (0006,0094) Flags: 00000000 Mdl: 00000000

Not impersonating

Owning Process ff75f120

...

kd> !irp bc5a7f68

Irp is active with 1 stacks 1 is current (= 0xbc5a7fd8)

No Mdl Thread ff740020: Irp stack trace.

cmd flg cl Device File Completion-Context

>[e, 0] 0 0 ff79e4c0 ff7ac028 00000000-00000000

\Driver\MYFAULT Args: 00000000 00000000 83360010 00000000

The output shows that the IRP’s current and only stack location (designated with the “>” pre-
fix) is owned by the Myfault driver. If this were a real crash, the next steps would be to ensure
that the driver version installed is the most recent available, install the new version if it isn’t,
and if it is, to enable the Driver Verifier on the driver (with all settings except low memory sim-
ulation).

Hung or Unresponsive Systems

If a system becomes unresponsive (that is, you are receiving no response to keyboard or
mouse input), the mouse freezes, or you can move the mouse but the system doesn’t respond
to clicks, the system is said to have hung. There can be a number of things that can cause the
system to hang:

■ A device driver does not return from its interrupt service (ISR) routine or deferred pro-
cedure call (DPC) routine

■ A high priority realtime thread preempts the windowing system driver’s input threads

■ A deadlock (when two threads or processors hold resources each other wants and nei-
ther will yield what they have) occurs in kernel mode

If you have Windows XP or Windows Server 2003, you can check for deadlocks by using the
Driver Verifier option called deadlock detection. Deadlock detection monitors the use of spin
locks, fast mutexes, and mutexes, looking for patterns that could result in a deadlock. (For
more information on these and other synchronization primitives, see Chapter 3.) If one is
found, Driver Verifier crashes the system with an indication of which driver causes the dead-

Chapter 14: Crash Dump Analysis 867
lock. The simplest form of deadlock occurs when two threads hold resources each other
thread wants and neither will yield what they have or give up waiting for the one they want. If
you are running Windows XP or Windows Server 2003, the first step to troubleshooting hung
systems is therefore to enable deadlock detection on suspect drivers, then unsigned drivers,
and then all drivers, until you get a crash that pinpoints the driver causing the deadlock.

If you are running Windows 2000 or have verified all drivers and still get hangs, you must
either manually crash the hung system and analyze the resulting dump or break in with the
kernel debugger to take an alternate approach to investigating the hang.

There are two ways to approach a hanging system so that you can apply the manual crash
troubleshooting techniques described in this chapter to determine what driver or component
is causing the hang: The first is to crash the hung system and hope that you get a dump that
you can analyze; the second is to break into the system with a kernel debugger and analyze
the system’s activity. Both approaches require prior setup and a reboot. You use the same
exploration of system state with both approaches to try and determine the cause of the hang.

To manually crash a hung system, you must first add the DWORD registry value HKLM\
System\CurrentControlSet\Services\i8042prt\Parameters\CrashOnCtrlScroll and set it to 1.
After rebooting, the i8042 port driver, which is the port driver for PS2 keyboard input, moni-
tors keystrokes in its interrupt service routine (ISR, which is discussed further in Chapter 3)
looking for two presses of the scroll lock key while the right control key is depressed. When
the driver sees that sequence, it calls KeBugCheckEx with the MANUALLY_INITIATED_
CRASH (0xE2) stop code that indicates a user-manually initiated crash. When the system
reboots, open the crash dump file and apply the techniques mentioned earlier to try and
determine why the system was hung (for example, determining what thread was running
when the system hung, what the kernel stack indicates was happening, and so on). Note that
this works for most hung system scenarios, but it won’t work if the i8042 port driver’s ISR
doesn’t execute. (The i8042 port driver’s ISR won’t execute if all processors are hung as a
result of their IRQL being higher than the IRQL of the ISR’s IRQL, or if corruption of system
data structures extends to interrupt-related code or data.)

Note Manually crashing a hung system by using the support provided in the i8042 port
driver does not work with USB keyboards. It works with PS2 keyboards only.

Another way to trigger a crash is if your hardware has a built in “crash” button. (Some high-
end servers have this.) In this case, the crash is initiated by signaling the nonmaskable inter-
rupt (NMI) pin of the system’s motherboard. To enable this, set the registry DWORD value
HKLM\System\CurrentControlSet\Control\CrashControl\NMICrashDump to 1. Then
when you press the dump switch, an NMI is delivered to the system and the kernel’s NMI
interrupt handler calls KeBugCheckEx. This works in more cases than the i8042 port driver
mechanism because the NMI IRQL is always higher than that of the i8042 port driver inter-
rupt. See http://www.microsoft.com/whdc/system/CEC/dmpsw.mpsx for more information.

868 Microsoft Windows Internals, Fourth Edition
If you are unable to manually generate a crash dump, you can attempt to break into the hung
system by first making the system boot into debugging mode. You do this in one of two ways.
You can press the F8 key during the boot and select Debugging Mode, or you can create a
debugging-mode boot option in Boot.ini by copying an existing boot entry from the system’s
Boot.ini and adding the /DEBUG switch. When using the F8 approach, the system will use
the default connection (Serial Port COM2 and 19200 Baud). With the /DEBUG option, you
must also configure the connection mechanism to be used between the host system running
the kernel debugger and the target system booting in debugging mode and then configure the
/Debugport and /Baudrate switches appropriately for the connection type. The two connec-
tion types are a null modem cable using a serial port or, for Windows XP and Windows Server
2003 systems, an IEEE 1394 (Firewire) cable using 1394 ports on each system. For details on
configuring the host and target system for kernel debugging, see the Windows Debugging
Tools help file.

When booting in debugging mode, the system loads the kernel debugger at boot time and
makes it ready for a connection from a kernel debugger running on a different computer con-
nected through a serial cable or IEEE 1394 cable. Note that the kernel debugger’s presence
does not affect performance. When the system hangs, run the Windbg or Kd debugger on the
connected system, establish a kernel debugging connection, and break into the hung system.
This approach will not work if interrupts are disabled or the kernel debugger has become cor-
rupted.

Note Booting a system in debugging mode does not affect performance if it’s not con-
nected to another system; however, a system that’s configured to automatically reboot after a
crash will not do so if it’s booted with kernel debugging enabled, because the kernel debugger
waits for a connection from another system after a crash.

Instead of leaving the system in its halted state while you perform analysis, you can also use
the debugger “.dump” command to create a crash dump file on the host debugger machine.
Then you can reboot the hung system and analyze the crash dump offline (or submit it to
Microsoft). Note that this can take a long time if you are connected using a serial null modem
cable (vs. a higher speed 1394 connection), so you might want to just capture a minidump
using the “.dump /m” command. Alternatively, if the target machine is capable of writing a
crash dump, you can force it to do so by issuing the “.crash” command from the debugger.
This will cause the target machine to create a dump onto its local hard drive that you can
examine after the system reboots.

You can cause a hang by running Notmyfault and selecting the Hang option. This causes the
Myfault driver to queue a DPC on each processor of the system that executes an infinite loop.
Because the IRQL of the processor while executing DPC functions is DPC/dispatch level, the
keyboard ISR will respond to the special keyboard crashing sequence.

Chapter 14: Crash Dump Analysis 869
Once you’ve broken into a hung system or loaded a manually generated dump from a hung
system into a debugger, you should execute the !analyze command with the -hang option. This
causes the debugger to examine the locks on the system and try to determine whether there’s
a deadlock, and if so, what driver or drivers are involved. However, for a hang like the one that
Notmyfault’s hang generates, the !analyze analysis command will report nothing useful.

If the !analyze command doesn’t pinpoint the problem, execute !thread and !process in each of
the dump’s CPU contexts to see what each processor is doing. (Switch CPU contexts with the
~ command—for example, use ~1 to switch to processor 1’s context.) If a thread has hung the
system by executing in an infinite loop at an IRQL of DPC/dispatch level or higher, you’ll see
the driver module in which it has become stuck in the stack trace of the !thread command. The
stack trace of the crash dump you get when you crash a system experiencing the Notmyfault
hang bug looks like this:

STACK_TEXT:

f9e66ed8 f9b0d681 000000e2 00000000 00000000 nt!KeBugCheckEx+0x19

f9e66ef4 f9b0cefb 0069b0d8 010000c6 00000000 i8042prt!I8xProcessCrashDump+0x235

f9e66f3c 804ebb04 81797d98 8169b020 00010009 i8042prt!I8042KeyboardInterruptService+0x21c

f9e66f3c fa12e34a 81797d98 8169b020 00010009 nt!KiInterruptDispatch+0x3d

WARNING: Stack unwind information not available. Following frames may be wrong.

ffdff980 8169b288 f9e67000 0000210f 00000004 myfault+0x34a

8054ace4 ffdff980 804ebf58 00000000 0000319c 0x8169b288

8054ace4 ffdff980 804ebf58 00000000 0000319c 0xffdff980

8169ae9c 8054ace4 f9b12b0f 8169ac88 00000000 0xffdff980

…

The top few lines of the stack trace reference the routines that execute when you type the
i8042 port driver’s crash key sequence. The presence of the Myfault driver indicates that it
might be responsible for the hang.

Another command that might be revealing is !locks, which dumps the status of all executive
resource locks. By default, the command lists only resources that are under contention, which
means that they are both owned and have at least one thread waiting to acquire them. Exam-
ine the thread stacks of the owners with the !thread command to see what driver they might
be executing in.

When There Is No Crash Dump

In this section, we’ll address how to troubleshoot systems that for some reason are not record-
ing a crash dump. One reason why a crash dump might not be recorded is if the paging file on
the boot volume is too small to hold the dump or if there is not enough free disk space to
extract the dump after the reboot. These two cases can easily be remedied by either increasing
the size of the paging file or configuring the dump to be saved to a volume with enough disk
space to hold the extracted dump.

A third reason why there might not be a crash dump recorded is because the kernel code and
data structures needed to write the crash dump have been corrupted at the time of the crash.

870 Microsoft Windows Internals, Fourth Edition
As described earlier, this data is checksummed when the system boots, and if the checksum
made at the time of the crash does not match, the system does not even attempt to save the
crash dump (so as not to risk corrupting data on the disk). So in this case, you need to catch
the system as it crashes and then try to determine the reason for the crash.

A final reason occurs when the disk subsystem for the system disk is not able to process disk
write requests (a condition that might have triggered the system failure itself). One such con-
dition would be a hardware failure in the disk controller or maybe a cabling issue near the
hard disk.

One simple option is to turn off the Automatically Restart option in the Startup And Recovery
settings so that if the system crashes, you can examine the blue screen on the console. How-
ever, only the most straightforward crashes can be solved from just the blue-screen text.

To perform more in-depth analysis, you need to use the kernel debugger to look at the system
at the time of the crash. This can be done by booting the system in debugging mode, which is
described in the previous section. When a system booted in debugging mode crashes, instead
of painting the blue screen and attempting to record the dump, it will wait forever until a host
kernel debugger is connected. In this way, you can see the reason for the crash and perhaps
perform some basic analysis using the kernel debugger commands described earlier. As men-
tioned in the previous section, you can use the .dump command in the debugger to save a
copy of the crashed system’s memory space for later debugging, thus allowing you to reboot
the crashed system and debug the problem offline.

EXPERIMENT: The Blue Screen Screen Saver
A great way to remind yourself of what a blue screen looks like or to fool your office
workers and friends is to run the Sysinternals Blue Screen screen saver from
www.sysinternals.com. The screen saver simulates authentic looking blue screens
that reflect the version of Windows on which you run it, generating all blue screen
text using actual system information such as the list of loaded drivers. It also mimics
an automatic-reboot, complete with the Windows startup splash screen. Note that
unlike other screen savers where a mouse movement dismisses it, the Blue Screen
screen saver requires a key press.

Using the following syntax for the Psexec tool from Sysinternals, you can even run the
screen saver on another system:

psexec \\computername –i –d “c:\sysinternals bluescreen.scr” –s

The command requires that you have administrative privilege on the remote system.
(You can use the –u and –p Psexec switches to specify alternate credentials.) Make sure
that your coworker has a sense of humor!

Glossary

access-control list (ACL) The part of a security
descriptor that enumerates who has what ac-
cess to an object. The owner of an object can
change the object’s ACL to allow or disallow
others access to the object. An ACL is made
up of an ACL header and zero or more ac-
cess-control entry (ACE) structures. An ACL
with zero ACEs is called a null ACL and indi-
cates that no user has access to the object.

access token A data structure that contains
the security identification of a process or a
thread, which includes its security ID (SID),
the list of groups that the user is a member
of, and the list of privileges that are enabled
and disabled. Each process has a primary ac-
cess token that it inherits by default from its
creating process.

add-device routine A routine implemented
by drivers that supports Plug and Play. The
Plug and Play manager sends a driver notifi-
cation via this routine whenever a device for
which the driver is responsible is detected. In
this routine, a driver typically allocates a de-
vice object to represent the device.

Address Windowing Extensions (AWE) A
mechanism in Windows that allows a 32-bit
application to allocate up to 128 GB of phys-
ical memory and then map views, or win-
dows, into its 2-GB virtual address space.
Using AWE puts the burden of managing
mappings of virtual-to-physical memory on
the programmer but solves the immediate
need of being able to directly access more
physical memory than can be mapped at any
one time in a 32-bit process address space.

affinity mask A bitmask that specifies the pro-
cessors on which the thread is allowed to
run. The initial thread affinity mask is inher-
ited from the process affinity mask.

aging A process performed on a page that in-
crements a count indicating that the page
hasn’t been referenced since the last working
set trim scan. On a single-processor system,
the working set manager tries to remove pag-

es that haven’t been accessed recently. It
does this by first clearing the accessed bit in
the hardware page table entry (PTE) and
then later checking the bit to see whether the
page has been accessed. If the bit remains
clear, the page wasn’t accessed between
scans and is aged. Later, the age of pages is
used to locate candidate pages to remove
from the working set.

alertable wait state A thread state that the
thread enters either by waiting on an object
handle and specifying that its wait is alert-
able (with the Windows WaitForMultiple-
ObjectsEx function) or by testing directly
whether it has a pending APC (using
SleepEx). In both cases, if a user-mode APC
is pending, the kernel interrupts (alerts) the
thread, transfers control to the APC routine,
and resumes the thread’s execution when
the APC routine completes. User-mode APCs
are delivered to a thread only when it’s in an
alertable wait state.

allocation granularity The granularity with
which virtual memory is allocated. Windows
aligns each region of reserved process ad-
dress space to begin on an integral boundary
defined by the system allocation granularity
value, which can be retrieved from the Win-
dows GetSystemInfo function. Currently, this
value is 64 KB. This size was chosen so that
if support were added for future processors
with large page sizes (for example, up to 64
KB), the risk of requiring changes to applica-
tions that made assumptions about alloca-
tion alignment would be reduced.
(Windows kernel-mode code isn’t subject to
the same restrictions; it can reserve memory
on a single-page granularity.)

alternative hive A hive that acts as a backup to
the crucial SYSTEM hive. The alternate hive
is stored in \Winnt\System32\Config as
System.alt. Whenever a hive sync flushes
dirty sectors to the SYSTEM hive, the hive
sync also updates the System.alt hive. If the
configuration manager detects that the
871

872 Microsoft Windows Internals, Fourth Edition
SYSTEM hive is corrupt when the system
boots, the configuration manager attempts
to load the alternate hive. If that hive is
usable, it then uses that alternate to update
the original SYSTEM hive.

APC queue A queue in which asynchronous
procedure calls (APCs) waiting to execute re-
side. The APC queues (one for user mode
and one for kernel mode) are thread-specif-
ic—each thread has its own APC queues (un-
like the DPC queue, which is processor-
wide).

asymmetric multiprocessing (ASMP) A system
of processing on a multiprocessor system that
typically selects one processor to execute op-
erating system code while other processors
run only user code.

asynchronous I/O An I/O model that allows
an application to issue an I/O request and
then continue executing while the request is
completed. This type of I/O can improve an
application’s throughput because it allows
the application to continue with other work
while an I/O operation is in progress.

asynchronous procedure call (APC) A func-
tion that provides a way for user programs
and system code to execute code in the con-
text of a particular user thread (and hence a
particular process address space). An APC
can be either kernel mode or user mode.
(Kernel-mode APCs don’t require “permis-
sion” from a target thread to run in that
thread’s context, as user-mode APCs do.)

asynchronous read-ahead with history A
method in which the cache manager main-
tains a history of the last two read requests in
the private cache map for the file handle be-
ing accessed.

atomic transaction A technique for handling
modifications to a database so that system
failures don’t affect the correctness or integ-
rity of the database. The basic tenet of atomic
transactions is that some database opera-
tions, called transactions, are all-or-nothing
propositions. The separate disk updates that
make up the transaction must be executed
atomically; that is, once the transaction be-
gins to execute, all its disk updates must be

completed. If a system failure interrupts the
transaction, the part that has been complet-
ed must be undone, or rolled back. The roll-
back operation returns the database to a
previously known and consistent state, as if
the transaction had never occurred. See also
transaction.

attribute list A special kind of file attribute in
an NTFS file header that contains additional
attributes. The attribute list is created if a par-
ticular file has too many attributes to fit in
the master file table (MFT) record. The at-
tribute list attribute contains the name and
type code of each of the file’s attributes and
the file reference of the MFT record where
the attribute is located.

authentication packages Dynamic-link librar-
ies (DLLs) that run in the context of the
LSASS process and that implement Win-
dows authentication policy. An authentica-
tion DLL is responsible for checking
whether a given username and password
match, and if so, returning to LSASS informa-
tion detailing the user’s security identity.
Windows authentication packages include
Kerberos and MSV1_0.

automatic working set trimming A tech-
nique the memory manager uses when phys-
ical memory runs low to increase the amount
of free memory available in the system.

bad-cluster file A system file (filename $Bad-
Clus) that records any bad spots on the disk
volume.

balance set manager A system thread that
wakes up once per second to check and pos-
sibly initiate various scheduling and memory
management–related events.

basic disk A disk that relies on the MS-DOS-
style partitioning scheme. See also dynamic
disk.

bitmap file A system file (filename $Bitmap)
in which NTFS records the allocation state of
the volume. The data attribute for the bitmap
file contains a bitmap, each of whose bits
represents a cluster on the volume, identify-
ing whether the cluster is free or has been al-
located to a file.

Glossary 873
boot code Instructions executed when a sys-
tem is booted.

boot device drivers Device drivers necessary
to boot the system.

boot file A system file (filename $Boot) that
stores the Windows bootstrap code.

boot partition The partition that contains
core operating system files. The boot parti-
tion is identified by the system at startup.
The code in a master boot record (MBR)
scans the primary partition table until it lo-
cates a partition containing a flag that signals
the partition is bootable. When the MBR
finds at least one such flag, it reads the first
sector from the flagged partition into memo-
ry and transfers control to code within the
partition.

boot sector The first sector of the partition
marked as active and from which the MBR
boots. The boot sector contains information
identifying the partition’s file system format
and structure.

boot volume The volume that contains the
Windows operating system and its support
files. The boot volume can be, but does not
have to be, the same as the system volume.

bus driver Driver that services a bus control-
ler, adapter, bridge, or any device that has
child devices. Bus drivers are required driv-
ers, and Microsoft generally provides them;
each type of bus (such as PCI, PCMCIA, and
USB) on a system has one bus driver.

cache manager The component of the Win-
dows executive that provides systemwide
caching services for NTFS and other file sys-
tem drivers, including network file system
drivers (servers and redirectors).

careful write A technique for constructing a
file system’s I/O and caching support. See
also write-through.

change journal An internal file where an
NTFS file system can record information that
allows applications to efficiently monitor file
and directory changes. A change journal is
usually large enough to virtually guarantee
that applications get a chance to process
changes without missing any.

checked build A special debug version of
Windows that is available only as part of the
MSDN Professional (or Universal) subscrip-
tion. The checked build is created by compil-
ing the Windows sources with the compile-
time flag DEBUG defined.

checkpoint record A record that helps NTFS
determine what processing would be needed
to recover a volume if a crash were to occur
immediately. This record also includes redo
and undo information.

class driver A type of kernel-mode device driv-
er that implements the I/O processing for a
particular class of devices, such as disk, tape,
or CD-ROM.

clock algorithm A working set page replace-
ment policy implemented on uniprocessor
systems, similar to a least recently used poli-
cy (as implemented in most versions of
UNIX).

clock interrupt handler A system routine that
updates the system time and then decre-
ments a counter that tracks how long the
current thread has run.

cluster factor The cluster size on a volume,
which is established when a user formats the
volume with either the format command or
the Disk Management Microsoft Manage-
ment Console (MMC) snap-in.

cluster remapping A process in which NTFS
dynamically retrieves good data from a clus-
ter with a bad sector, allocates a new cluster,
and copies the data to the new cluster.

clustering A method by which the memory
manager resolves a page fault by reading into
memory several pages near the page explicit-
ly accessed.

clusters Same-size allocation units into which
a volume is divided. Each cluster must be
uniquely numbered using 16 bits.

collided page fault A fault that occurs when
another thread or process faults a page that
is currently being in-paged.

commitment The process by which the mem-
ory manager keeps track of private commit-
ted memory usage on a global basis.

874 Microsoft Windows Internals, Fourth Edition
common model A set of classes in the Com-
mon Information Model (CIM) that repre-
sent objects that are specific to management
areas of a system but independent of a partic-
ular implementation. These classes are con-
sidered an extension of the CIM core model.
See also core model.

complete memory dump A memory dump
that contains all of physical memory at the
time of the crash. This type of dump requires
that a page file be at least the size of physical
memory. Because it can require an inordi-
nately large page file on large memory sys-
tems, this type of dump file is the least
common. Windows NT 4 supported only
this type of crash dump file.

completion port A mechanism to deliver I/O
completion notification to threads. Once a
file is associated with a completion port, any
asynchronous I/O operations that complete
on the file result in a completion packet be-
ing queued to the completion port. A thread
can wait for any outstanding I/Os to com-
plete on multiple files simply by waiting for
a completion packet to be queued to the
completion port. With completion ports,
concurrency, or the number of threads that
an application has actively servicing client re-
quests, is controlled with the aid of the sys-
tem.

configuration manager A major component
of the executive that’s responsible for imple-
menting and managing the system registry.

container object A namespace object that can
hold other objects, including other container
objects. Examples of containers are directo-
ries in the file system namespace and keys in
the registry namespace.

context switch The procedure of saving the
volatile machine state associated with a run-
ning thread, loading another thread’s vola-
tile state, and starting the new thread’s
execution.

control objects A set of kernel objects that es-
tablishes semantics for controlling various
operating system functions. This set includes
the kernel process object, the asynchronous
procedure call (APC) object, the deferred

procedure call (DPC) object, and several ob-
jects the I/O system uses, such as the inter-
rupt object.

core model A set of classes in the Common In-
formation Model (CIM) provided as part of
the WBEM standard. These classes are CIM’s
basic language and represent objects that ap-
ply to all areas of management. See also com-
mon model.

crash dump A record of system memory at the
time of a crash that can help you figure out
which component caused the crash.

critical sections An intra-process mutual ex-
clusion synchronization primitive.

deadlock detection A Driver Verifier option in
Windows XP and Windows Server 2003 that
monitors the use of spin locks, fast mutexes,
and mutexes, looking for patterns that could
result in deadlock.

deferred procedure call (DPC) A routine that
performs most of the work involved in han-
dling a device interrupt after the interrupt
service routine (ISR) executes. The DPC rou-
tine executes at an interrupt request level
(IRQL) that is lower than that of the ISR to
avoid blocking other interrupts unnecessari-
ly. A DPC routine initiates I/O completion
and starts the next queued I/O operation on
a device.

deferred procedure call (DPC) object A ker-
nel control object that describes a request to
defer interrupt processing to DPC/dispatch
level. (See interrupt request levels [irqls].)
This object isn’t visible to user-mode pro-
grams but is visible to device drivers and oth-
er system code. The most important piece of
information the DPC object contains is the
address of the system function that the ker-
nel will call when it processes the DPC inter-
rupt.

Deferred ready A state used for threads that
have been selected to run on a specific pro-
cessor but have not yet been scheduled. This
new state in Windows Server 2003 exists so
that the kernel can minimize the amount of
time the systemwide lock on the scheduling
database is held.

Glossary 875
demand-paging policies A fetch policy that
loads a page into physical memory only
when a page fault occurs. In a demand-pag-
ing system, a process incurs many page
faults when its threads first begin executing
because the threads reference the initial set
of pages they need to get going. Once this set
of pages is loaded into memory, the paging
activity of the process decreases.

desired access rights The accesses desired by
a thread opening an object.

device drivers Loadable kernel-mode mod-
ules (typically ending in .sys) that interface
between the I/O system and the relevant
hardware. Device drivers on Windows
don’t manipulate hardware devices directly,
but rather they call parts of the hardware
application layer (HAL) to interface with
the hardware.

device ID A device identifier reported to the
Plug and Play manager. The identifiers are
bus-specific; for a USB bus, an identifier con-
sists of a vendor ID (VID) for the hardware
vendor that made the device and a product
ID (PID) that the vendor assigned to the de-
vice.

device instance ID (DIID) An identifier con-
sisting of a device ID and an instance ID that
the Plug and Play manager uses to locate the
device’s key in the enumeration branch of
the registry (HKLM\SYSTEM\CurrentCon-
trolSet\Enum).

device object A data structure that represents
a physical, logical, or virtual device on the
system and describes its characteristics, such
as the alignment it requires for buffers and
the location of its device queue to hold in-
coming I/O request packets.

device-specific module (DSM) Third-party
drivers used to manage details of the path
management, such as load balancing policies
that choose which path to route requests and
error detection mechanisms to inform Win-
dows when a path fails.

device tree An internal tree the Plug and Play
manager creates that represents the relation-
ships between devices. Nodes in the tree are
called devnodes. See also devnode.

devnode A node in a device tree. A devnode
contains information about the device ob-
jects that represent the device as well as oth-
er Plug and Play–related information the
Plug and Play manager stores. See also device
tree.

direct memory access (DMA) A third interface
provided by the cache manager to cached da-
ta. The DMA functions are used to read from
or write to cache pages without intervening
buffers, such as when a network file system is
doing a transfer over the network.

dirty page threshold The number of pages
that the system cache keeps in memory be-
fore waking up the cache manager’s lazy
writer system thread to write out pages back
to the disk. This value is computed at system
initialization time and depends on physical
memory size and the value of the registry
value HKLM\SYSTEM\CurrentControlSet\
Control\Session Manager\Memory Manage-
ment\LargeSystemCache.

discretionary access control Allows the own-
er of a resource to determine who can access
the resource and what they can do with it.
The owner grants rights that permit various
kinds of access to a user or to a group.

disk group Dynamic disks that share a com-
mon database. VERITAS’s commercial vol-
ume-management software for Windows
includes disk groups, but the Windows Log-
ical Disk Manager (LDM) implementation
includes only one disk group.

dispatch code Instructions of assembly lan-
guage code stored in an interrupt object
when it is initialized. When an interrupt oc-
curs, this code is executed.

dispatch routines The main functions that a
device driver provides. Some examples of
dispatch routines are open, close, read, and
write, and any other capabilities the device,
file system, or network supports. When called
on to perform an I/O operation, the I/O man-
ager generates an IRP and calls a driver
through one of the driver’s dispatch routines.

dispatcher A set of routines in the kernel that
implement Windows scheduling. Windows
doesn’t have a single “scheduler” module or

876 Microsoft Windows Internals, Fourth Edition
routine—the code is spread throughout the
kernel in which scheduling-related events
occur.

dispatcher database A set of data structures
the kernel maintains to make thread-sched-
uling decisions. The dispatcher database
keeps track of which threads are waiting to
execute and which processors are executing
which threads. See also dispatcher ready
queue.

dispatcher header A data structure that con-
tains the object type, the signaled state, and
a list of the threads waiting on that object.

dispatcher objects A set of kernel objects that
incorporate synchronization capabilities and
alter or affect thread scheduling. The dis-
patcher objects include the kernel thread,
mutex (called mutant internally), event, ker-
nel event pair, semaphore, timer, and wait-
able timer.

dispatcher ready queue The most important
structure in the dispatcher database (located
at KiDispatcherReadyListHead). The dis-
patcher ready queue is really a series of
queues, one queue for each scheduling prior-
ity. The queues contain threads that are in
the ready state, waiting to be scheduled for
execution.

display driver Driver that translates device-in-
dependent graphics requests into device-
specific requests. The device-specific re-
quests are then paired with a kernel-mode
video miniport driver to complete video dis-
play support. A display driver is responsible
for implementing drawing operations, either
by writing directly to the frame buffer or by
communicating with the graphics accelera-
tor chip on the controller.

driver object Data structure that represents
an individual driver in the system and
records for the I/O manager the address of
each of the driver’s dispatch routines (entry
points).

driver support routines Routines that device
drivers call to accomplish their I/O requests.

dynamic disk A disk that supports multiparti-
tion volumes, providing a more flexible par-

titioning scheme than that of a basic disk. See
also basic disk.

dynamic-link library (DLL) A set of callable
subroutines linked as a binary image that
can be dynamically loaded by applications
that use them.

environment subsystems User processes and
DLLs that expose the native operating sys-
tem services to user applications, thus pro-
viding an operating system environment, or
personality. Windows 2000 ships with two
environment subsystems: Windows and
POSIX (Windows NT 4.0 had one for OS/2
1.2). Windows XP and later only ship with
Windows, but an enhanced POSIX sub-
system is included with the free Services for
Unix product from Microsoft.

event An object with a persistent state (sig-
naled or not signaled) that can be used for
synchronization; also, a system occurrence
that triggers an action.

exception A synchronous condition that re-
sults from the execution of a particular in-
struction. Running a single program with the
same data under the same conditions can re-
produce exceptions.

exception dispatcher A kernel module that
services all exceptions, except those simple
enough to be resolved by the trap handler.
The exception dispatcher’s job is to find an
exception handler that can “dispose of” the
exception.

executive The upper layer of Ntoskrnl.exe.
(The kernel is the lower layer.) The executive
contains the base operating system services,
such as the process and thread manager, the
virtual memory manager, the memory man-
ager, the security reference monitor, the I/O
system, and the cache manager. See also ker-
nel.

executive objects Objects implemented by
various components of the executive (such
as the process manager, memory manager,
I/O subsystem, and so on). The executive
objects and object services are primitives
that the environment subsystems use to con-
struct their own versions of objects and oth-
er resources. Because executive objects are

Glossary 877
typically created either by an environment
subsystem on behalf of a user application or
by various components of the operating sys-
tem as part of their normal operation, many
of them contain (encapsulate) one or more
kernel objects. See also kernel objects.

executive resources Resources that provide
both exclusive access (such as a mutex) as
well as shared read access (multiple readers
sharing read-only access to a structure). Be-
cause executive resources are available only
to kernel-mode code, they aren’t accessible
from the Windows API.

executive support routines Functions in
Ntoskrnl.exe that provide services to device
drivers.

extended partition A special partition type
that contains a master boot record (MBR)
with its own partition table. By using extend-
ed partitions, Microsoft’s operating systems
overcome the apparent limit of four parti-
tions per disk. In general, the recursion that
extended partitions permit can continue in-
definitely, which means that no upper limit
exists to the number of possible partitions
on a disk. See also partition.

fast I/O A means of reading or writing a
cached file without going through the work
of generating an I/O request packet (IRP).

fast LPC A special interprocess communica-
tion facility used to send messages between
threads.

file mapping objects Windows APO underly-
ing primitives in the memory manager that
are used to implement shared memory
(called section objects internally). See also
section object.

file reference A 64-bit value that identifies a
file on an NTFS volume. The file reference
consists of a file number and a sequence
number. The file number corresponds to the
position of the file’s file record in the master
file table minus 1 (or to the position of the
base file record minus 1 if the file has more
than one file record).

file system driver (FSD) A type of kernel-mode
device driver that accepts I/O requests to

files and satisfies the requests by issuing its
own, more explicit, requests to physical de-
vice drivers. See also local file system driver
(FSD), network file system driver (FSD).

file system filter driver A type of kernel-mode
device driver that intercepts I/O requests,
performs additional processing, and passes
them on to lower-level drivers.

file system format Defines the way that file
data is stored on storage media and impacts
a file system’s features. For example, a for-
mat that doesn’t allow user permissions to
be associated with files and directories can’t
support security. A file system format can
also impose limits on the sizes of files and
storage devices that the file system supports.

filter device object (FiDO) A device object
that can be part of a devnode. One or more
optional FiDOs can layer either between the
physical device object (PDO) and the func-
tional device object (FDO) or above the
FDO. See also devnode, functional device ob-
ject (FDO), physical device object (PDO).

filter driver See file system filter driver.

frame-based exception handlers The mecha-
nism that permits each stack frame in a call
stack to have its own exception handler
declared.

foreground application The process that
owns the thread that owns the window that’s
in focus.

free build The version of the Windows system
that can be purchased as a retail product. It
is built with full compiler optimizations
turned on and has internal symbol table in-
formation stripped out from the images. See
also checked build.

function driver The main device driver that
provides the operational interface for its
device. It is a required driver unless the de-
vice is used raw (an implementation in
which I/O is done by the bus driver and any
bus filter drivers, such as SCSI PassThru). A
function driver is the driver that knows the
most about a particular device and is usually
the only driver that accesses device-specific
registers.

878 Microsoft Windows Internals, Fourth Edition
functional device object (FDO) A device ob-
ject that is a required part of a devnode. The
function driver that the Plug and Play man-
ager loads to manage a detected device cre-
ates the FDO. An FDO represents the logical
interface to a device. See also devnode, filter
device object (FiDO), physical device object
(PDO).

granted access rights The accesses granted
to a thread by the security reference monitor
as the result of a successful object open.

Graphical Identification and Authentication
(GINA) A user-mode DLL that runs in the

Winlogon process and that Winlogon uses
to obtain a user’s name and password or
smart card PIN. The standard GINA is
\Winnt\System32\Msgina.dll.

handle An object identifier. A process receives
a handle to an object when it creates or
opens an object by name. Referring to an ob-
ject by its handle is faster than using its name
because the object manager can skip the
name lookup and find the object directly.

handle table A table that contains pointers to
all the objects that the process has opened a
handle to. Handle tables are implemented as
a three-level scheme, similar to the way that
the x86 memory management unit imple-
ments virtual-to-physical address transla-
tion.

hardware abstraction layer (HAL) A loadable
kernel-mode module (Hal.dll) that provides
the low-level interface to the hardware plat-
form on which Windows is running. The
HAL hides hardware-dependent details such
as I/O interfaces, interrupt controllers, and
multiprocessor communication mecha-
nisms—any functions that are architecture-
specific and machine-dependent.

hardware device drivers Device drivers that
manipulate hardware to write output to or
retrieve input from a physical device or net-
work. There are many types of hardware de-
vice drivers, such as bus drivers, human
interface drivers, mass storage drivers, and
so on.

hash A statistically unique value that is gener-
ated from a block of data (for example, a file)

using cryptographic algorithms. Because dif-
ferent data results in different hashes, hashes
can be used to detect changes to data from
corruption or tampering. The Windows driv-
er signing facility uses hashes.

heap A region of one or more pages that can
be subdivided and allocated in smaller
chunks by a set of functions provided by the
heap manager.

heap manager A set of functions that allocate
and deallocate variable amounts of memory
(not on a page-size granularity). The heap
manager functions exist in two places:
Ntdll.dll and Ntoskrnl.exe. The subsystem
APIs (such as the Windows heap APIs) use
the copy in Ntdll, and various executive com-
ponents and device drivers use the copy in
Ntoskrnl.

hive One of a number of files stored on disk
that contain registry information. Each hive
contains a registry tree, which has a key that
serves as the root or starting point of the tree.

hyperspace A special region used to map the
process working set list and to temporarily
map other physical pages for such opera-
tions as zeroing a page on the free list (when
the zero list is empty and a zero page is need-
ed), invalidating page table entries in other
page tables (such as when a page is removed
from the standby list), and on process cre-
ation setting up a new process’s address
space.

I/O completion routine A routine implement-
ed by a layered driver that will notify the driv-
er when a lower-level driver finishes
processing an I/O request packet (IRP). For
example, the I/O manager calls a file system
driver’s I/O completion routine after a device
driver finishes transferring data to or from a
file. The completion routine notifies the file
system driver about the operation’s success,
failure, or cancellation, and it allows the file
system driver to perform cleanup operations.

I/O request packet (IRP) A data structure that
controls how the I/O operation is processed
at each stage. Most I/O requests are repre-
sented by an IRP, which travels from one I/O
system component to another.

Glossary 879
I/O subsystem API The internal executive
system services (such as NtReadFile and
NtWriteFile) that subsystem DLLs call to
implement a subsystem’s documented I/O
functions.

I/O system The Windows executive compo-
nent that accepts I/O requests (from both
user-mode and kernel-mode callers) and
delivers them, in a different form, to I/O
devices.

ideal processor The preferred processor that a
particular thread should run on.

idle summary A bitmask (KiIdleSummary) in
which each set bit represents an idle pro-
cessor.

impersonation A capability that allows
threads to have a different access token than
that of the process.

initialization routine A driver routine that the
I/O manager executes when it loads the
driver into the operating system. The initial-
ization routine creates system objects that
the I/O manager uses to recognize and ac-
cess the driver.

in-paging I/O A condition that occurs when a
read operation must be issued to a file (pag-
ing or mapped) to satisfy a page fault. The in-
page I/O operation is synchronous—the
thread waits on an event until the I/O com-
pletes—and isn’t interruptible by asynchro-
nous procedure call (APC) delivery.

instancing The term for making separate cop-
ies of the same parts of a namespace. Instanc-
ing \DosDevices makes it possible for each
user to have different drive letters and Win-
dows objects such as serial ports.

intelligent file read-ahead A technique that
predicts what data the calling thread is likely
to read next based on the data it’s currently
reading.

inter-processor interrupt (IPI) An interrupt
the kernel issues to request that another pro-
cessor perform an action, such as dispatch-
ing a particular thread for execution or
updating its translation look-aside buffer
cache.

interrupt An asynchronous event (one that
can occur at any time) that is unrelated to
what the processor is executing. Interrupts
are generated primarily by I/O devices, pro-
cessor clocks, or timers, and they can be en-
abled or disabled.

interrupt dispatch table (IDT) A data struc-
ture that Windows uses to locate the routine
that will handle a particular interrupt. The
interrupt request level (IRQL) of the inter-
rupting source serves as a table index, and
table entries point to the interrupt-handling
routines.

interrupt dispatcher A submodule of the ker-
nel’s trap handler that responds to interrupts.

interrupt object A kernel control object that
allows device drivers to register interrupt
service routines (ISRs) for their devices. An
interrupt object contains all the information
the kernel needs to associate a device ISR
with a particular level of interrupt, including
the address of the ISR, the interrupt request
level (IRQL) at which the device interrupts,
and the entry in the kernel’s interrupt dis-
patch table with which the ISR should be
associated.

interrupt request (IRQ) A value identifying an
interrupt. On x86 systems, external I/O in-
terrupts come into one of the lines on an in-
terrupt controller. The controller in turn
interrupts the processor on a single line.
Once the processor is interrupted, it queries
the controller to get the interrupt request
(IRQ). The interrupt controller translates the
IRQ to an interrupt number, uses this num-
ber as an index into the interrupt dispatch ta-
ble (IDT), and transfers control to the
appropriate interrupt dispatch routine. At
system boot time, Windows fills in the IDT
with pointers to the kernel routines that han-
dle each interrupt and exception.

interrupt request levels (IRQLs) An interrupt
priority scheme imposed by Windows. The
kernel represents IRQLs internally as a num-
ber from 0 through 31 (0 to 15 on 64-bit
Windows), with higher numbers represent-
ing higher-priority interrupts. Although the

880 Microsoft Windows Internals, Fourth Edition
kernel defines the standard set of IRQLs for
software interrupts, the HAL maps hard-
ware-interrupt numbers to the IRQLs.

interrupt service routine (ISR) A device driver
routine that the kernel’s interrupt dispatcher
transfers control to when a device issues an
interrupt. In the Windows I/O model, ISRs
run at a high device interrupt request level
(IRQL), so they perform as little work as pos-
sible to avoid blocking lower-level interrupts
unnecessarily. An ISR queues a deferred pro-
cedure call (DPC), which runs at a lower
IRQL, to execute the remainder of interrupt
processing. Only drivers for interrupt-driven
devices have ISRs; a file system, for example,
doesn’t have one.

job object A nameable, securable, shareable
object in Windows that controls certain at-
tributes of processes associated with the job.
A job object’s basic function is to allow
groups of processes to be managed and ma-
nipulated as a unit. The job object also
records basic accounting information for all
processes associated with the job and for all
processes that were associated with the job
but have since terminated.

journaling A logging technique originally de-
veloped for transaction processing that a re-
coverable file system such as NTFS uses to
ensure volume consistency.

kernel The lowest layer in Ntoskrnl.exe. The
kernel, a component of the executive, deter-
mines how the operating system uses the
processor or processors and ensures that
they are used prudently. The kernel provides
thread scheduling and dispatching, trap han-
dling and exception dispatching, interrupt
handling and dispatching, and multiproces-
sor synchronization. See also executive.

kernel debugger A tool used to debug drivers,
troubleshoot hung systems, and examine
crash dumps. It is also a useful tool for inves-
tigating Windows internals because it can
display internal Windows system informa-
tion not visible through any standard utility.
(The LiveKd tool on the companion CD al-
lows the use of the standard kernel debug-
gers on a live system.)

kernel handle table A table (referenced inter-
nally with the name ObpKernelHandle-
Table) whose handles are accessible only
from kernel mode and in any process con-
text. A kernel-mode function can reference
the handles in this table in any process con-
text with no performance impact.

kernel memory dump A type of memory
dump (the default on Windows Server sys-
tems) that contains only the kernel-mode
read/write pages present in physical memo-
ry at the time of the crash. A kernel memory
dump doesn’t contain pages belonging to
user processes. Because only kernel-mode
code can directly cause Windows to crash,
however, it’s unlikely that user process pages
are necessary to debug a crash. There is no
way to predict the size of a kernel memory
dump because its size depends on the
amount of kernel-mode memory allocated
by the operating system and drivers present
on the machine.

kernel mode A privileged mode of code exe-
cution in a processor in which all memory is
totally accessible and all CPU instructions
can be issued. Operating system code (such
as system services and device drivers) runs
in kernel mode. See also user mode.

kernel objects A primitive set of objects imple-
mented by the Windows kernel. These ob-
jects aren’t visible to user-mode code but are
created and used only within the executive.
Kernel objects provide fundamental capabil-
ities, such as synchronization, on which ex-
ecutive objects are built. See also executive
objects.

kernel streaming filter drivers Kernel-mode
drivers chained together to perform signal
processing on data streams, such as record-
ing or displaying audio and video.

kernel-mode device driver The only type of
driver that can directly control and access
hardware devices.

kernel-mode graphics driver A Windows sub-
system display or print device driver that
translates device-independent graphics
(GDI) requests into device-specific requests.

Glossary 881
key A mechanism to refer to data in the regis-
try. Although keys appear in the object man-
ager namespace, the registry manages them
in a way similar to how it manages file ob-
jects. Zero or more key values are associated
with a key object; key values contain data
about the key.

key control block A structure that stores the
full pathname of a registry key, includes the
cell index of the key node that the control
block refers to, and contains a flag that notes
whether the configuration manager needs to
delete the key cell that the key control block
refers to when the last handle for the key
closes. In Windows, all key control blocks
are in an alphabetized binary tree to enable
quick searches for existing key control
blocks by name. A key object points to its
corresponding key control block, so if two
applications open the same registry key,
each will receive a key object and both key
objects will point to a common key control
block.

key object An object type the configuration
manager defines to integrate the registry’s
namespace with the kernel’s general
namespace.

keyed event A synchronization object new to
Windows XP.

last known good control set A copy of the
critical boot-time information under the reg-
istry key HKLM\SYSTEM\CurrentCon-
trolSet, made when a user successfully logs
on. The last known good control set can be
selected at boot time in case configuration
changes made to the registry result in the
system not being able to boot successfully.

lazy IRQL A performance optimization that
avoids Programmable Interrupt Controller
(PIC) accesses. When the interrupt request
level (IRQL) is raised, the HAL notes the new
IRQL internally instead of changing the in-
terrupt mask. If a lower-priority interrupt
subsequently occurs, the HAL sets the inter-
rupt mask to the settings appropriate for the
first interrupt and postpones the lower-prior-
ity interrupt until the IRQL is lowered. Thus,
if no lower-priority interrupts occur while

the IRQL is raised, the HAL doesn’t need to
modify the PIC.

lazy writer A set of system threads that call the
memory manager to flush cache contents to
disk as a background activity (asynchronous
disk writing). The cache manager optimizes
disk I/O by using its lazy writer.

legacy drivers Device drivers written for Mi-
crosoft Windows NT but that run un-
changed on Windows 2000 and later. They
are differentiated from other Windows driv-
ers in that they don’t support power manage-
ment or work with the Windows Plug and
Play manager.

local file system driver (FSD) A driver that
manages volumes directly connected to the
computer. See also file system driver.

local kernel debugging The ability to con-
nect the kernel debugger to the local running
system to view internal state (as opposed to
connecting to a target system booted in de-
bugging mode using a null modem or 1394
cable).

local procedure call (LPC) An interprocess
communication facility for high-speed mes-
sage passing (not available through the Win-
dows API but rather through an internal
mechanism available only to Windows oper-
ating system components). LPCs are typical-
ly used between a server process and one or
more client processes of that server. An LPC
connection can be established between two
user-mode processes or between a kernel-
mode component and a user-mode process.

local security authority (LSA) server A user-
mode process running the image \Winnt\
System32\LSASS.exe that is responsible
for the local system security policy (such as
which users are allowed to log on to the
machine, password policies, privileges
granted to users and groups, and the sys-
tem security auditing settings), user au-
thentication, and sending security audit
messages to the Event Log. The LSA service
(Lsasrv - \Winnt\System32\ Lsasrv.dll), a
library that LSASS loads, implements most
of this functionality.

882 Microsoft Windows Internals, Fourth Edition
local security authority (LSA) server policy
database A database (stored in the registry

under HKLM\SECURITY) that contains the
system security policy settings. This data-
base includes such information as what do-
mains are trusted to authenticate logon
attempts, who has permission to access the
system and how (interactive, network, and
service logons), who is assigned which privi-
leges, and what kind of security auditing is to
be performed.

Local Security Authority Subsystem (LSASS)
The system user-mode process responsible
for authentication of accounts accessing a
computer.

Local System account A predefined local ac-
count that is used to start a service and pro-
vide the security context for that service. The
name of the account is NT AUTHORI-
TY\System. This account does not have a
password, and any password information
that you supply is ignored. The Local System
account has full access to the system, includ-
ing the directory service on domain control-
lers. Because the Local System account acts
as a computer on the network, it has access
to network resources.

log file A metadata file (filename $LogFile)
NTFS uses to record all operations that affect
the NTFS volume structure, including file
creation or any commands, such as Copy,
that alter the directory structure. The log file
is used to recover an NTFS volume after a
system failure.

log hive A registry hive the configuration
manager uses to make sure that a nonvolatile
registry hive (one with an on-disk file) is al-
ways in a recoverable state. Each nonvolatile
hive has an associated log hive, which is a
hidden file with the same base name as the
hive and a .log extension. See also hive.

logging A transaction-processing technique
NTFS uses to maintain file system integrity
in case of system crashes or other failures. In
NTFS logging, the suboperations of any
transaction that alters important file system
data structures are recorded in a log file be-
fore they are carried through on the disk so

that if the system crashes, partially complet-
ed transactions can be redone or undone
when the system comes back on line.

logical cluster numbers (LCNs) The numbers
of all clusters from the beginning of the vol-
ume to the end with which NTFS refers to
physical locations on a disk. To convert an
LCN to a physical disk address, NTFS multi-
plies the LCN by the cluster factor to get the
physical byte offset on the volume, as the
disk driver interface requires.

logical prefetcher The kernel component
that monitors boot and application startup
file access and that preemptively reads that
data to speed up subsequent booting and ap-
plication startups.

logical sequence numbers (LSNs) The num-
bers that NTFS uses to identify records writ-
ten to the log file.

logon process A user-mode process running
Winlogon.exe that is responsible for captur-
ing the username and password, sending
them to the local security authority server for
verification, and creating the initial process
in the user’s session.

look-aside list A fast memory allocation mech-
anism that contains only fixed-sized blocks.
Look-aside lists can be either pageable or
nonpageable, so they are allocated from
paged or nonpaged pool.

LPC facility Local procedure call interprocess
communication support in the kernel.

mapped file I/O The ability to view a file resid-
ing on disk as part of a process’s virtual
memory. A program can access the file as a
large array without buffering data or per-
forming disk I/O. The program accesses
memory, and the memory manager uses its
paging mechanism to load the correct page
from the disk file. If the application writes to
its virtual address space, the memory manag-
er writes the changes back to the file as part
of normal paging.

mask The process whereby interrupts wait for
an executing thread to lower the IRQL be-
fore the interrupt is processed. Interrupts
from a source with an IRQL above the

Glossary 883
current level interrupt the processor, where-
as interrupts from sources with IRQLs equal
to or below the current level are masked un-
til an executing thread lowers the IRQL.

master file table (MFT) The heart of the NTFS
volume structure. The MFT is implemented
as an array of file records. The size of each file
record is fixed at 1 KB, regardless of cluster
size.

memory manager The Windows executive
component that implements demand-paged
virtual memory, giving each process the illu-
sion that it has a large virtual address space
(while mapping a subset of that address
space to physical memory).

metadata Data that describes the files on a
disk; also called volume structure data.

metadata files A set of files in each NTFS vol-
ume that contains the information used to
implement the file system structure.

MFT mirror An NTFS metadata file (filename
$MFTMirr) located in the middle of the disk
called that contains a copy of the first few
rows of the master file table.

miniport driver A type of kernel-mode device
driver that maps a generic I/O request to a
type of port into an adapter type, such as a
specific SCSI adapter.

mirrored volume A volume on which the con-
tents of a partition on one disk are duplicat-
ed in an equal-sized partition on another
disk. Mirrored volumes are sometimes re-
ferred to as RAID level 1 (RAID-1).

mirror set A technique by which the contents
of a partition on one disk are duplicated in
an equal-size partition on another disk.

modified page writer A thread in the virtual
memory manager that is responsible for lim-
iting the size of the modified page list by writ-
ing pages to their backing store locations
when the list becomes too big. The modified
page writer consists of two system threads:
one to write out modified pages (MiModi-
fiedPageWriter) to the paging file and a sec-
ond one to write modified pages to mapped
files (MiMappedPageWriter).

mount A technique NTFS uses when it first ac-
cesses a volume; in this context, to mount
means to prepare the volume for use. To
mount the volume, NTFS looks in the boot
file to find the physical disk address of the
master file table.

mount points A mechanism that permits the
linking of volumes through directories on
NTFS volumes, which makes volumes acces-
sible with no drive-letter assignment. Rep-
arse points in NTFS make mount points
possible.

MSDN Microsoft Developer Network,
Microsoft’s support program for develop-
ers. MSDN offers three CD-ROM subscrip-
tion programs: MSDN Library, Professional,
and Universal. For more information, see
msdn.microsoft.com.

multipartition volumes Objects that repre-
sent sectors from multiple partitions and
that file system drivers manage as a single
unit. Multipartition volumes offer perfor-
mance, reliability, and sizing features that
simple volumes don’t.

multipathing Where more than one set of
hardware exists between the computer and a
disk so that if a path fails, the system can still
access the disk via an alternate path.

mutant Internal name for a mutex.

mutex A synchronization mechanism used to
serialize access to a resource.

mutual exclusion A means whereby only one
thread or processor is allowed access to a re-
source at any given time.

name retention The first phase of object re-
tention, which the object manager imple-
ments. Name retention is controlled by the
number of open handles to an object that ex-
ist. Every time a process opens a handle to an
object, the object manager increments the
open handle counter in the object’s header.
As processes finish using the object and
close their handles to it, the object manager
decrements the open handle counter. When
the counter drops to 0, the object manager
deletes the object’s name from its global
namespace. This deletion prevents new pro-
cesses from opening a handle to the object.

884 Microsoft Windows Internals, Fourth Edition
native application An application that uses
only system service APIs provided by Ntdll
and that isn’t a client of the Windows sub-
system. Smss (Session Manager) is an exam-
ple of a native application.

network file system driver (FSD) A driver that
allows users to access data volumes connect-
ed to remote computers. See also file system
driver.

network logon service A user-mode service
inside the Services.exe process that responds
to network logon requests. Authentication is
handled as local logons are, by sending them
to the LSASS process for verification.

network redirectors and servers File system
drivers that transmit remote I/O requests to
a machine on the network and receive such
requests, respectively.

nonpaged pool Memory pool that consists of
ranges of system virtual addresses that are
guaranteed to be resident in physical memo-
ry at all times and thus can be accessed from
any address space without incurring paging
I/O. Nonpaged pool is created at system ini-
tialization and is used by kernel-mode com-
ponents to allocate system memory.

Ntdll.dll A special system-support library pri-
marily for the use of subsystem DLLs that
contains system service dispatch stubs to
Windows executive system services and in-
ternal support functions used by sub-
systems, subsystem DLLs, and other native
images.

Ntkrnlmp.exe The executive and kernel for
multiprocessor systems.

Ntoskrnl.exe The executive and kernel for un-
iprocessor systems.

object In the Windows executive, a single,
run-time instance of a statically defined ob-
ject type.

object attribute A field of data in an object
that partially defines the object’s state.

object directory A container object for other
objects. The object directory is used to imple-
ment the hierarchical namespace within
which other object types are stored.

object handle An index into a process-specific
handle table, pointed to by the executive pro-
cess (EPROCESS) block.

object manager The Windows executive
component responsible for creating, delet-
ing, protecting, and tracking objects. The ob-
ject manager centralizes resource control
operations that would otherwise be scattered
throughout the operating system.

object methods The means for manipulating
objects, usually to read or change the object
attributes. For example, the open method for
a process would accept a process identifier
as input and return a pointer to the object as
output.

object reuse protection A means of prevent-
ing users from seeing data that another user
has deleted or from accessing memory that
another user previously used and then re-
leased. Object reuse protection prevents po-
tential security holes by initializing all
objects, including files and memory, before
they are allocated to a user.

object type A system-defined data type, in-
cluding services that operate on instances of
the data type and a set of object attributes;
sometimes called an object class.

page directory A page the memory manager
creates to map the location of all page tables
for that process. Each process has a single
page directory.

page directory entries (PDEs) The page direc-
tory is composed of PDEs, each of which is 4
bytes long and describes the state and loca-
tion of all the possible page tables for that
process.

page fault A reference to an invalid page. The
kernel trap handler dispatches this kind of
fault to the memory manager fault handler
(MmAccessFault) to resolve.

page file backed section A section object that
is mapped to committed memory.

page file quota A limit on the number of com-
mitted pages a process can consume—not
necessarily page file space.

page frame database A database that de-
scribes the state of each page in physical

Glossary 885
memory. Pages are in one of eight states: ac-
tive (also called valid), transition, standby,
modified, modified-no-write, free, zeroed,
or bad.

page frame number (PFN) database De-
scribes the state of each page in physical
memory.

page table A page of mapping information
(made up of an array of page table entries)
the operating system constructs that de-
scribes the location of the virtual pages in a
process address space. Because Windows
provides a private address space for each
process, each process has its own set of pro-
cess page tables to map that private address
space because the mappings will be different
for each process. The page tables that de-
scribe system space are shared among all
processes.

page table entry (PTE) An entry in a process’s
page table that contains the address to which
the virtual address is mapped. The page can
be in physical memory or it can be on disk.

paged pool A region of virtual memory in sys-
tem space that can be paged in and out of the
system process’s working set. Paged pool is
created at system initialization and is used by
kernel-mode components to allocate system
memory. Uniprocessor systems have two
paged pools; multiprocessor systems have
four. Having more than one paged pool re-
duces the frequency of system code blocking
on simultaneous calls to pool routines.

paging The process of moving memory con-
tents to disk, freeing physical memory so
that it can be used for other processes or for
the operating system itself. Because most sys-
tems have much less physical memory than
the total virtual memory in use by the run-
ning processes (2 GB or 3 GB for each pro-
cess), the memory manager transfers, or
pages, some of the memory contents to disk.

partition A discrete area of the hard disk in Mi-
crosoft operating systems. File systems
(such as FAT and NTFS) format each parti-
tion into a volume. A hard disk can contain
up to four primary partitions. See also ex-
tended partition.

partition table A part of the master boot
record (MBR) that consists of four entries
that define the locations of as many as four
primary partitions on a disk. The partition ta-
ble also records a partition’s type. Numerous
predefined partition types exist, and a parti-
tion’s type specifies which file system the
partition includes.

Physical Address Extension (PAE) A memory-
mapping mode included in all Intel x86 pro-
cessors since the Pentium Pro. With the
proper chipset, the PAE mode allows access
to up to 64 GB of physical memory. When
the x86 executes in PAE mode, the memory
management unit (MMU) divides virtual ad-
dresses into four fields.

physical device object (PDO) A device object
that’s a required part of a devnode. The PDO
represents the physical interface to a device.
See also devnode.

Plug and Play (PnP) manager A major com-
ponent of the executive that determines
which drivers are required to support a par-
ticular device and loads those drivers. The
PnP manager retrieves the hardware re-
source requirements for each device during
enumeration. Based on the resource require-
ments of each device, the PnP manager as-
signs the appropriate hardware resources
such as I/O ports, IRQs, DMA channels, and
memory locations. It is also responsible for
sending proper event notification for device
changes (addition or removal of a device) on
the system.

port driver A type of kernel-mode device driv-
er that implements the processing of an I/O
request specific to a type of I/O port, such as
SCSI.

port object A single executive object a local
procedure call (LPC) exports to maintain the
state needed for communication.

power manager A major component of the ex-
ecutive that coordinates power events and
generates power management I/O notifica-
tions to device drivers. When the system is
idle, the power manager can be configured to
reduce power consumption by putting the
CPU to sleep. Changes in power consumption

886 Microsoft Windows Internals, Fourth Edition
by individual devices are handled by device
drivers but are coordinated by the power
manager.

printer driver A driver that translates device-
independent graphics requests to printer-
specific commands. These commands are
then typically forwarded to a kernel-mode
port driver such as the parallel port driver
(Parport.sys) or the USB printer port driver
(Usbprint.sys).

private cache map A structure that contains
the location of the last two reads so that the
cache manager can perform intelligent read-
ahead.

process The virtual address space and control
information necessary for the execution of a
set of thread objects.

process and thread manager The services in
the executive that export the process and
thread object. These services use primitive
functions in the kernel to create processes
and threads.

process ID A unique identifier for a process
(internally called a client ID).

process working set The subset of a process’s
virtual address space that is resident and
owned by the running process. See also sys-
tem working set.

processor affinity The set of processors a
thread is permitted to run on.

processor control register (PCR) A data struc-
ture that along with its extension, the proces-
sor control block (PRCB), contains
information about the state of each proces-
sor in the system, such as the current inter-
rupt request level (IRQL), a pointer to the
hardware interrupt dispatch table (IDT), the
currently running thread, and the next
thread selected to run. The kernel and the
HAL use this information to perform archi-
tecture-specific and machine-specific actions.
Portions of the PCR and PRCB structures are
defined publicly in the Windows Device
Driver Kit (DDK) header file Ntddk.h.

program A static sequence of instructions.

protected-mode A state during the boot pro-
cess in which no virtual-to-physical transla-

tion occurs but a full 32 bits of memory
becomes accessible. After the system is in
protected-mode, Ntldr can access all of phys-
ical memory.

protocol driver A driver that implements a
networking protocol such as TCP/IP, Net-
BEUI, or IPX/SPX.

prototype page table entries (prototype
PTEs) A software structure the memory man-

ager relies on to map potentially shared pag-
es when a page can be shared between two
processes. An array of prototype PTEs is cre-
ated when a section object is first created.

quality of service (Qos) A networking tech-
nology that ensures that critical network ap-
plications receive highest priority.

quantum The length of time a thread is al-
lowed to run before Windows interrupts the
thread to find out whether another thread at
the same priority level is waiting to run or
whether the thread’s priority needs to be re-
duced.

quantum unit A value that represents how
long a thread can run until its quantum ex-
pires. This value is an integer value, not a
length of time.

queue A method for threads to enqueue and
dequeue notifications of the completion of
I/O operations (called an I/O completion
port in the Windows API).

queued spinlock A special type of spinlock
that is used only by the kernel and not ex-
ported for executive components or device
drivers. A queued spinlock scales better on
multiprocessor systems than a standard
spinlock does. See also spinlock.

quota charges In the Windows object manag-
er, the record of how much the object man-
ager subtracts from a process’s allotted
paged and/or nonpaged pool quota when a
thread in the process opens a handle to the
object.

RAID-5 volume A fault tolerant variant of a
regular stripe volume. Fault tolerance is
achieved by reserving the equivalent of one
disk for storing parity for each stripe. Also
called stripe volume with parity.

Glossary 887
ready summary A bit mask (KiReadySumma-
ry) that Windows maintains to speed up the
selection of which thread to run or preempt.

real-mode An operating mode in which no
virtual-to-physical translation of memory ad-
dresses occurs, which means that programs
that use the memory addresses interpret
them as physical addresses and that only the
first 1 MB of the computer’s physical memo-
ry is accessible. Simple MS-DOS programs
execute in a real-mode environment.

recoverability An advanced feature of NTFS
that allows a system to recover from an unex-
pected system halt. If a system is halted unex-
pectedly, the metadata of a FAT volume can
be left in an inconsistent state, leading to the
corruption of large amounts of file and direc-
tory data. NTFS implements recoverability by
logging changes to metadata in a transaction-
al manner so that file system structures can be
repaired to a consistent state with no loss of
file or directory structure information. (File
data can be lost, however.)

redo information Information included in the
NTFS checkpoint record that explains how
to reapply one suboperation of a fully logged
(committed) transaction to the volume if a
system failure occurs before the transaction
is flushed from the cache.

reference count The object manager’s record
of how many object pointers it has dis-
pensed to operating system processes. The
object manager increments a reference count
for an object each time it gives out a pointer
to the object; when kernel-mode compo-
nents finish using the pointer, they call the
object manager to decrement the object’s ref-
erence count.

reparse data User-defined data about the file
or directory, such as its state or location, that
can be read from the reparse point by the ap-
plication that created the data, a file system
filter driver, or the I/O manager.

reparse point An NTFS file or directory that
has a block of data called reparse data associ-
ated with it.

Reparse tag The reparse tag allows the compo-
nent responsible for interpreting the reparse

point’s reparse data to recognize the reparse
point without having to check the reparse
data.

resident attribute An attribute that is stored
directly in the master file table. (If a file is
small, all its attributes and their values [its
data, for example] fit in the file record.)

resource arbitration A process by which the
Plug and Play (PnP) manager optimally as-
signs hardware resources so that each device
meets the requirements necessary for its op-
eration. Because hardware devices can be
added to the system after boot-time resource
assignment, the PnP manager must also be
able to reassign resources to accommodate
the needs of dynamically added devices.

restricted token A token created from a pri-
mary or impersonation token using the Cre-
ateRestrictedToken function. The restricted
token is a copy of the token it’s derived from,
with some possible modifications: Privileges
can be removed from the token’s privilege ar-
ray. SIDs in the token can be marked as
deny-only. SIDS in the token can be marked
as restricted.

ring A privilege level defined in the x86 and
x64 processor architectures to protect sys-
tem code and data from being overwritten ei-
ther inadvertently or maliciously by code of
lesser privilege. Windows on the x86 and
x64 platforms use privilege level 0 (or ring 0)
for kernel mode and privilege level 3 (or ring
3) for user mode.

safe mode A boot configuration that consists
of the minimal set of device drivers and ser-
vices. By relying on only the drivers and ser-
vices that are necessary for booting,
Windows avoids loading third-party and
other nonessential drivers that might crash.

SAM database A database (stored in the regis-
try under HKLM\SAM) that contains the de-
fined users and groups, along with their
passwords and other attributes.

scatter/gather I/O A kind of high-perfor-
mance I/O Windows supports, available via
the Windows ReadFileScatter and WriteFile-
Gather functions. These functions allow an
application to issue a single read or write

888 Microsoft Windows Internals, Fourth Edition
from more than one buffer in virtual memory
to a contiguous area of a file on disk. To use
scatter/gather I/O, the file must be opened
for noncached I/O, the user buffers being
used have to be page-aligned, and the I/Os
must be asynchronous (overlapped).

section object An object that represents a
block of memory that two or more processes
can share. A section object can be mapped to
the paging file or to another file on disk. The
executive uses section objects to load execut-
able images into memory, and the cache
manager uses them to access data in a
cached file. In the Windows subsystem, a
section object is called a file-mapping object.

section object pointers Structure for each
open file (represented by a file object) that is
the key to maintaining data consistency for all
types of file access as well as to providing
caching for files. The section object pointers
structure points to one or two control areas.
One control area is used to map the file when
accessed as a data file, and one is used to map
the file when it is run as an executable image.

sector A hardware-addressable portion of a
physical disk. A hard disk sector on an IBM-
compatible PC is typically 512 bytes. Utilities
that prepare hard disks for the definition of
logical drives, including the MS-DOS Fdisk
utility or the Windows Setup program, write
a sector of data called a master boot record
(MBR) to the first sector on a hard disk. The
MBR includes a fixed amount of space that
contains executable instructions (called boot
code) and a partition table with four entries
that define the locations of the primary parti-
tions on the disk. See also boot code, parti-
tion table.

secure attention sequence (SAS) A keystroke
combination that when entered notifies Win-
logon of a user logon request.

Secure logon facility Requires that users can
be uniquely identified and that they must be
granted access to the computer only after
they have been authenticated in some way.

Security Accounts Manager (SAM) service A
set of subroutines responsible for managing
the database that contains the usernames
and groups defined on the local machine or

for a domain (if the system is a domain con-
troller). The SAM runs in the context of the
LSASS process.

security auditing A way in which Windows
detects and records important security-relat-
ed events or any attempts to create, access, or
delete system resources. Logon identifiers
record the identities of all users, making it
easier to trace anyone who performs an un-
authorized action.

security descriptor The data structure that
specifies who can perform what actions on
an object. A security descriptor consists of
attributes.

security identifier (SID) A means of uniquely
identifying entities that perform actions in a
system. A SID is a variable-length numeric
value that consists of a SID structure revision
number, a 48-bit identifier authority value,
and a variable number of 32-bit subauthority
or relative identifier (RID) values.

security quality of service (SQOS) The indi-
cator specified by a client opening a server
resource that specifies the maximum level of
client impersonation the server is allowed.

security reference monitor (SRM) A compo-
nent in the Windows executive (Ntoskrnl.exe)
that enforces security policies on the local
computer. It guards operating system re-
sources, performing run-time object protec-
tion and auditing.

semaphore A counter that provides a resource
gate by allowing some maximum number of
threads to access the resources protected by
the semaphore.

server processes User processes that are Win-
dows services, such as the Event Log and
Schedule services. Many add-on server appli-
cations, such as Microsoft SQL Server and
Microsoft Exchange Server, also include
components that run as Windows services.

session Consists of the processes and other
system objects (such as the window station,
desktops, and windows) that represent a sin-
gle user’s workstation logon session. Each
session has a session-specific paged pool area
used by the kernel-mode portion of the Win-
dows subsystem (Win32k.sys) to allocate ses-
sion-private GUI data structures. In addition,

Glossary 889
each session has its own copy of the Win-
dows subsystem process (Csrss.exe) and
logon process (Winlogon.exe).

session space A component of system space
used to map information specific to a user
session. The session working set list de-
scribes the parts of session space that are res-
ident and in use.

shared cache map A structure that describes
the state of a cached file, including its size
and (for security reasons) its valid data
length.

shared memory Memory visible to more than
one process or that is present in more than
one virtual address space.

signal state The state of a synchronization ob-
ject.

simple volume A set of objects that represent
sectors from a single partition that file sys-
tem drivers manage as a single unit.

single sign-on The ability for logon informa-
tion to be simultaneously authenticated on
more than one system. For example, a user
logging on to a Windows system might si-
multaneously be authenticated on a UNIX
server. That user would then be able to ac-
cess resources of the UNIX server from the
machine running Windows without requir-
ing additional authentication.

small memory dump A small memory dump
(the default on Windows Professional, 64
KB in size) containing the stop code and pa-
rameters, the list of loaded device drivers, the
data structures that describe the current pro-
cess and thread (called the EPROCESS and
ETHREAD), and the kernel stack for the
thread that caused the crash.

spanned volume A single logical volume com-
posed of a maximum of 32 free partitions on
one or more disks. The Windows Disk Man-
agement Microsoft Management Console
(MMC) snap-in combines the partitions into
a spanned volume, which can then be for-
matted for any of the file systems that Win-
dows supports.

sparse files Files, often large, that contain only
a small amount of nonzero data relative to
their size.

spinlock The locking mechanism the kernel
uses to achieve multiprocessor mutual exclu-
sion. The spinlock gets its name from the fact
that the kernel (and thus, the processor) is
held in limbo, “spinning,” until it gets the
lock. Spinlocks, like the data structures they
protect, reside in global memory. See also
queued spinlock.

stack frame Information, representing the ac-
tivation of a procedure, that is pushed onto
the stack when a procedure is invoked. A
stack frame can have one or more exception
handlers associated with it, each of which
protects a particular block of code in the
source program.

stream A sequence of bytes within a file.

striped volume Series of up to 32 partitions,
one partition per disk, that combines into a
single logical volume. Striped volumes are also
known as RAID level 0 (RAID-0) volumes. A
partition in a striped volume need not span an
entire disk; the only restriction is that the par-
titions on each disk be the same size.

stop code An error code that classifies the
type of error detected by a component that
crashes the system.

structured exception handling A type of ex-
ception handling that allows applications to
gain control when exceptions occur. The ap-
plication can then fix the condition and re-
turn to the place the exception occurred,
unwind the stack (thus terminating execu-
tion of the subroutine that raised the excep-
tion), or declare back to the system that the
exception isn’t recognized, and continue
searching for an exception handler that
might process the exception.

subsection A structure that describes the
mapping information for each section of the
file (read-only, read-write, copy-on-write,
and so on).

subsystem dynamic-link libraries (DLLs)
DLLs that translate a documented function
into the appropriate undocumented Win-
dows system service calls. This translation
might or might not involve sending a mes-
sage to the environment subsystem process
that is serving the user application.

890 Microsoft Windows Internals, Fourth Edition
symbolic link A mechanism for referring to an
object name indirectly.

symmetric encryption algorithm An algo-
rithm that uses the same key to encrypt and
decrypt data. Symmetric encryption algo-
rithms are typically very fast, which makes
them suitable for encrypting large amounts
of data, such as file data. They do have a
weakness, however; their security can be by-
passed if their key is obtained.

symmetric multiprocessing (SMP) A multi-
processing operating system in which there
is no master processor—the operating system
as well as user threads can be scheduled to
run on any processor. All the processors
share just one memory space.

synchronization A thread’s ability to synchro-
nize its execution by waiting for an object to
change from one state to another. A thread
can synchronize with executive process,
thread, file, event, semaphore, mutex, and
timer objects. Section, port, access token, ob-
ject directory, symbolic-link, profile, and key
objects don’t support synchronization.

synchronous I/O A model for I/O in which a
device performs a data transfer and returns a
status code when the I/O is complete. The
program can then access the transferred data
immediately. When used in their simplest
form, the Windows ReadFile and WriteFile
functions are executed synchronously. They
complete an I/O operation before returning
control to the caller.

system access-control list (SACL) Specifies
which operations by which users should be
logged in the security audit log.

system code write protection The setting of
the read-only parts of the kernel as read-only
pages.

system audit ACE An access-control entry
(ACE) contained by a system access-control
list (SACL) that, along with the system audit-
object ACE, specifies which operations per-
formed on the object by specific users or
groups should be audited. System audit-ob-
ject ACEs specify a GUID indicating the
types of objects or subobjects that the ACE

applies to and an optional GUID that con-
trols propagation of the ACE to particular
child object types. If an SACL is null, no au-
diting takes place on the object.

system cache Pages used to map files open in
the system cache.

system page table entries (PTEs) Pool of sys-
tem PTEs used to map system pages such as
I/O space, kernel stacks, and memory de-
scriptor lists.

system service dispatch table Table in which
each entry contains a pointer to a system ser-
vice rather than to an interrupt handling rou-
tine.

system services (or executive system services)
Native functions in the Windows operating
system that are callable from user mode. For
example, NtCreateProcess is the internal sys-
tem service the Windows CreateProcess
function calls to create a new process.

system support processes User processes,
such as the logon process and the Session
Manager, that are not Windows services
(that is, not started by the service controller).

system thread A kind of thread that runs only
in kernel mode. System threads always re-
side in the system process (always process
ID 2). These threads have all the attributes
and contexts of regular user-mode threads
(such as a hardware context, priority, and so
on) but run only in kernel-mode executing
code loaded in system-space code, whether
that be in Ntoskrnl.exe or in any other load-
ed device driver. System threads don’t have a
user process address space and hence must
allocate any dynamic storage from operating
system memory heaps, such as paged or
nonpaged pool.

system worker threads Threads created in the
system process during system initialization
that exist solely to perform work on behalf of
other threads.

system working set The physical memory be-
ing used by the system cache, paged pool,
pageable code in Ntoskrnl.exe, and pageable
code in device drivers. See also process work-
ing set.

Glossary 891
thread An entity within a process that Win-
dows schedules for execution. A thread in-
cludes the contents of a set of volatile
registers representing the state of the proces-
sor; two stacks, one for the thread to use
while executing in kernel mode and one for
executing in user mode; a private storage
area for use by subsystems, run-time librar-
ies, and DLLs; and a unique identifier called
a thread ID (also internally called a client
ID).

thread context A thread’s volatile registers,
the stacks, and the private storage area. Be-
cause this information is different for each
machine architecture that Windows runs on,
this structure is architecture-specific. In fact,
the CONTEXT structure returned by the
Windows GetThreadContext function is the
only public data structure in the Windows
API that is machine-dependent.

timer A mechanism that notifies a thread
when a fixed period of time elapses.

transaction An I/O operation that alters file
system data or changes the volume’s directo-
ry structure. The separate disk updates that
make up the transaction must be executed
atomically; that is, once the transaction be-
gins to execute, all its disk updates must be
completed. If a system failure interrupts the
transaction, the part that has been complet-
ed must be undone, or rolled back. The roll-
back operation returns the database to a
previously known and consistent state, as if
the transaction had never occurred.

transaction table A table that keeps track of
transactions that have been started but that
aren’t yet committed. The suboperations of
these active transactions must be removed
from the disk during recovery.

transition A kind of invalid page table entry
(PTE) in which the desired page is in memo-
ry on either the standby, modified, or modi-
fied-no-write list. The page is removed from
the list and added to the working set.

translation look-aside buffer (TLB) A CPU
cache of recently translated virtual page
numbers.

trap A processor’s mechanism for capturing
an executing thread when an exception or an
interrupt occurs, switching it from user
mode into kernel mode, and transferring
control to a fixed location in the operating
system. In Windows, the processor transfers
control to the kernel’s trap handler.

trap frame A data structure in which the exe-
cution state of the interrupted thread is
stored. This information allows the kernel to
resume execution of the thread after han-
dling the interrupt or the exception. The trap
frame is usually a subset of a thread’s com-
plete context.

trap handler A module in the kernel that acts
as a switchboard, fielding exceptions and in-
terrupts detected by the processor and trans-
ferring control to code that handles the
condition.

trusted facility management Requires sup-
port for separate account roles for adminis-
trative functions. For example, separate
accounts are provided for administration
(Administrators), user accounts charged
with backing up the computer, and standard
users.

trusted path functionality Prevents Trojan
horse programs from being able to intercept
users’ names and passwords as they try to
log in. The trusted path functionality in Win-
dows comes in the form of its Ctrl+Alt+De-
lete logon-attention sequence, which cannot
be intercepted by nonprivileged applica-
tions. This sequence of keystrokes, which is
also known as the secure attention sequence
(SAS), always pops up a logon dialog box, so
would-be Trojan horses can easily be recog-
nized. A Trojan horse presenting a fake
logon dialog box will be bypassed when the
SAS is entered.

type object An internal system object that
contains information common to each in-
stance of the object.

Unicode An international character set stan-
dard that defines unique 16-bit values for
most of the world’s known character sets.

update records The most common type of
record NTFS writes to the log file. Each

892 Microsoft Windows Internals, Fourth Edition
update record contains the information
needed to redo an operation that updated
the file system structure.

user mode The nonprivileged processor
mode that applications run in. A limited set
of interfaces is available in this mode, and
the access to system data is limited. See also
kernel mode.

VACB index array An array of pointers main-
tained by the cache manager to keep track of
which views for a given file are mapped to
the system cache.

view The portion of the section object re-
quired by a process. A section object can re-
fer to files that are much larger than can fit in
the address space of a process. (If the paging
file backs a section object, sufficient space
must exist in the paging file to contain it.) To
access a very large section object, a process
can map only a view of the section by calling
the MapViewOfFile function and then speci-
fying the range to map. Mapping views per-
mits processes to conserve address space
because only the views of the section object
needed at the time must be mapped into
memory. See also section object.

virtual address control blocks (VACBs) The
data structures that the cache manager uses
to manage the system address space into
which it maps files.

virtual address descriptors (VADs) Data struc-
tures the memory manager maintains that
keep track of which virtual addresses have
been reserved in the process’s address space.
VADs are structured as a self-balancing bina-
ry tree to make lookups efficient.

virtual address space A set of virtual memory
addresses that a process can use.

virtual block caching A method the Windows
cache manager uses to keep track of which
parts of which files are in the cache.

virtual cluster numbers (VCNs) VCNs num-
ber the clusters belonging to a particular file
from 0 through m. VCNs aren’t necessarily
physically contiguous, but they can be
mapped to any number of logical cluster
numbers (LCNs) on a volume.

virtual device drivers (VDDs) Drivers used to
emulate 16-bit MS-DOS applications. They
trap what an MS-DOS application thinks are
references to I/O ports and translate them
into native Windows I/O functions. Because
Windows is a fully protected operating sys-
tem, user-mode MS-DOS applications can’t
access hardware directly and thus must go
through a real kernel-mode device driver.

virtual memory manager Implements virtual
memory, a memory management scheme
that provides a large, private address space
for each process that can exceed available
physical memory.

volume One or more logical disk partitions
that are treated as a single unit.

volume file A system file (filename $Volume)
that contains the volume name, the version
of NTFS for which the volume is formatted,
and a bit that when set signifies that a disk
corruption has occurred and must be re-
paired by the Chkdsk utility.

volume manager A term used to represent
both FtDisk and DMIO because both FtDisk
and DMIO support the same multipartition-
volume types.

volume set A single logical volume composed
of a maximum of 32 areas of free space on
one or more disks.

wait block A data structure that represents a
thread waiting on an object. Each thread that
is in a wait state has a list of the wait blocks
that represent the objects the thread is wait-
ing on. Each dispatcher object has a list of
the wait blocks that represent which threads
are waiting on the object.

wait hint A value indicating how long a ser-
vice should wait before informing the system
a shutdown is complete.

WDM drivers Device drivers that adhere to
the Windows Driver Model (WDM). WDM
includes support for Windows power man-
agement, Plug and Play, and Windows Man-
agement Instrumentation (WMI). WDM is
implemented on Windows 2000 and later,
Windows 98, and Windows Millennium Edi-
tion, so WDM drivers are source compatible
between these operating systems and in

Glossary 893
many cases are also binary compatible.
There are three types of WDM drivers: bus
drivers, function drivers, and filter drivers.

WDM Windows Management Instrumentation
routines Enable device drivers to publish per-

formance and configuration information and
receive commands from the user-mode WMI
service. Consumers of WMI information can
be on the local machine or remote across the
network.

Windows API The 32-bit interface to Win-
dows 2000 and both the 32-bit and 64-bit
programming interfaces to Windows XP and
Windows Server 2003.

Windows services A mechanism to start pro-
cesses at system startup time that provide
services not tied to an interactive user. Ser-
vices are similar to UNIX daemon processes
and often implement the server side of cli-
ent/server applications.

window station A window station contains
desktops, and desktops contain windows.
Only one window station can be visible on a
console and receive user mouse and key-
board input. In a Terminal Services environ-
ment, one window station per session is
visible, but services all run as part of the con-
sole session.

Windows drivers Device drivers that integrate
with the Windows power manager and Plug
and Play manager, when required. They in-
clude drivers for mass storage devices, proto-
col stacks, and network adapters.

Windows Management Instrumentation (WMI)
manager A component of the executive that

enables device drivers to publish perfor-
mance and configuration information and
receive commands from the user-mode WMI
service. Consumers of WMI information can
be on the local machine or remote across the
network.

work item A unit of work placed on a queue
dispatcher object when a device driver or an
executive component requests a system
worker thread’s services by calling the exec-
utive functions ExQueueWorkItem or Io-
QueueWorkItem. Work items include a
pointer to a routine and a parameter that the

thread passes to the routine when it process-
es the work item. The routine is implement-
ed by the device driver or executive
component that requires passive-level execu-
tion.

working set A subset of virtual pages resident
in physical memory. There are two kinds of
working sets—process working sets and the
system working set.

working set manager A routine that runs in
the context of the balance set manager sys-
tem thread to initiate automatic working set
trimming to increase the amount of free
memory available in the system. Although
Windows attempts to keep memory avail-
able by writing modified pages to disk, when
modified pages are being generated at a very
high rate, more memory is required to meet
memory demands. The working set manager
is called when physical memory runs low
(when MmAvailablePages is less than
MmMinimumFreePages).

write-back A caching strategy the lazy write
file system uses to improve performance. In
write-back, the file system writes file modifi-
cations to the cache and flushes the contents
of the cache to disk in an optimized way,
usually as a background activity.

write-through An algorithm the FAT file sys-
tem uses that causes disk modifications to be
immediately written to the disk. Unlike the
careful-write approach, the write-through
technique doesn’t require the file system to
order its writes to prevent inconsistencies.
See also careful write.

write throttling Prevents system performance
from degrading because of a lack of memory
when a file system or network server issues a
large write operation.

zero page thread A kernel-mode system
thread (thread 0 in the system process). A
zero page thread zeroes out pages on the free
list so that a cache of zero pages is available
to satisfy future demand-zero page faults.

David Solomon
David Solomon, president of David Solomon Expert Seminars
(www.solsem.com), has focused on explaining the internals of the
Microsoft Windows NT operating system line since 1992. He has
taught his world-renowned Windows Internals classes to thousands
of developers and IT professionals worldwide. His clients include all
the major software and hardware companies, including Microsoft.
He was a recipient of the 1993 Microsoft Support Most Valuable
Professional (MVP) award.

This is David’s fourth book. His first book was Windows NT for Open
VMS Professionals (Digital Press/Butterworth Heinemann, 1996). It
explained Windows NT to VMS-knowledgeable programmers and
system administrators. Prior to starting his own company, David

worked for nine years as a project leader and developer in the VMS operating system develop-
ment group at Digital Equipment Corporation. His second book, Inside Windows NT, Second
Edition (Microsoft Press, 1998), covered the internals of Windows NT 4.0. His third book,
Inside Windows 2000, Third Edition (Microsoft Press 2000) was co-authored by Mark Russinovich.

In addition to organizing and teaching seminars, David is a regular speaker at technical confer-
ences such as Microsoft TechEd and Microsoft PDCs. He has also served as technical chair for
several past Windows NT conferences. When he’s not researching Windows, David enjoys sail-
ing, reading, and watching Star Trek.

Mark Russinovich
Mark Russinovich is chief software architect and cofounder of
Winternals Software (www.winternals.com), a company that
specializes in advanced systems software for Microsoft Windows.
He is a senior contributing editor for Windows IT Pro Magazine,
where he contributes to the Windows Power Tools column. He and
David Solomon deliver public and private seminars on Windows
operating system internals and advanced troubleshooting to numer-
ous companies and organizations, including regular deliveries to
Microsoft employees. They also created a 12-hour self-paced Win-
dows internals video tutorial, which Microsoft licensed for worldwide
corporate use. Mark is also a frequent speaker at major industry con-
ferences such as Microsoft Tech Ed, Microsoft IT Forum, Windows IT
Pro Magazine's Connections, and MCP Magazine's TechMentor.

Mark has a B.S. from Carnegie Mellon University and an M.S. from Rensselaer Polytechnic
Institute, both in computer engineering. In 1994, he earned a Ph.D. from Carnegie Mellon
University, also in computer engineering. Before founding Winternals Software, he worked at
Compuware NuMega Laboratories and IBM’s Thomas J. Watson Research Center.

	Cover
	Copyright

	Dedication
	Contents at a Glance
	Table of Contents
	Historical Perspective
	Foreword
	Acknowledgments
	Introduction
	Structure of the Book
	History of the Book
	Fourth Edition Changes
	Hands-On Experiments
	Topics Not Covered
	A Warning and Caveat
	Support
	From the Authors
	From Microsoft Press

	System Requirements

	Chapter 1 Concepts and Tools
	Windows Operating System Versions
	Foundation Concepts and Terms
	Windows API
	Services, Functions, and Routines
	Processes, Threads, and Jobs
	Virtual Memory
	Kernel Mode vs. User Mode
	Terminal Services and Multiple Sessions
	Objects and Handles
	Security
	Registry
	Unicode

	Digging into Windows Internals
	Performance Tool
	Windows Support Tools
	Windows Resource Kits
	Kernel Debugging
	Platform Software Development Kit (SDK)
	Device Driver Kit (DDK)
	Sysinternals Tools

	Conclusion

	Chapter 2 System Architecture
	Requirements and Design Goals
	Operating System Model
	Architecture Overview
	Portability
	Symmetric Multiprocessing
	Scalability
	Differences Between Client and Server Versions
	Checked Build

	Key System Components
	Environment Subsystems and Subsystem DLLs
	Ntdll.dll
	Executive
	Kernel
	Hardware Abstraction Layer
	Device Drivers
	System Processes

	Conclusion

	Chapter 3 System Mechanisms
	Trap Dispatching
	Interrupt Dispatching
	Exception Dispatching
	System Service Dispatching

	Object Manager
	Executive Objects
	Object Structure

	Synchronization
	High-IRQL Synchronization
	Low-IRQL Synchronization

	System Worker Threads
	Windows Global Flags
	Local Procedure Calls (LPCs)
	Kernel Event Tracing
	Wow64
	Wow64 Process Address Space Layout
	System Calls
	Exception Dispatching
	User Callbacks
	File System Redirection
	Registry Redirection and Reflection
	I/O Control Requests
	16-Bit Installer Applications
	Printing
	Restrictions

	Conclusion

	Chapter 4 Management Mechanisms
	The Registry
	Viewing and Changing the Registry
	Registry Usage
	Registry Data Types
	Registry Logical Structure
	Troubleshooting Registry Problems
	Registry Internals

	Services
	Service Applications
	Service Accounts
	The Service Control Manager
	Service Startup
	Startup Errors
	Accepting the Boot and Last Known Good
	Service Failures
	Service Shutdown
	Shared Service Processes
	Service Control Programs

	Windows Management Instrumentation
	WMI Architecture
	Providers
	The Common Information Model and the Managed Object Format Language
	The WMI Namespace
	Class Association
	WMI Implementation
	WMI Security

	Conclusion

	Chapter 5 Startup and Shutdown
	Boot Process
	x86 and x64 Preboot
	The x86/x64 Boot Sector and Ntldr
	The IA64 Boot Process
	Initializing the Kernel and Executive Subsystems
	Smss, Csrss, and Winlogon

	Troubleshooting Boot and Startup Problems
	Last Known Good
	Safe Mode
	Recovery Console
	Solving Common Boot Problems

	Shutdown
	Conclusion

	Chapter 6 Processes, Threads, and Jobs
	Process Internals
	Data Structures
	Kernel Variables
	Performance Counters
	Relevant Functions

	Flow of CreateProcess
	Stage 1: Opening the Image to Be Executed
	Stage 2: Creating the Windows Executive Process Object
	Stage 3: Creating the Initial Thread and Its Stack and Context
	Stage 4: Notifying the Windows Subsystem about the New Process
	Stage 5: Starting Execution of the Initial Thread
	Stage 6: Performing Process Initialization in the Context of the New Process

	Thread Internals
	Data Structures
	Kernel Variables
	Performance Counters
	Relevant Functions
	Birth of a Thread

	Examining Thread Activity
	Thread Scheduling
	Overview of Windows Scheduling
	Priority Levels
	Windows Scheduling APIs
	Relevant Tools
	Real-Time Priorities
	Thread States
	Dispatcher Database
	Quantum
	Scheduling Scenarios
	Context Switching
	Idle Thread
	Priority Boosts
	Multiprocessor Systems
	Multiprocessor Thread-Scheduling Algorithms

	Job Objects
	Conclusion

	Chapter 7 Memory Management
	Introduction to the Memory Manager
	Memory Manager Components
	Internal Synchronization
	Configuring the Memory Manager
	Examining Memory Usage

	Services the Memory Manager Provides
	Large and Small Pages
	Reserving and Committing Pages
	Locking Memory
	Allocation Granularity
	Shared Memory and Mapped Files
	Protecting Memory
	No Execute Page Protection
	Copy-on-Write
	Heap Manager
	Address Windowing Extensions

	System Memory Pools
	Configuring Pool Sizes
	Monitoring Pool Usage
	Look-Aside Lists
	Driver Verifier

	Virtual Address Space Layouts
	x86 User Address Space Layouts
	x86 System Address Space Layout
	x86 Session Space
	System Page Table Entries
	64-Bit Address Space Layouts

	Address Translation
	x86 Virtual Address Translation
	Translation Look-Aside Buffer
	Physical Address Extension (PAE)
	IA-64 Virtual Address Translation
	x64 Virtual Address Translation

	Page Fault Handling
	Invalid PTEs
	Prototype PTEs
	In-Paging I/O
	Collided Page Faults
	Page Files

	Virtual Address Descriptors
	Section Objects
	Working Sets
	Demand Paging

	Logical Prefetcher
	Placement Policy
	Working Set Management
	Balance Set Manager and Swapper
	System Working Set

	Page Frame Number Database
	Page List Dynamics
	Modified Page Writer
	PFN Data Structures
	Low and High Memory Notification

	Conclusion

	Chapter 8 Security
	Security System Components
	Protecting Objects
	Access Checks
	Security Descriptors and Access Control

	Account Rights and Privileges
	Account Rights
	Privileges
	Super Privileges

	Security Auditing
	Logon
	Winlogon Initialization
	User Logon Steps

	Software Restriction Policies
	Conclusion

	Chapter 9 I/O System
	I/O System Components
	The I/O Manager
	Typical I/O Processing

	Device Drivers
	Types of Device Drivers
	Structure of a Driver
	Driver Objects and Device Objects
	Opening Devices

	I/O Processing
	Types of I/O
	I/O Request Packets
	I/O Request to a Single-Layered Driver
	I/O Requests to Layered Drivers
	I/O Completion Ports
	Driver Verifier

	The Plug and Play (PnP) Manager
	Level of Plug and Play Support
	Driver Support for Plug and Play
	Driver Loading, Initialization, and Installation
	Driver Installation

	The Power Manager
	Power Manager Operation
	Driver Power Operation
	Driver Control of Device Power

	Conclusion

	Chapter 10 Storage Management
	Storage Terminology
	Disk Drivers
	Ntldr
	Disk Class, Port, and Miniport Drivers
	Disk Device Objects
	Partition Manager

	Volume Management
	Basic Disks
	Dynamic Disks
	Multipartition Volume Management
	The Volume Namespace
	Volume I/O Operations
	Virtual Disk Service
	Volume Shadow Copy Service

	Conclusion

	Chapter 11 Cache Manager
	Key Features of the Cache Manager
	Single, Centralized System Cache
	The Memory Manager
	Cache Coherency
	Virtual Block Caching
	Stream-Based Caching
	Recoverable File System Support

	Cache Virtual Memory Management
	Cache Size
	LargeSystemCache
	Cache Virtual Size
	Cache Working Set Size
	Cache Physical Size

	Cache Data Structures
	Systemwide Cache Data Structures
	Per-File Cache Data Structures

	File System Interfaces
	Copying to and from the Cache
	Caching with the Mapping and Pinning Interfaces
	Caching with the Direct Memory Access Interfaces

	Fast I/O
	Read Ahead and Write Behind
	Intelligent Read-Ahead
	Write-Back Caching and Lazy Writing
	Write Throttling
	System Threads

	Conclusion

	Chapter 12 File Systems
	Windows File System Formats
	CDFS
	UDF
	FAT12, FAT16, and FAT32
	NTFS

	File System Driver Architecture
	Local FSDs
	Remote FSDs
	File System Operation
	File System Filter Drivers

	Troubleshooting File System Problems
	Filemon Basic vs. Advanced Modes
	Filemon Troubleshooting Techniques

	NTFS Design Goals and Features
	High-End File System Requirements
	Advanced Features of NTFS

	NTFS File System Driver
	NTFS On-Disk Structure
	Volumes
	Clusters
	Master File Table
	File Reference Numbers
	File Records
	Filenames
	Resident and Nonresident Attributes
	Data Compression and Sparse Files
	The Change Journal File
	Indexing
	Object IDs
	Quota Tracking
	Consolidated Security
	Reparse Points

	NTFS Recovery Support
	Evolution of File System Design
	Logging
	Recovery
	NTFS Bad-Cluster Recovery

	Encrypting File System Security
	Encrypting a File for the First Time
	The Decryption Process
	Backing Up Encrypted Files

	Conclusion

	Chapter 13 Networking
	Windows Networking Architecture
	The OSI Reference Model
	Windows Networking Components

	Networking APIs
	Windows Sockets
	Remote Procedure Call
	Web Access APIs
	Named Pipes and Mailslots
	NetBIOS
	Other Networking APIs

	Multiple Redirector Support
	Multiple Provider Router
	Multiple UNC Provider

	Name Resolution
	Domain Name System
	Windows Internet Name Service

	Protocol Drivers
	TCP/IP Extensions

	NDIS Drivers
	Variations on the NDIS Miniport
	Connection-Oriented NDIS
	Remote NDIS
	QOS

	Binding
	Layered Network Services
	Remote Access
	Active Directory
	Network Load Balancing
	File Replication Service
	Distributed File System

	Conclusion

	Chapter 14 Crash Dump Analysis
	Why Does Windows Crash?
	The Blue Screen
	Crash Dump Files
	Crash Dump Generation

	Windows Error Reporting
	Online Crash Analysis
	Basic Crash Dump Analysis
	Notmyfault
	Basic Crash Dump Analysis
	Verbose Analysis

	Using Crash Troubleshooting Tools
	Buffer Overrun and Special Pool
	Code Overwrite and System Code Write Protection

	Advanced Crash Dump Analysis
	Stack Trashes
	Hung or Unresponsive Systems
	When There Is No Crash Dump

	Glossary
	About the Authors

